Citation: | Tang Jinrong, Zhang Yuxuan, Xu Li, Niu Yazhuo, Ren Jigang, Yu Rui. 2025. Stability of global critical mineral supplies: Trends, hot topics, and further outlook[J]. Geology in China, 52(2): 1−20. DOI: 10.12029/gc20240825001 |
This paper is the result of mineral exploration engineering.
The global energy transition and the rapid development of emerging industries have heighten the importance of securing a stable supply of critical minerals, which are essential for economic and technological transformation. This issue has garnered significant attention from governments and multinational enterprises, becoming a focal point in earth sciences research.
Through a systematic analysis, this paper examines the latest trend of global supply of critical minerals, identifies emerging research hotspots, and offers insights into future development. These findings provide valuable guidance for China's strategic planning in critical minerals and resource security.
This study reveals that the stability of global critical minerals supplies has received a great deal of attention from the world's major economies and important manufacturing companies. The leading role of governments in shaping the supply chain of key minerals and the industrial chain is becoming increasingly evident. The methodology for determining critical list is evolving, the number of mineral species is expanding, but the overlapping mineral species are becoming more and more aggregated. With deeper research into mineralization processes and the occurrence of critical minerals, new deposit types are emerging. Manufacturing enterprises and mining enterprises are interfacing more closely, with a clear trend towards upward and downward integration, and investment institutions are increasing their support for investment in key minerals and research and development of new technologies.
As energy transition efforts intensify, the importance of critical minerals will continue to grow in the energy transition, driving increased demand, investment, and resource discovery. Notably, smaller critical minerals, such as lithium, may gain significance and emerge as major resources. Resource−rich nations like Australia and Canada are strengthening their supply advantages, while lost regions such as Central Asia and Europe are reasserting their roles in the market, marine mineral resources exploration and development on the agenda. The global supply landscape is likely to become more diversified. Advances in technology, innovations in alternative processes, and the iteration of recycling technology will open new avenues for the securing critical mineral supplies.
[1] |
Ali S H, Giurco D, Arndt N, Nickless E, Brown G, Demetriades A, Durrheim R, Enriquez M A, Kinnaird J, Littleboy A, Meinert L D, Oberhänsli R, Salem J, Schodde R, Schneider G, Vidal O, Yakovleva N. 2017. Mineral supply for sustainable development requires resource governance[J]. Nature, 543(7645): 367−372. doi: 10.1038/nature21359
|
[2] |
Balaram V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 10(4): 1285−1303. doi: 10.1016/j.gsf.2018.12.005
|
[3] |
Bao Xiaolian. 2024. Analysis of green financing effect in non−ferrous mining industry from ESG perspective−Taking Zijin mining as an example[J]. Metallurgical Economy and Management, (3): 49−52 (in Chinese).
|
[4] |
Benson T R, Coble M A, Rytuba J J, Mahood G A. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in Caldera basins[J]. Nature Communications, 8(1): 270−279. doi: 10.1038/s41467-017-00234-y
|
[5] |
BGS. 2022. UK Criticality Assessment of Technology Critical Minerals and Metals[R]. Nottingham: British Geological Survey.
|
[6] |
Cailteux J L H, Kampunzu A B, Lerouge C, Kaputo A K, Milesi J P. 2005. Genesis of sediment−hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences, 42(1): 134−158.
|
[7] |
Castillo E, Real I D, Roa C. 2023. Critical minerals versus major minerals: A comparative study of exploration budgets[J]. Mineral Economics, 37(3): 433−444.
|
[8] |
Castillo R, Purdy C. 2022. China's role in supplying critical minerals for the global energy transition: What could the future hold?[R]. Washington: Brookings Institution.
|
[9] |
Chen Jian, Wu Nan. 2011. Study on Japan's Scarce Resource Strategy and Implications for China[C]//2011 China Sustainable Development Forum 2011 Special Issue (II) Zhuhai: China Population, Resources and Environment, 214−218 (in Chinese).
|
[10] |
Chen Qishen, Zhang Yanfei, Xing Jiayun, Long Tao, Zheng Guodong, Wang Kun, Ren Xin. 2024. New quality productive forces and new pattern of mineral resources[J]. China Mining Magazine, 33(5): 1−8 (in Chinese with English abstract).
|
[11] |
Chen Wan. 2024. Top 10 ESG trends for 2024[J]. Magazine Introduction, (2): 64−69 (in Chinese with English abstract).
|
[12] |
Cheng Jinhua, Shuai Jing, Zhao Yujia, Duan Haoran, Shuai Chuanmin. 2023. Risk assessment and prediction of critical mineral resources supply for China: A case of copper[J]. Resources Science, 45(9): 1778−1788 (in Chinese with English abstract).
|
[13] |
Cheng Qianqun, Liang Yuanzhao, Liu Mingyong, Lei Yangai, Xie Hang, Zhu Zhendong, Li. Shucheng, Dou Song, Zheng Xiaojun. 2024. An independent cobalt deposit was discovered for the first time in Nanjian area, Yunnan Province[J]. Mineral Exploration, 15(5): 906−908 (in Chinese with English abstract).
|
[14] |
China Nonferrous Metals News. [2024−04−11]. Australia deepens its commitment to key minerals[EB/OL]. https://www.cnmn.com.cn/ShowNews1.aspx?id=450786 (in Chinese).
|
[15] |
Cust J, Zeufack A. 2023. Africa’s resource future[G]. Agence française de développement and World Bank, 1−274.
|
[16] |
DISR. [2023−12−16]. Updates to Australia’s Critical Minerals List[EB/OL]. https://www.industry.gov.au/news/updates−australias−critical−minerals−list.
