• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
FANG Jing, WANG Fu, SHANG Zhiwen, YAN Xia, LIU Yufei, WANG Tianjiao, KANG Qinwei, QU Yinghui. 7.8~7.4 ka environment of diatom-rich layer and relative sea level change in the south pain of the Haihe River, Tianjin[J]. GEOLOGY IN CHINA.
Citation: FANG Jing, WANG Fu, SHANG Zhiwen, YAN Xia, LIU Yufei, WANG Tianjiao, KANG Qinwei, QU Yinghui. 7.8~7.4 ka environment of diatom-rich layer and relative sea level change in the south pain of the Haihe River, Tianjin[J]. GEOLOGY IN CHINA.

7.8~7.4 ka environment of diatom-rich layer and relative sea level change in the south pain of the Haihe River, Tianjin

Funds: 

Supported by the Project of China geological survey (DD20189506) and Tianjin Natural Science Foundation (18JCYBJC91100).

More Information
  • Available Online: February 03, 2024
  • [Objective] In order to study the diatoms indication significance to the sea level and the maximum transgression range,[Methods] this paper analyzes the diatoms and AMS 14C dating data from three 30m deep drilling cores collected near Chenier V of northern Cangzhou, Bohai Bay.[Results] The results show that diatoms are rare in these drilling cores, and there is only one diatom rich layer in each core, which is composed of peat and humus gray clay. The thickness of the layer is 10 cm to 60 cm, and thinner from seaward to landward. 7473 cal BP, site of DC01 changed from a sea water influenced swamp environment to a fresh water swamp environment, indicating a relative sea level lower than -6.37m; 7513 cal BP, site of QX02 was transformed from saltmarsh environment (zone I) to sea water influenced shallow swamp, then to salt marsh environment (zone III), The elevation of the boundary between zone I and zone II indicating a relative sea level of -6.68m. 7836 cal BP, site of QX01 was transformed from a freshwater swamp (zone I) to a salt marsh environment (zone II). The boundary between zone I and zone II indicating a relative sea level of -7.68m.[Conclusions] Relative sea level raised~1m during these~350 years, and the sea water affected the area to the west of the Chenier V. The salt marshes and freshwater swamps were the main environmental types near the transgression maximum in the Early-Mid Holocene. Under the background of modern sea level rise, marshification is a major environmental problem that modern coastal areas must face.
  • Related Articles

    [1]LÜ Peng, LU Xiaoli, LI Lu, XIANG Li, HONG Jinglan, FANG Qiuyun. Bibliometric analysis and inspiration of international research situation of nickel deposits[J]. GEOLOGY IN CHINA, 2024, 51(6): 2115-2119. DOI: 10.12029/gc20241106003
    [2]ZHANG Yutong, LÜ Peng, LU Xiaoli, XIANG Li, HONG Jinglan, CAI Xiuhua, ZHANG Mengbo, CHAI Xinxia, LI Lu. Bibliometric analysis and inspiration of international research situation of high−purity quartz[J]. GEOLOGY IN CHINA, 2024, 51(5): 1800-1805. DOI: 10.12029/gczhangyutong
    [3]LU Xiaoli, LÜ Peng, XIANG Li, HONG Jinglan, CAI Xiuhua, ZHANG Mengbo, CHAI Xinxia, LI Lu. Bibliometric analysis and inspiration of international research situation of natural gas hydrate[J]. GEOLOGY IN CHINA, 2024, 51(4): 1451-1454. DOI: 10.12029/gc20240401
    [4]LIN Liangjun, MA Zhen, GUO Xu, Zhang Zhenya, LI Yamin. Research on basic theory of urban geology[J]. GEOLOGY IN CHINA, 2020, 47(6): 1668-1676. DOI: 10.12029/gc20200605
    [5]FAN Jun, GUO Yuanyang, CHENG Yongsheng. An introduction to Deep Resources Exploration and Mining, a special project of National Key R&D Program of China[J]. GEOLOGY IN CHINA, 2019, 46(4): 919-926. DOI: 10.12029/gc20190420
    [6]WANG Tong, SHAO Longyi, XIA Yucheng, FU Xuehai, SUN Yuzhuang, SUN Yajun, JU Yiwen, BI Yinli, YU Jingchun, XIE Zhiqing, MA Guodong, WANG Qinwei, ZHOU Jin, JIANG Tao. Major achievements and future research directions of the coal geology in China[J]. GEOLOGY IN CHINA, 2017, 44(2): 242-262. DOI: 10.12029/gc20170203
    [7]MO Xuan-xue. A review and prospect of geological researches on the Qinghai-Tibet Plateau[J]. GEOLOGY IN CHINA, 2010, 37(4): 841-853. DOI: 10.12029/gc20100401
    [8]Bradley S. Van Gosen. 天然石棉矿床地质学及其在公共卫生政策中的应用[J]. GEOLOGY IN CHINA, 2010, 37(3): 704-711. DOI: 10.12029/gc20100324
    [9]WANG Yang-gang, LI Yu-long, WANG Xin-chun, ZHANG Huai-dong. Research and realization of the Geologic Projects Management System based on GIS: A case study of the Strategic Mineral Prospect Survey projects management system[J]. GEOLOGY IN CHINA, 2010, 37(2): 542-549. DOI: 10.12029/gc20100230
    [10]LI Ting-dong. Status and development trend of geological map compilation in the world[J]. GEOLOGY IN CHINA, 2007, 34(2): 206-211. DOI: 10.12029/gc20070202

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return