Citation: | Lian Sheng, Cheng Zhengpu, Wu Junjun, Dong Jinwei, Tian Puyuan. 2025. Research on three−dimensional seismic attribute fusion technology for characterizing fractures in granite geothermal reservoirs[J]. Geology in China, 52(2): 1−11. DOI: 10.12029/gc20231213002 |
This paper is the result of geothermal survey engineering.
It is necessary to predict the characteristics, spatial distribution and density of natural fractures in granite reservoirs using high−precision seismic data and feature analysis methods, which provide scientific evidence for the construction of Enhanced Geothermal System (EGS).
This study adopted advanced 3D seismic techniques, including wideband, wide−angle, high−density sampling, as well as advanced processing methods such as structural−oriented filtering and multi−window dip scanning. The application of these techniques greatly improved the signal−to−noise ratio of seismic data, further optimizing the detection effect of the granite interior. At the same time, this study also combines 3D seismic attributes such as seismic attribute volume, maximum likelihood volume, coherence volume, curvature volume, variance volume, and ant volume with multi−azimuth constraints to accurately predict the spatial distribution density of fracture clusters.
Through comprehensive attribute analysis and drilling imaging logging results, we reveal the regularity of the development of northeast and northwest fractures in granite−type hot dry rock reservoirs. These results are highly consistent with drilling imaging logging results, further verifying the accuracy and reliability of this research method.
This study successfully predicted the characteristics, spatial distribution, and density of natural fractures in granite−type hot dry rock reservoirs through high−precision seismic data and feature analysis methods. This method provides important evidence for fracture detection, drilling deployment, and mining plan determination in EGS engineering construction.
[1] |
Bahorich M S, Farmer S L. 1995. 3−D seismic discontinuity for faults and stratigraphic features: The coherence cube[J]. Geophysics, 14: 1053−1058.
|
[2] |
Duo Ji, Wang Guiling. 2022. Intensify research on deep thermal exploration and production technology and continuously promote large−scale exploitation of geothermal resources[J]. Science & Techonlogy Review, 40(20): 1 (in Chinese).
|
[3] |
Fan Cunhui. 2015. Comprehensive Study on Carboniferous Volcanic Reservoirs in Zhongguai Uplift Northwestern Margin of Junggar[D]. Chengdu: Chengdu University of Technology, 1–176 (in Chinese with English abstract).
|
[4] |
Gao J, Zhang H J, Zhang S Q, Chen X B, Cheng Z P, Jia X F, Li S T, Fu L, Gao L, Xin H L. 2018. Three−dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau[J]. Geothermics, 76: 15−25. doi: 10.1016/j.geothermics.2018.06.009
|
[5] |
Jiang Xiaoyu, Zhang Yan, Gan Lideng, Song Tao, Du Wenhui, Zhou Xiaoyue. 2020. Seismic prediction technology for granite buried mountain fractures[J]. Oil Geophysical Prospecting, 55(3): 694−704 (in Chinese with English abstract).
|
[6] |
Johnson T C, Burghardt J, Strickland C, Knox H, Vermeul V, White M, Schwering P, Blankenship D, Kneafsey T, the EGS Collab Team. 2021. 4D proxy imaging of fracture dilation and stress shadowing using electrical resistivity tomography during high pressure injections into a dense rock formation[J]. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022298. doi: 10.1029/2021JB022298
|
[7] |
Khair H A, Cooke D, Hand M. 2015. Seismic mapping and geomechanical analyses of faults within deep hot granites, a workflow for enhanced geothermal system projects[J]. Geothermics, 53: 46−56. doi: 10.1016/j.geothermics.2014.04.007
|
[8] |
Li Zhengyu, Yun Xiaorui, He Bizhu, Zhang Xinyuan, Cai Zhihui, Zhen Menglin, Liu Ruohan, Cheng Haifeng. 2022. Macro fracture systems of the granites controlled by the tectonism: A case study of the Dangjiasi pluton in the northeastern margin of the Gonghe Basin[J]. Acta Petrologica Sinica, 38(11): 3578−3596 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.11.19
|
[9] |
Liu Chuanhu. 2001. Application of seismic coherent analysis technology to prediction of fractured reservoir[J]. Oil Geophysical Prospecting, 36(2): 238−244 (in Chinese with English abstract).