|
[17] |
Dostal J, Shellnutt J G. 2015. Origin of peralkaline granites of the Jurassic Bokan Mountain complex (southeastern Alaska) hosting rare metal mineralization[J]. International Geology Review, 58(1): 1−13.
|
[18] |
EEAS. [2024−04−05]. EU establishes strategic partnership with Uzbekistan on critical raw materials[EB/OL]. https://www.eeas.europa.eu/delegations/uzbekistan/eu−establishes−strategic−partnership−uzbekistan−critical−raw−materials_en?s=233.
|
[19] |
El D H A, Muchez P, Cailteux J. 2009. Two Cu−Co sulfide phases and contrasting fluid systems in the Katanga copper belt, Democratic Republic of Congo[J]. Ore Geology Reviews, 36(4): 315−332. doi: 10.1016/j.oregeorev.2009.07.003
|
[20] |
Els F. [2023−10−12]. Raising capital now biggest risk to mining companies after ESG[EB/OL]. https://www.mining.com/raising−capital−now−biggest−risk−to−mining−companies−after−esg/.
|
[21] |
European Commission. 2010. Critical raw materials for the EU[R/OL]. https://maritime−forum.ec.europa.eu/system/files/2018−02/Critical%2520raw%2520materials%2520final%2520report.pdf.
|
[22] |
European Commission. 2023. Study on the critical raw materials for the EU 2023[EB/OL]. https://single−market−economy.ec.europa.eu/publications/study−critical−raw−materials−eu−2023−final−report_en.
|
[23] |
Farooq S, Tahir A A, Krewer U, Shah A U H A, Bilal S. 2019. Efficient photocatalysis through conductive polymer coated FTO counter electrode in platinum free dye sensitized solar cells[J]. Electrochimica Acta, 320134544.
|
[24] |
Fishman T, Graedel T. 2019. Impact of the establishment of US offshore wind power on neodymium flows[J]. Nature Sustainability, 2(4): 332−338.
|
[25] |
Fu Wei, Niu Hujie, Huang Xiaorong, Yang Mengli, Chen Yuanrong. 2013. Diversitied genesis of the lateritic Nickel deposits: A comparative study based on the global scale[J]. Acta Geologica Sinica, 87(6): 832−849 (in Chinese with English abstract).
|
[26] |
Gan Yong, Peng Suping, Mao Jingwen, Pei Rongfu, Li Zhongping, Tu Hailing, Sun Chuanyao, Chen Qishen, Xie Man, Zheng Wenjiang. 2022. High−quality development strategy for the supply chain of critical minerals and its material industry in China[J]. Strategic Study of CAE, 24(3): 1−9 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2022.03.001
|
[27] |
Gao Yongwei. 2024. Kazakhstan continues to strengthen the investigation and development of rare earth metal ores[EB/OL] (in Chinese with English abstract).
|
[28] |
Giannarakis G, Konteos G, Sariannidis N. 2014. Financial, governance and environmental determinants of corporate social responsible disclosure[J]. Management Decision, 52(10): 1928−1951. doi: 10.1108/MD-05-2014-0296
|
[29] |
Goe M, Gaustad G. 2014. Identifying critical materials for photovoltaics in the US: A multi−metric approach[J]. Applied Energy, 123: 387−396. doi: 10.1016/j.apenergy.2014.01.025
|
[30] |
Goldman Sachs. [2023−09−13]. Resource realism: The geopolitics of critical mineral supply chains[EB/OL]. https://www.goldmansachs.com/intelligence/pages/resource−realism−the−geopolitics−of−critical−mineral−supply−chains.html.
|
[31] |
GOV. UK. [2023−03−13]. Resilience for the future: The UK’s critical minerals strategy[EB/OL]. https://www.gov.uk/government/publications/uk−critical−mineral−strategy/resilience−for−the−future−the−uks−critical−minerals−strategy.
|
[32] |
Government of Cananda. [2022−12−12]. The Canadian critical minerals strategy− From exploration to recycling: powering the green and digital economy for Canada and the world[EB/OL]. https://www.canada.ca/en/campaign/critical−minerals−incanada/canadian−critical−minerals−strategy.html.
|
[33] |
Graedel T E, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, Friedlander E, Henly C, Jun C, Nassar N T, Schechner D, Warren S, Yang M Y, Zhu C. 2012. Methodology of metal criticality determination[J]. Environmental Science & Technology, 46(2): 1063−1070.
|
[34] |
Grandell L, Lehtilä A, Kivinen M, Koljonen T, Kihlman S, Lauri L S. 2016. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 95: 53−62. doi: 10.1016/j.renene.2016.03.102
|
[35] |
Guo Xiaoqian, Li Jianwu. 2017. An overview of critical mineral resource evaluation by foreign institutions[J]. China Mining Magazine, 26(9): 25−32 (in Chinese with English abstract).
|
[36] |
Hatayama H, Tahara K. 2015a. Evaluating the sufficiency of Japan׳s mineral resource entitlements for supply risk mitigation[J]. Resources Policy, 44: 72−80. doi: 10.1016/j.resourpol.2015.02.004
|
[37] |
Hatayama H, Tahara K. 2015b. Criticality assessment of metals for Japan's resource strategy[J]. Materials Transactions, 56(2): 229−235. doi: 10.2320/matertrans.M2014380
|
[38] |
Heffernan O. 2019. Scientists track damage from controversial deep−sea mining method[J]. Nature, 567(7748): 294.
