• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
CHENG Xian-qiong, ZHU Jie-shou, CAI Xue-lin. Mantle flow velocity of East Asia[J]. GEOLOGY IN CHINA, 2006, 33(4): 896-905.
Citation: CHENG Xian-qiong, ZHU Jie-shou, CAI Xue-lin. Mantle flow velocity of East Asia[J]. GEOLOGY IN CHINA, 2006, 33(4): 896-905.

Mantle flow velocity of East Asia

More Information
  • Abstract: Based on the high-resolution body wave tomographic images and relevant geophysical data the authors calculated the form and vertical and tangential velocities of mantle flow. Mantle flow in East Asia and the Western Pacific may fall into three patterns: (1) in the East-Asia marginal rift system and western Pacific marginal seas the mantle flow is marked by an upwelling mantle flow, characterized by flow convergence in the lower mantle and divergence in the upper mantle, especially for the South China Sea, where the structure of the upwelling mantle flow may be roughly outlined as a “工” shape in the upper mantle, a column shape in the middle and a divergent shape at the bottom; (2) in Siberia there is a “人”-shaped downwelling mantle flow, characterized by mantle material convergence in the upper mantle and divergence in the lower mantle; and (3) in the Qinghai-Tibet Plateau-Burma-Indonesia Tethys subduction zone, there is a “人”-shaped downwelling mantle flow, which is also characterized by flow convergence in the upper mantle and divergence in the lower mantle. The three regions of mantle convection beneath East Asia and the Western Pacific are in agreement with Western Pacific, Paleo-Asiatic and Tethyan tectonic domains. The material in the central part of East Asia shows no trend of flow in the deep interior of the mantle. The upwelling mantle flow originates from the core-mantle boundary and is mainly manifested in the lower mantle and lower part of the upper mantle. At the top of the upper mantle and at the surface, its location coincides with that of modern hot spots. The rate of vertical mantle flow is about 1 to 4 cm per year and the tangential rate is 1 to 10 cm per year.
  • Related Articles

    [1]ZHOU Lulu, LIU Jungang, SHU Guangqiang, LIU Zhiwei, CHEN Zhang, WANG Shuangtao, TANG Gang, LI Qinguo. Research on flow units of ultra-low permeability oil-gas reservoirs in Sheng 554 fault block of Sanzhao depression, northern Songliao Basin[J]. GEOLOGY IN CHINA, 2021, 48(3): 807-819. DOI: 10.12029/gc20210311
    [2]ZHANG Jun, LIU Tiangang, DONG Jiaqiu, WANG Xiaoyong, ZHA Yuanyuan, TANG Xiaoping, YIN Lihe, Andrew J. Love. The impact of aquifer layered heterogeneity on groundwater flow system[J]. GEOLOGY IN CHINA, 2020, 47(6): 1715-1725. DOI: 10.12029/gc20200609
    [3]XU Yao, ZHANG Yongqian, YAN Jiayong, XU Zhiwu, CHEN Changxin. Teleseismic P-wave velocity structure of upper mantle beneath the southeastern part of South China and its implications[J]. GEOLOGY IN CHINA, 2019, 46(4): 737-749. DOI: 10.12029/gc20190405
    [4]CAI Yue-mei, WANG Wen-xiang, ZHANG Ming-jiang, YIN Xiu-lan, CAI Wu-tian, WANG Rui-jiu, LI Wen-peng. An analysis of the groundwater flow system based on environmental isotopes in Turpan basin[J]. GEOLOGY IN CHINA, 2016, 43(4): 1439-1445. DOI: 10.12029/gc20160427
    [5]CHEN Huan-Qing, HU Yong-Le, JIN Jiu-Qiang, RAN Qi-Quan. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China[J]. GEOLOGY IN CHINA, 2011, 38(6): 1430-1439. DOI: 10.12029/gc20110603
    [6]WANG Gong-huai, ZHAO Tie-feng, ZHANG Zhong-ling. The method for low signal-noise ratio seismic data processing in Bachu uplift, Tarim Basin[J]. GEOLOGY IN CHINA, 2011, 38(4): 1048-1060. DOI: 10.12029/gc20110421
    [7]LU Zhan-wu, GAO Rui, LI Qiu-sheng, KUANG Zhao-yang, LIU Jin-kai, LI Peng-wu, GUAN-Ye, HE Ri-zheng, WANG Hai-yan. A study of seismic reflection profiles and stack velocities in Qiangtang basin, northern Tibet[J]. GEOLOGY IN CHINA, 2009, 36(3): 677-681. DOI: 10.12029/gc20090314
    [8]XU Ji-ren, ZHAO Zhi-xin. Crustal P-wave velocity structure of the Dabie-Sulu ultrahigh-pressure metamorphic belt and mechanisms of its subduction and exhumation[J]. GEOLOGY IN CHINA, 2005, 32(2): 310-319. DOI: 10.12029/gc20050214
    [9]CAI Xue-lin, ZHU Jie-shou, CAO Jia-min, YAN Zhong-qiong, YANG Zheng-xi, Hong Xue-hai. Structure and dynamics of lithosphere and asthenosphere in the gigantic East Asian-West Pacific rift system[J]. GEOLOGY IN CHINA, 2002, (3): 234-245. DOI: 10.12029/gc20020302
    [10]KUANG Yao-qiu, HUANG Ning-sheng, ZHU Zhao-yu, HU Zhen-yu. Influence of the terrestrial heat flow on the evolution of thesurface ecosystem and environment[J]. GEOLOGY IN CHINA, 2002, (1): 86-95. DOI: 10.12029/gc20020114
  • Cited by