|
[10] |
Liu Demin, Zhang Changsheng, Sun Minghang, Wei Meihua, Guan Junpeng, Kang Zhiqiang, Xiong Aimin, Zhou Tianyu. 2021. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 40(3): 1−11 (in Chinese with English abstract).
|
[11] |
Liu Guoping, Zeng Lianbo, Lei Maosheng, Zhu Kewei, Wang Fei, Liu Qi, Li Wenfang. 2016. Fracture development characteristics and main controlling factors of the volcanic reservoir in Xujiaweizi fault depression[J]. Geology in China, 43(1): 329−337 (in Chinese with English abstract).
|
[12] |
Marfurt K J, Kirlin R L, Farmer S L, Bahorich M S. 1998. 3−D seismic attributes using a semblance−based coherency algorithm[J]. Geophysics, 63(4): 1150−1165. doi: 10.1190/1.1444415
|
[13] |
Nguyen T, Bae W, Nguyen L, Dang T. 2014. A new method for building porosity and permeability models of a fractured granite basement reservoir[J]. Petroleum Science and Technology, 32: 1886−1897. doi: 10.1080/10916466.2010.551241
|
[14] |
Roberts A. 2001. Curvature attributes and their application to 3D interpreted horizons[J]. First Break, 19(2): 85−100. doi: 10.1046/j.0263-5046.2001.00142.x
|
[15] |
Tang Xianchun, Wang Guiling, Ma Yan, Zhang Dailei, Liu Zhong, Zhao Xu, Cheng Tianjun. 2020. Gcological model of heat source and accumulation for geothermal anomalies in the Gonghe basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 94(7): 2052−2065 (in Chinese with English abstract).
|
[16] |
Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijun, Zhao Ping Zhu Chuangqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 30(32): 25−31 (in Chinese with English abstract).
|
[17] |
Wang Huang, Wang Guiling, Yue Gaofan, Gan Haonan. 2020. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica, 94(7): 2124−2130 (in Chinese with English abstract).
|
[18] |
Wang Lei, Chen Haiqing, Chen Guowen, Xie Wei. 2010. Prediction of fracture zones and their occurrences using curvature attributes[J]. Oil Geophysical Prospecting, 45(6): 885−889 (in Chinese with English abstract).
|
[19] |
Xie Jingyu, Wang Dan, Li Ning, Wang Zhenyu, Fu Guoqiang, Jin Xianpeng, Ming Yuan. 2022. Development status and suggestions of hot dry rock hydraulic fracturing for building geo−thermal reservoirs[J]. Bulletin of Geological Science and Technology, 41(3): 321−329 (in Chinese with English abstract).
|
[20] |
Xie Zixiao, Huang Zhongwei, Xiong Jianhua, Wu Xiaoguang, Li Gengsheng, Zhou Wenchao, Long Tengda. 2022. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry, 42(4): 63−72 (in Chinese with English abstract).
|
[21] |
Xie Zhou, Li Bin, Xu Hongxia, Wu Meilian, Yue Qingzheng, Zhao Haitao. 2017. Application of multi−attribute analysis technology in fault block reservoirs of Sangtamu Oilfield[J]. Oil Geophysical Prospecting, 52(1): 181−188 (in Chinese with English abstract).
|
[22] |
Xu Tianfu, Hu Zixu, Li Shengtao, Jiang Zhenjiao, Hou Zhaoyun, Li Fengyu, Liang Xu, Feng Bo. 2018. Enhanced geothermal systems: International research progress and research status in China[J]. Acta Geologica Sinica, 92(9): 1936−1947 (in Chinese with English abstract).
|
[23] |
Yin Xingyao, Gao Jinhua, Zong Zhaoyun. 2014. Curvature attribute based on dip scan with eccentric window[J]. Chinese Journal of Geophysics, 57(10): 3411−3421 (in Chinese with English abstract).