|
[39] |
Hein J R, Mizell K, Koschinsky A, Conrad T A. 2013. Deep−ocean mineral deposits as a source of critical metals for high−and green−technology applications: Comparison with land−based resources(Review)[J]. Ore Geology Reviews, 51: 1−14. doi: 10.1016/j.oregeorev.2012.12.001
|
[40] |
Hong Jun, Meng Guanglu, Zhang Jing, Cao Jifei, Wang Bin, Luo Yanjun, Yang Bo, Zhang Xueqi, Cicchella Domenico. 2024. National−scale geochemical survey: Distribution of chemical elements in stream sediment of South and Central Asia[J]. Journal of Geochemical Exploration, 262107452.
|
[41] |
Hou Zengqian, Liu Yan, Tian Shihong, Yang Zhiming, Xie Yuling. 2015. Formation of carbonatite−related giant rare−earth−element deposits by the recycling of marine sediments[J]. Scientific Reports, 5(1): 10231. doi: 10.1038/srep10231
|
[42] |
Huang Li, Li Fangqin, Dai Tao, Wang Peng. 2021. Recycling potential assessment of lithium metal—Based on existing recycling technology and process[J]. Conservation and Utilization of Mineral Resources, 41(5): 31−37 (in Chinese with English abstract).
|
[43] |
Huang Yunyou. 2024. Analysis of the Biden administration's clean energy supply chain security policies and their impacts[J]. International Petroleum Economics, 32(2): 36−49 (in Chinese with English abstract).
|
[44] |
Hui Fang Tian. 2024. Global key mineral supply chain risks intensify[J]. World Affairs, (4): 17−19 (in Chinese with English abstract).
|
[45] |
IEA. 2024. Global Critical Minerals Outlook 2024[R]. Paris: International Energy Agency.
|
[46] |
Vincent D. 2022. Vers une ère métallisée: Renforcer la résilience des industries par un mécanisme de stockage stratégique de métaux rares[R]. Paris: Ifri.
|
[47] |
IRENA. 2023. Geopolitics of the Energy Transition: Critical Materials [R]. Abu Dhabi: International Renewable Energy Agency.
|
[48] |
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. 2011. New world record efficiency for Cu(In, Ga)Se2 thin−film solar cells beyond 20%[J]. Progress in Photovoltaics: Research and Applications, 19(7): 894−897. doi: 10.1002/pip.1078
|
[49] |
James A. 2021. The World Will Need 10 Million Tonnes More Copper to Meet Demand[N]. https://www.mining.com/web/the−world−will−need−10−million−tonnes−more−copper−to−meet−demand/.
|
[50] |
Jiang Shaoyong, Wang Wei. 2022. How does extraordinary enrichment mineralization of strategic key metals occur?[J]. Earth Science, 47(10): 3869−3871 (in Chinese).
|
[51] |
Jiang Shaoyong, Wen Hanjie, Xu Cheng, Wang Yan, Su Huimin, Sun Weidong. 2019. Earth sphere cycling and enrichment mechanism of critical metals: Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 33(2): 112−118 (in Chinese with English abstract).
|
[52] |
Josso P, Lusty P, Gunn A, Shaw R, Singh N, Horn S, Petavratzi E. 2023. Review and Development of the Methodology and Data Used to Produce the UK Criticality Assessment of Technology−critical Minerals[R]. Nottingham: British Geological Survey.
|
[53] |
Jowitt S M, Mudd G M, Thompson J F H. 2020. Future availability of non−renewable metal resources and the influence of environmental, social, and governance conflicts on metal production[J]. Communications Earth & Environment, 1(1): 1−8.
|
[54] |
Kapil N, Radia S, Harikrishnan T, Matthew W, Rajesh C, Ganesh S, Noura Y M, Isabelle R, Sebastian S, Morgan D B. 2023. Ensuring Sustainable Supply of Critical Minerals for a Clean, Just and Inclusive Energy Transition[R]. Madrid: T20 Policy Brief.
|
[55] |
Li Dan. 2022. Development of China's key mineral resources from “The Role of Critical Minerals in Clean Energy Transitions”[J]. Metallurgical Economy and Management, (3): 7−11 (in Chinese with English abstract).
|
[56] |
Li Jianwu, Li Tianjiao, Jia Hongxiang, Wang Anjian. 2023. Determination of China's strategic and critical minerals list[J]. Acta Geoscientia Sinica, 44(2): 261−270 (in Chinese with English abstract).
|
[57] |
Li Shuo, Ma Longfei, Fan Jinkui, Yang Jianping, Zheng Qiang, Bian Baoru, Zhang Jian, Du Juan. 2021. High energy product of isotropic bulk Sm−Co/α−Fe(Co) nanocomposite magnet with multiple hard phases and nanoscale grains[J]. Journal of Materials Science & Technology, 88: 183−188.
|
[58] |
Li Wenchang, Li Jianwei, Xie Guiqing, Zhang Xiangfei, Liu Hong. 2022. Critical minerals in China: Current status, research focus and resource strategic analysis[J]. Earth Science Frontiers (China University of Geosciences(Beijing); Peking University), 29(1): 1−13 (in Chinese with English abstract).
|
[59] |
Li Wenyuan, Hong Jun, Chen Bo, Liu Jiang, Ma Zhongping, Yang Bo. 2019. Distribution regularity and main scientific issues of strategic mineral resources in Central Asia and adjacent regions[J]. Bulletin of National Natural Science Foundation of China, 33(2): 119−124 (in Chinese with English abstract).
|
[60] |
Li Xinlei, Liu Qianru. 2023. The great power game and China's response to key minerals in the global clean energy transition[J]. Issues of Contemporary World Socialism, (4): 127−141 (in Chinese with English abstract).