    Periodical cited type(15)

    1. 马玉,刘小龙,张鹏伟,摆翔,彭磊. 南北疆典型绿洲水化学特征差异与时空变化规律分析——以策勒和阜康为例. 安徽农业科学. 2025(01): 63-69+101 .
    2. 孜来布·阿布来提. 基于LSTM深度学习模型的融雪性洪水径流预测方法. 陕西水利. 2025(02): 59-61 .
    3. 王子龙,梁建军,杨怀君,李帆. 南疆地区反冲洗过滤器使用效果分析. 南方农机. 2024(06): 36-38 .
    4. 王悦,蒋志辉,褚家琦,张海康,刘旭梅,林园娜. 塔里木河流域农业水土资源时空匹配关系研究. 农业资源与环境学报. 2024(02): 360-370 .
    5. 尹立河,张俊,张鹏伟,顾小凡,李小等. 塔克拉玛干沙漠地下水十大问题与展望:基于60年来的水文地质调查研究成果. 中国地质. 2024(03): 865-880 . 本站查看
    6. 何苗,姜元昊,轩正英,马国财,杜宁,孙蓓蓓. 芜菁幼苗叶片光合特性和解剖结构对干旱胁迫的响应. 西北植物学报. 2024(10): 1530-1538 .
    7. 许沛文,刘浩,宁慧峰,张现波,高福奎,周望,解玉彩,王景雷. 南疆膜下滴灌棉花咸淡水轮灌模式研究. 灌溉排水学报. 2024(10): 11-20 .
    8. 刘恒宇,周博涵,杨宏龙,刘欣羽,侯振安. 小海子灌区“干播湿出”棉田土壤水盐动态特征. 石河子大学学报(自然科学版). 2024(05): 560-568 .
    9. 任坤,曾洁,彭聪,潘晓东,于正良,吴华英. 玉龙雪山—丽江水体水化学和同位素特征及其变化规律与成因. 地理学报. 2024(11): 2864-2879 .
    10. 应文,王琪瑶. 气候适应视角下南疆荒漠绿洲城镇水城融合模式研究. 城市建筑空间. 2024(11): 53-55 .
    11. 李侨,张华东,孙三民,殷彩云. 基于TCN-Attention-GRU模型的枣树需水量预测. 浙江农业学报. 2024(12): 2823-2831 .
    12. 王鹏,赵君,阎晓娟,杨涛,张晶,马尚伟,张道军. 动态时空视角下黄河流域城市土地利用效率的集聚演化特征. 中国地质. 2023(02): 506-520 . 本站查看
    13. 贺钰焜,佟帅,季翔. 绿色宜居理念下西北干旱区村庄规划设计研究——以民勤县国栋村为例. 工业设计. 2023(08): 33-36 .
    14. 刘靖宇,王浪,卜丽娟,蒋磊,郭帅,王杰. 荒漠绿洲过渡带地下水氢氧稳定同位素、水化学特征及演化机理研究. 干旱区资源与环境. 2023(12): 92-102 .
    15. 方泽华,陶辉. 利用MCI指数和Gumbel-Copula函数评估新疆干旱灾害危险性. 农业工程学报. 2023(23): 133-141+291 .

    Other cited types(6)

Catalog

    Article views (3097) PDF downloads (3347) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return