|
[24] |
Ying Yushuang. 2016. Application of multi−angle scanning and filtering coherence technology in Xudong area[J]. West−China Exploration Engineering, 28(9): 87−88 (in Chinese).
|
[25] |
Zhang E Y, Wen D G, Wang G L, Yan W D, Wang W S, Ye C M, Li X F, Wang H, Tang X C, Zhang S Q, Jin X P, Wu H D, Zhang L Y, Feng Q D, Cheng Z P. 2022. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 5(3): 372−382. doi: 10.31035/cg2022038
|
[26] |
Zhang Senqi, Yan Weide, Li Dunpeng, Jia Xiaofeng, Zhang Shengsheng, Li Shengtao, Fu Lei, Wu Haidong, Zeng Zhaofa, Li Zhiwei, Mu Jianqiang, Cheng Zhengpu, Hu Lisha. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 45(6): 1087−1102 (in Chinese with English abstract).
|
[27] |
Zhang Senqi, Wen Dongguang, Xu Tianfu, Fu Lei, Jia Xiaofeng, Sun Sheng, Weng Wei, Zhang Yang, Yang Tao, Moore Joseph, Jiang Shu, Allis Rick, McLennan John. 2019. Comparison between the geothermal frontier observatory research program of hot dry rock in the United States and the exploration status of typical EGS sites in China and the United States[J]. Earth Science Frontiers, 26(2): 321−334 (in Chinese with English abstract).
|
[28] |
Zhang Senqi, Fu Lei, Zhang Yang, Song Jian, Wang Fuchun, Huang Jinhui, Jia Xiaofeng, Li Shengtao, Zhang Linyou, Feng Qingda. 2020. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high−precision aeromagnetic data[J]. Natural Gas Industry, 40(9): 156−169 (in Chinese with English abstract).
|
[29] |
Zhang Senqi, Li Xufeng, Song Jian, Wen Dongguang, Li Zhiwei, Li Dunpeng, Cheng Zhengpu, Fu Lei, Zhang Linyou, Feng Qingda, Yang Tao, Niu Zhaoxuan. 2021. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 46(4): 1416−1436 (in Chinese with English abstract).
|
[30] |
Zhang Shengsheng, Zhang Lei, Tian Chengcheng, Cai Jingshou, Tang Baocun. 2019. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin[J]. Journal of Geomechanics, 25(4): 501−508 (in Chinese with English abstract).
|
[31] |
Zhang Yuging, Wang Hui, Fan Tingen, Song Laiming, Nie Yan, Liang Xu, Chen Fei. 2016. Granite buried hill reservoir characterization and modeling: Taking offshore an oil−field in Bohai Bay as an example[J]. Journal of Jilin University (Earth Science Edition), 46(5): 1312−1320 (in Chinese with English abstract).
|
[32] |
Zhou Zhou, Jin Yan, Zeng Jinyi, Zhang Xudong, Zhou Jian, Wang Wenzhi, Meng Han. 2019. Experimental study on hydraulic fracturing physics simulation, crack initiation and propagation in hot dry rock geothermal reservoir in Gonghe Basin, Qinghai[J]. Journal of Jilin University (Earth Science Edition), 49(5): 1425−1430 (in Chinese with English abstract).
|
[33] |
多吉, 王贵玲. 2022. 加大深部热能探采技术攻关 持续推进地热资源规模化开发[J]. 科技导报, 40(20): 1.
|
[34] |
范存辉. 2015. 准噶尔西北缘中拐凸起石炭系火山岩储层综合研究[D]. 成都: 成都理工大学, 1–176.
|
[35] |
姜晓宇, 张研, 甘利灯, 宋涛, 杜文辉, 周晓越. 2020. 花岗岩潜山裂缝地震预测技术[J]. 石油地球物理勘探, 55(3): 694−704.
|
[36] |
李振宇, 贠晓瑞, 何碧竹, 张新远, 蔡志慧, 郑孟林, 刘若涵, 陈海锋. 2022. 构造作用对花岗岩宏观裂缝系统的控制: 以共和盆地东北部党家寺岩体为例[J]. 岩石学报, 38(11): 3578−3596.