|
[61] |
Liu Min, Mao Jingwen, Zhang Zhihua, Li Lixing, Long Tao, Chao Wendi. 2024. Current supply status, demand trends and security measures of chromium resources in China[J]. Green and Smart Mining Engineering, 1(1): 53−57. doi: 10.1016/j.gsme.2024.04.002
|
[62] |
Liu Xue, Wang Chunlian, Liu Xuelong, Liu Dianhe, Yan Kai, Liu Sihan, Liu Yanting. 2024. Main types, distribution, development and utilization of lithium deposits in China[J]. Geology in China, 51(3): 811−832 (in Chinese with English abstract).
|
[63] |
Liu Xuelian, Kang Xishun. 2023. An evaluation and discussion on Japan's critical minerals supply chain security measures[J]. Contemporary Economy of Japan, (5): 27−41 (in Chinese with English abstract).
|
[64] |
London David. 2018. Ore−forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349−383. doi: 10.1016/j.oregeorev.2018.04.020
|
[65] |
Lu Yang. 2022. Research on the Risk Evaluation and Early Warning of Critical Mineral Resources for China's Solar PV Industry[D]. Wuhan: China University of Geosciences, 1− (in Chinese with English abstract).
|
[66] |
Ma Longfei, Quan Wei, Fan Jinkui, Chen Yanbai, Zheng Qiang, Bian Baoru, Zhang Jian, Du Juan. 2023. High magnetic energy product in isotropic nanocomposite powders with high percent of soft phase towards ultrastrong magnets[J]. Journal of Materials Science & Technology, 144: 161−167.
|
[67] |
Mao Jingwen, Song Shiwei, Liu Min, Meng Jianyan. 2022. REE deposits: Basic characteristics and global metallogeny[J]. Acta Geologica Sinica, 96(11): 3675−3697 (in Chinese with English abstract).
|
[68] |
Mao Jingwen, Song Shiwei, Liu Peng, Liu Min, Zhao Panlao, Yuan Shunda. 2023. Current progress and development trend of the research on tin deposits[J]. Acta Petrologica Sinica, 39(5): 1233−1240. (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.05.01
|
[69] |
Mao Jingwen, Yang Zongxi, Xie Guiqing, Yuan Shunda. 2019. Critical minerals: International trends and thinking[J]. Mineral deposits, 38(4): 689−698 (in Chinese with English abstract) .
|
[70] |
Mccauley A, Bradley D C. 2014. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 52(2): 183−190. doi: 10.3749/canmin.52.2.183
|
[71] |
Mcgowan R R, Roberts S, Foster R P, Boyce A J, Coller D. 2003. Origin of the copper−cobalt deposits of the Zambian copper belt: An epigenetic view from Nchanga[J]. Geology, 31(6): 497−500. doi: 10.1130/0091-7613(2003)031<0497:OOTCDO>2.0.CO;2
|
[72] |
Muchez P, Brems D, Clara E, De C A, Lammens L, Boyce A, De M D, Mukumba W, Sikazwe O. 2010. Evolution of Cu–Co mineralizing fluids at Nkana Mine, Central African Copperbelt, Zambia[J]. Journal of African Earth Sciences, 58(3): 457−474. doi: 10.1016/j.jafrearsci.2010.05.003
|
[73] |
Nassar N T, Fortier S M. 2021. Methodology and technical input for the 2021 review and revision of the U. S. Critical Minerals List[R/OL]. https://pubs.usgs.gov/publication/ofr20211045.
|
[74] |
Nassar N, Xun S, Fortier S, Schoeberlein D. 2016. Assessment of Critical Minerals: Screening Methodology and Initial Application[R]. Washington: National Science And Technology Council.
|
[75] |
National Research Council. 2008. Minerals, Critical mineral, and the U. S Economy[EB/OL]. https://nap.nationalacademies.org/resource/12034/critical_minerals_final.pdf.
|
[76] |
Nurmi P A, Hill P R, Lebel D, Hitzman M, Smelror M, Thorleifson H. 2020. The geological survey of finland strengthening its role as a key player in mineral raw materials innovation ecosystems[J]. Geological Society Special Publication, 499.
|
[77] |
Desai P. [2021−05−10]. Low Carbon World Needs $1.7 Trillion in Mining Investment[EB/OL]. http://www.reuters.com/business/energy/low−carbon−world−needs−17−trillion−mining−investment−2021−05−10.
|
[78] |
Putzolu F, Balassone G, Boni M, Maczurad M, Mondillo N, Najorka J, Pirajno F. 2018. Mineralogical association and Ni−Co deportment in the Wingellina oxide−type laterite deposit (Western Australia)[J]. Ore Geology Reviews, 97: 21−34. doi: 10.1016/j.oregeorev.2018.05.005
|
[79] |
Qin Muchuan, Liang Yanjie, Li Qingzhu, Ke Yong, Peng Cong, Zhu Zhihua, Bai Bangwei, Chai Liyuan. 2024. Analysis of the development of key non−ferrous metal extraction and recycling technology for new energy vehicles[J]. Modern Transportation and Metallurgical Materials, 4(1): 3−10 (in Chinese with English abstract).
|
[80] |
CGS. 2024. Assessment Report for Mineral Reserves in the World(2024)[R]. Beijing: Research Center for Strategy of Global Mineral Resources, China Geological Survey (in Chinese with English abstract).
|
[81] |
Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, Mcgoldrick P, Croaker M, Pollington N, Barra F. 2005. “A New Look at the Geology of the Zambian Copperbelt”, One Hundredth Anniversary Volume [M]. Littleton: Society of Economic Geologists, 965−1000.