|
[37] |
刘传虎. 2001. 地震相干分析技术在裂缝油气藏预测中的应用[J]. 石油地球物理勘探, 36(2): 238−244.
|
[38] |
刘德民, 张昌生, 孙明行, 韦梅华, 关俊朋, 康志强, 熊爱民, 周天禹. 2021. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 40(3): 1−11.
|
[39] |
刘国平, 曾联波, 雷茂盛, 祖克威, 王菲, 刘奇, 李文芳. 2016. 徐家围子断陷火山岩储层裂缝发育特征及主控因素[J]. 中国地质, 43(1): 329−337.
|
[40] |
唐显春, 王贵玲, 马岩, 张代磊, 刘忠, 赵旭, 程天君. 2020. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 94(7): 2052−2065.
|
[41] |
汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25−31.
|
[42] |
王璜, 王贵玲, 岳高凡, 甘浩男. 2020. 天然裂缝影响下的花岗岩水力裂缝扩展数值模拟[J]. 地质学报, 94(7): 2124−2130.
|
[43] |
王雷, 陈海清, 陈国文, 谢薇. 2010. 应用曲率属性预测裂缝发育带及其产状[J]. 石油地球物理勘探, 45(6): 885−889.
|
[44] |
解经宇, 王丹, 李宁, 王振宇, 付国强, 金显鹏, 明圆圆. 2022. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报, 41(3): 321−329.
|
[45] |
谢紫霄, 黄中伟, 熊建华, 武晓光, 李根生, 邹文超, 龙腾达. 2022. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业, 42(4): 63−72.
|
[46] |
谢舟, 李斌, 徐红霞, 吴梅莲, 岳清政, 赵海涛. 2017. 多属性分析技术在桑塔木油田断块油气藏中的应用[J]. 石油地球物理勘探, 52(1): 181−188.
|
[47] |
许天福, 胡子旭, 李胜涛, 姜振蛟, 侯兆云, 李凤昱, 梁旭, 冯波. 2018. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 92(9): 1936−1947.
|
[48] |
印兴耀, 高京华, 宗兆云. 2014. 基于离心窗倾角扫描的曲率属性提取[J]. 地球物理学报, 57(10): 3411−3421.
|
[49] |
应玉双. 2016. 多倾角扫描及滤波的相干技术在徐东地区应用[J]. 西部探矿工程, 28(9): 87−88.
|
[50] |
张森琦, 严维德, 黎敦朋, 贾小丰, 张盛生, 李胜涛, 付雷, 吴海东, 曾昭发, 李志伟, 穆建强, 程正璞, 胡丽莎. 2018. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 45(6): 1087−1102. doi: 10.12029/gc20180601
|
[51] |
张森琦, 文冬光, 许天福, 付雷, 贾小丰, 孙晟, 翁炜, 张杨, 杨涛, Moore Joseph, 蒋恕, Allis Rick, McLennan John. 2019. 美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比[J]. 地学前缘, 26(2): 321−334.
|
[52] |
张森琦, 付雷, 张杨, 宋健, 王富春, 黄金辉, 贾小丰, 李胜涛, 张林友, 冯庆达. 2020. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业, 40(9): 156−169.
|
[53] |
张森琦, 李旭峰, 宋健, 文冬光, 李志伟, 黎敦朋, 程正璞, 付雷, 张林友, 冯庆达, 杨涛, 牛兆轩. 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学, 46(4): 1416−1436.
|
[54] |
张盛生, 张磊, 田成成, 蔡敬寿, 唐保春. 2019. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 25(4): 501−508.
|
[55] |
张雨晴, 王晖, 范廷恩, 宋来明, 聂妍, 梁旭, 陈飞. 2016. 花岗岩潜山储层裂缝建模表征方法—以渤海花岗岩潜山A油田为例[J]. 吉林大学学报(地球科学版), 46(5): 1312−1320.
|
[56] |
周舟, 金衍, 曾义金, 张旭东, 周健, 汪文智, 孟翰. 2019. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 49(5): 1425−1430.
|