|
[82] |
Siegel K, Vasyukova O V, Williams−Jones A E. 2018. Magmatic evolution and controls on rare metal−enrichment of the Strange Lake A−type peralkaline granitic pluton, Québec−Labrador[J]. Lithos, 308−309: 34−52. doi: 10.1016/j.lithos.2018.03.003
|
[83] |
SMM. [2023−05−17]. Canada strengthens the industrial chain of 31 key minerals including copper, rare earths, and magnesium, and will provide support in multiple aspects of exploration and development in the future[EB/OL]. https://news.smm.cn/news/102216986 (in Chinese).
|
[84] |
Song Jianjun, Wang Guoping. 2022. Thoughts on securing the supply chain for critical minerals under carbon peaking and carbon neutrality[J]. Natural Resource Economics of China, 35(8): 4−9 (in Chinese with English abstract).
|
[85] |
Standard & Poor's. 2024. Exploration Budget Trends. [EB/OL]. https://www.capitaliq.spglobal.com/web/client?auth=inherit#industry/CommodityExploBudgetTrends.
|
[86] |
Sun Yuhan, Wu Xiqing, Yao Zhanhui. 2024. Research on foreign policies for key mineral resources of new energy vehicles[J]. China Auto, (1): 14−16 (in Chinese with English abstract).
|
[87] |
Tang Jinrong, Hong Jun, He Zixin et al. 2023. Mining Development Report of The Shanghai Cooperation Organization Member Countries (2023)[M]. Beijing: Geological Publishing House, 1−51 (in Chinese with English abstract).
|
[88] |
Tang Jinrong, Yang Zongxi, Zhou Ping, Shi Junfa. 2014. The progress in the strategic study of critical minerals and its implications[J]. Geological Bulletin of China, 33(9): 1445−1453 (in Chinese with English abstract).
|
[89] |
Tang Jinrong, Zhou Ping, Sha Jinghua. 2019. Research on Energy Resource Supply Risk and Governance Framework[M]. Beijing: Geological Publishing House, 1−419 (in Chinese with English abstract).
|
[90] |
Teitler Y, Cathelineau M, Ulrich M, Ambrosi J P, Munoz M, Sevin B. 2019. Petrology and geochemistry of scandium in New Caledonian Ni−Co laterites[J]. Journal of Geochemical Exploration, 196: 131−155. doi: 10.1016/j.gexplo.2018.10.009
|
[91] |
U. S. DoE. 2010. Critical Materials Strategy[R]. Washington: United States Department of Energy.
|
[92] |
U. S. DoE. 2023. Critical Materials Assessment[R]. Washington: United States Department of Energy.
|
[93] |
UNCTAD. 2023. Technical note on critical minerals−Supply chains, trade flows and value addition[R]. Geneva: UN Trade and Development.
|
[94] |
USGS. 2017. Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply[R]. Virginia: United States Geological Survey.
|
[95] |
Vakulchuk R, Overland I. 2021. Central Asia is a missing link in analyses of critical materials for the global clean energy transition[J]. One Earth, 4(12): 1678−1692. doi: 10.1016/j.oneear.2021.11.012
|
[96] |
Vysetti B. 2023. Deep−sea mineral deposits as a future source of critical metals, and environmental issues−a brief review[J]. Minerals and Mineral Materials, 2(2): 5. doi: 10.20517/mmm.2022.12
|
[97] |
Wang Anjian, Yuan Xiaojing. 2022. Security of China's strategic and critical minerals under Background of Great Power Competition[J]. Bulletin of Chinese Academy of Sciences, 37(11): 1550−1559 (in Chinese with English abstract).
|
[98] |
Wang Anjian. 2023. Strategies in global mineral resources: Guest editor’s preface to “Studies on Strategic and Critical Mineral Resources”[J]. Acta Geoscientica Sinica, 44(2): 257−260 (in Chinese with English abstract).
|
[99] |
Wang Bin, Liang Jinglong, Li Hui, Yang Yu, Zheng Tianxin. 2019. Current status of recovery of valuable metal ions in lithium ion batteries[J]. Chinese Journal of Power Sources, 43(1): 165−167 (in Chinese with English abstract).
|
[100] |
Wang Danli, Guan Zhusun. 2017. Analysing the social category of ESG guideline[J]. China WTO Tribune, (3): 21−25 (in Chinese with English abstract).
|
[101] |
Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743−764 (in Chinese with English abstract).
|
[102] |
Wang Denghong. 2019. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 93(6): 1189−1209 (in Chinese with English abstract).
|
[103] |
Wang Hetong, Feng Kuishuang, Wang Peng, Yang Yuyao, Sun Laixiang, Yang Fan, Chen Weiqiang, Zhang Yiyi, Li Jiashuo. 2023. China’s electric vehicle and climate ambitions jeopardized by surging critical material prices[J]. Nature Communications, 14, 1246.
|
[104] |
Wang Huan, Ma Bing, Jia Lingxiao, Yu Yang, Hu Jiaxiu, Wang Wei. 2021. The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations[J]. Geology in China, 48(6): 1720−1733 (in Chinese with English abstract).
|
[105] |
Wang Hui, Feng Chengyou, Zhang Mingyu. 2019. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 38(4): 739−750 (in Chinese with English abstract).
|
[106] |
Wang Huiyan. 2019. How to achieve a win−win situation in ESG reporting[J]. Directors & Boards, (9): 40−43 (in Chinese with English abstract).
|
[107] |
Wang Peng, Yang Yuyao, Heidrich Oliver, Chen Liyang, Chen Lihua, Fishman Tomer, Chen Weiqiang. 2024. Regional rare−earth element supply and demand balanced with circular economy strategies[J]. Nature Geoscience, 17(1): 94−102. doi: 10.1038/s41561-023-01350-9
|
[108] |
Wen Hanjie, Zhou Zhengbing, Ma Wanping, Zhu Yu. 2024. Research progresses and main scientific issues of strategically critical minerals in black rock series[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 14−34 (in Chinese with English abstract).
|
[109] |
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Scientia Sinica(Terrae), 47(7): 745−765 (in Chinese with English abstract).
|
[110] |
Xu Li, Ke Wenxuan, Yuan Haojun. 2024. Leading the innovative development of green finance with ESG concepts[J]. International Finance, (3): 3−7 (in Chinese) .
|
[111] |
Yu Liangliang, Huang Min. 2024. Current status and research progress of lithium extraction technology for lithium−bearing resources[J]. Nonferrous Metals Engineering & Research, 45(2): 5−9 (in Chinese with English abstract).
|
[112] |
Yan Wenyi, Wang Zhaolong, Cao Hongbin, Zhang Yi, Sun Zhi. 2021. Criticality assessment of metal resources in China[J]. Science, 24(6): 102524. doi: 10.1016/j.isci.2021.102524
|
[113] |
Yin Wenyuan, Fan Shuwen, Liu Yizhuo. 2023. US critical minerals supply chains restructuring: Motivations, impacts, and policy recommendations[J]. Asia−Pacific Economic Review, (5): 81−89 (in Chinese with English abstract).
|
[114] |
Yu Hongyuan, Guan Chenglong. 2022. Critical minerals strategy of the Biden administration[J]. Contemporary International Relations, 32(1): 1−22.
|
[115] |
Yu Rui, Zhang Weibo, Zhang Fuliang, Zhao Dongjie. 2023. Policy measures and revelations to strengthen critical mineral supply chain in developed countries[J]. Mineral Exploration, 14(10): 1788−1797 (in Chinese with English abstract).
|
[116] |
Yu Yun, Yang Jianfeng, Ma Teng, Zhang Cuiguang. 2024. Global exploration review 2023 and outlook for lithium, cobalt, and nickel battery metals[J]. Geology in China, 51(1): 368−370 (in Chinese with English abstract).
|
[117] |
Zhang Shenghui, Wang Zhentao, Li Yongsheng, Mo Xuanxue, Dong Qingji, Chen Conglin, Geng Lin, Wang Li, Zhang Haiqi, Tan Xiumin, Xue Yingxi, Zhou Shangguo, Tian Yuming, Yao Chaomei, Jiao Sen, Chen Zhengguo, Chen Junyuan, Wang Shoucheng, Zhang Haoyu, Fu Shuixing, Wang Chunlian, Wang Yong. 2022. List, application and global pattern of critical minerals of China[J]. Conservation and Utilization of Mineral Resources, 42(5): 138−168 (in Chinese with English abstract).
|
[118] |
Zhang Suoxu, Zhou Jixin. 2022. Critical mineral security in the process of energy transformation[J]. Natural Resource Economics of China, 35(1): 22−28 (in Chinese with English abstract).
|
[119] |
Zhang Suoxu. 2023. Revelation of critical energy minerals strategies of the Europe Union and Australia[J]. Petroleum and New Energy, 35(3): 8−16 (in Chinese with English abstract).
|
[120] |
Zhang Yanfei, An Zhengzhen, Liang Shuai, Zhai Furong, Zhang Sen, Ju Nan, Jiang Ping, Jin Xiuying, Xiao Rongge. 2022. Distribution characteristics, genetic types and prospecting progress of graphite deposits[J]. Geology in China, 49(1): 135−150 (in Chinese with English abstract).
|
[121] |
Zhang Yuning, Ding Ding, Wang Ke. 2023. Critical minerals strategies in the Occident Admist energy transformation and China's response[J]. Journal of Environmental Economics, 8(4): 209−228 (in Chinese with English abstract).
|
[122] |
Zhang Yuqi, Li Huajiao, An Haizhong, Wang Anjian. 2024. Progress and frontiers of critical mineral resource availability research based on the perspective of industrial chain[J]. Resources Science, 46(4): 671−686 (in Chinese with English abstract).
|
[123] |
Zhang Yuxuan, Tang Jinrong, Niu Yazhuo, Zhang Jingya, Zhao Yu, Wei Jianshe, Jiang Guangzheng, Wang Liwei. 2022. Resource advantage and geological work suggestions under carbon neutralization in Northwest China[J]. Geology in China, 49(5): 1458−1480 (in Chinese with English abstract).
|
[124] |
Zhao Junxing, Li Guangming, Qin Kezhang, Tang Dongmei. 2019. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 64(24): 2484−2500 (in Chinese with English abstract). doi: 10.1360/N972019-00134
|
[125] |
Zhu Li, Gu Hannian, Yang Yongqiong, Wen Hanjie, Wang Ning, Luo Chongguang. 2020. Research progress of lithium extraction from clay−type lithium ore resources[J]. Light Metals, (12): 8−13 (in Chinese with English abstract).
|
[126] |
Zhu Qing, Zhu Haibi, Zou Xiehua. 2024. Analysis of global strategic mineral industry chain and supply chain[J/OL]. Natural Resource Economics of China, 37(7): 45−13(in Chinese with English abstract).
|
[127] |
包小莲. 2024. ESG视角下有色矿业绿色融资效应分析—以紫金矿业为例[J]. 冶金经济与管理, (3): 49−52.
|
[128] |
陈健, 吴楠. 2011. 日本稀缺资源战略研究及对我国的启示[C]//2011中国可持续发展论坛2011年专刊(二). 珠海: 中国人口·资源与环境, 214−218.
|
[129] |
陈其慎, 张艳飞, 邢佳韵, 龙涛, 郑国栋, 王琨, 任鑫. 2024. 新质生产力与矿产资源新格局[J]. 中国矿业, 33(5): 1−8.
|
[130] |
陈婉. 2024. 2024年ESG十大发展趋势[J]. 环境经济, (2): 64−69.
|
[131] |
成金华, 帅竞, 赵雨佳, 段浩然, 帅传敏. 2023. 关键矿产供应风险评估与预测—以铜资源为例[J]. 资源科学, 45(9): 1778−1788.
|
[132] |
程迁群, 梁元钊, 刘明勇, 雷阳艾, 谢行, 朱振东, 李书程, 豆松, 郑晓军. 2024. 云南南涧首次发现独立钴矿床[J]. 矿产勘查, 15(5): 906−908.
|
[133] |
付伟, 牛虎杰, 黄小荣, 杨梦力, 陈远荣. 2013. 红土型镍矿床成因的多样性: 基于全球尺度的对比研究[J]. 地质学报, 87(6): 832−849.
|
[134] |
干勇, 彭苏萍, 毛景文, 裴荣富, 李仲平, 屠海令, 孙传尧, 陈其慎, 谢曼, 郑文江. 2022. 我国关键矿产及其材料产业供应链高质量发展战略研究[J]. 中国工程科学, 24(3): 1−9.
|
[135] |
高永伟. 2024. 哈萨克斯坦不断加强稀有稀土金属矿调查开发[Z].
|
[136] |
郭晓茜, 李建武. 2017. 国外研究机构关键矿产评价方法综述[J]. 中国矿业, 26(9): 25−32.
|
[137] |
黄莉, 李芳琴, 代涛, 汪鹏. 2021. 锂金属回收潜力研究—基于现有回收技术与工艺[J]. 矿产保护与利用, 41(5): 31−37.
|
[138] |
黄云游. 2024. 拜登政府清洁能源供应链安全政策及其影响分析[J]. 国际石油经济, 32(2): 36−49.
|
[139] |
蒋少涌, 王微. 2022. 战略性关键金属是如何发生超常富集成矿的?[J]. 地球科学, 47(10): 3869−3871.
|
[140] |
蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向[J]. 中国科学基金, 33(2): 112−118.
|
[141] |
李丹. 2022. 从《关键矿产资源在清洁能源转型中的作用》看我国关键矿产资源的发展[J]. 冶金经济与管理, (3): 7−11.
|
[142] |
李建武, 李天骄, 贾宏翔, 王安建. 2023. 中国战略性关键矿产目录厘定[J]. 地球学报, 44(2): 261−270.
|
[143] |
李文昌, 李建威, 谢桂青, 张向飞, 刘洪. 2022. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 29(1): 1−13.
|
[144] |
李文渊, 洪俊, 陈博, 刘江, 马中平, 杨博. 2019. 中亚及邻区战略性关键矿产的分布规律与主要科学问题[J]. 中国科学基金, 33(2): 119−124.
|
[145] |
李昕蕾, 刘倩如. 2023. 全球清洁能源转型中关键矿产的大国博弈及中国应对[J]. 当代世界社会主义问题, (4): 127−141.
|
[146] |
刘雪, 王春连, 刘学龙, 刘殿鹤, 颜开, 刘思晗, 刘延亭. 2024. 中国锂矿床主要类型特征、分布情况及开发利用现状[J]. 中国地质, 51(3): 811−832.
|
[147] |
刘雪莲, 康喜顺. 2023. 日本关键矿产供应链保障措施评析与思考[J]. 现代日本经济, (5): 27−41.
|
[148] |
卢洋. 2022. 中国光伏产业关键矿产资源供应风险评价与预警研究[D]. 武汉: 中国地质大学(武汉).
|
[149] |
毛景文, 宋世伟, 刘敏, 孟健寅. 2022. 稀土矿床: 基本特点与全球分布规律[J]. 地质学报, 96(11): 3675−3697.
|
[150] |
毛景文, 宋世伟, 刘鹏, 刘敏, 赵盼捞, 袁顺达. 2023. 锡矿床研究现状及发展趋势[J]. 岩石学报, 39(5): 1233−1240.
|
[151] |
毛景文, 杨宗喜, 谢桂青, 袁顺达. 2019. 关键矿产—国际动向与中国应对[J]. 矿床地质, 2019,38(4): 689−698.
|
[152] |
宋建军, 王国平. 2022. “双碳”背景下保障关键矿产供应链安全的思考[J]. 中国国土资源经济, 35(8): 4−9.
|
[153] |
孙昱晗, 吴喜庆, 姚占辉. 2024. 新能源汽车关键矿产资源国外政策研究[J]. 中国汽车(1): 14−16.
|
[154] |
覃牧川, 梁彦杰, 李青竹, 柯勇, 彭聪, 朱志华, 白帮伟, 柴立元. 2024. 新能源汽车关键有色金属提取与回收技术发展分析[J]. 现代交通与冶金材料, 4(1): 3−10.
|
[155] |
唐金荣, 洪俊, 何子鑫等. 2023. 上合组织国家矿业发展报告(2023)[M]. 北京: 地质出版社, 1−51.
|
[156] |
唐金荣, 杨宗喜, 周平, 施俊法. 2014. 国外关键矿产战略研究进展及其启示[J]. 地质通报, 33(9): 1445−1453.
|
[157] |
唐金荣, 周平, 沙景华. 2019. 能源资源供应风险与治理框架研究[M]. 北京: 地质出版社, 1−419.
|
[158] |
田慧芳. 2024. 全球关键矿产供应链风险加剧[J]. 世界知识 (4): 17−19.
|
[159] |
汪慧妍. 2019. 如何实现ESG报告双赢[J]. 董事会, (9): 40−43.
|
[160] |
王安建, 袁小晶. 2022. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 37(11): 1550−1559.
|
[161] |
王安建. 2023. 全球矿产资源战略研究—“战略性关键矿产研究”专辑特邀主编寄语[J]. 地球学报, 44(2): 257−260.
|
[162] |
王斌, 梁精龙, 李慧, 杨宇, 郑天新. 2019. 废旧锂离子电池金属离子回收技术综述[J]. 电源技术, 43(1): 165−167.
|
[163] |
王丹励, 管竹笋. 2017. ESG指引之社会范畴指标对标分析与信息披露[J]. WTO经济导刊, (3): 21−25.
|
[164] |
王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743−764.
|
[165] |
王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189−1209.
|
[166] |
王欢, 马冰, 贾凌霄, 于洋, 胡嘉修, 王为. 2021. 碳中和目标下关键矿产在清洁能源转型中的作用、供需分析及其建议[J]. 中国地质, 48(6): 1720−1733.
|
[167] |
王辉, 丰成友, 张明玉. 2019. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 38(4): 739−750.
|
[168] |
温汉捷, 周正兵, 马万平, 朱玉. 2024. 黑色岩系型战略性关键矿产资源研究进展及主要科学问题[J]. 矿物岩石地球化学通报, 43(1): 14−34.
|
[169] |
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学(地球科学), 47(7): 745−765.
|
[170] |
徐利, 柯文轩, 袁浩峻. 2024. 以ESG理念引领绿色金融创新发展[J]. 国际金融, (3): 3−7.
|
[171] |
尹文渊, 范舒雯, 刘艺卓. 2023. 美国关键矿产供应链重构: 动因、影响及对策[J]. 亚太经济, (5): 81−89.
|
[172] |
有色资讯. [2023−05−17]. 加拿大强化铜、稀土、镁等31种关键矿产产业链, 未来将从勘查开发多个环节给予支持 [EB/OL]. https://news.smm.cn/news/102216986.
|
[173] |
于瑞, 张伟波, 张福良, 赵东杰. 2023. 主要发达国家关键矿产供应链保障战略措施简述[J]. 矿产勘查, 14(10): 1788−1797.
|
[174] |
余亮良, 黄敏. 2024. 含锂资源提锂技术现状及研究进展[J]. 有色冶金设计与研究, 45(2): 5−9.
|
[175] |
余韵, 杨建锋, 马腾, 张翠光. 2024. 2023年全球锂、钴、镍电池金属勘查形势与展望[J]. 中国地质, 51(1): 368−370.
|
[176] |
张生辉, 王振涛, 李永胜, 莫宣学, 董庆吉, 陈丛林, 耿林, 王利, 张海啟, 谭秀民, 薛迎喜, 周尚国, 田郁溟, 姚超美, 焦森, 陈正国, 陈军元, 王寿成, 张浩钰, 付水兴, 王春连, 王永. 2022. 中国关键矿产清单、应用与全球格局[J]. 矿产保护与利用, 42(5): 138−168.
|
[177] |
张所续, 周季鑫. 2022. 能源转型进程中的关键矿产安全[J]. 中国国土资源经济, 35(1): 22−28.
|
[178] |
张所续. 2023. 欧盟和澳大利亚关键能源矿产战略的启示[J]. 油气与新能源, 35(3): 8−16.
|
[179] |
张艳飞, 安政臻, 梁帅, 翟富荣, 张森, 鞠楠, 姜平, 金秀英, 肖荣阁. 2022. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 49(1): 135−150.
|
[180] |
张宇宁, 丁玎, 王克. 2023. 能源转型背景下欧美关键矿产战略与中国应对策略[J]. 环境经济研究, 8(4): 209−228.
|
[181] |
张宇祺, 李华姣, 安海忠, 王安建. 2024. 产业链视角下关键矿产资源可供性研究进展[J]. 资源科学, 46(4): 671−686.
|
[182] |
张宇轩, 唐金荣, 牛亚卓, 张静雅, 赵禹, 魏建设, 姜光政, 王利伟. 2022. 中国西北在碳中和进程中的资源优势和地质工作建议[J]. 中国地质, 49(5): 1458−1480.
|
[183] |
赵俊兴, 李光明, 秦克章, 唐冬梅. 2019. 富含钴矿床研究进展与问题分析[J]. 科学通报, 64(24): 2484−2500.
|
[184] |
中国地质调查局全球矿产资源战略研究中心. 2024. 全球矿产资源储量评估报告(2024)[R]. 北京: 中国地质调查局全球矿产资源战略研究中心.
|
[185] |
中国有色金属报. [2024−04−11]. 澳大利亚深耕关键矿产领域 [EB/OL]. https://www.cnmn.com.cn/ShowNews1.aspx?id=450786.
|
[186] |
朱丽, 顾汉念, 杨永琼, 温汉捷, 王宁, 罗重光. 2020. 黏土型锂矿资源提锂工艺研究进展[J]. 轻金属, (12): 8−13.
|
[187] |
朱清, 朱海碧, 邹谢华. 2024. 全球战略性矿产产业链供应链分析[J]. 中国国土资源经济, 37(7): 45−13.
|