第41卷第3期	中 国 地 质	Vol.41, No.3
2014年6月	GEOLOGY IN CHINA	Jun. 2014

卢仁, 梁涛, 卢欣祥, 等. 豫西崤山龙卧沟岩体锆石 U-Pb 年代学、地球化学特征及地质意义[J]. 中国地质, 2014, 41(3): 756-772. Lu Ren, Liang Tao, Lu Xinxiang, et al. Geochronology and geochemical features of Longwogou granite in Xiaoshan Mountain, western Henan Province, and their geological implications[J]. Geology in China, 2014, 41(3): 756-772(in Chinese with English abstract).

豫西崤山龙卧沟岩体锆石U-Pb年代学、 地球化学特征及地质意义

卢 仁^{1,2} 梁 涛^{1,2} 卢欣祥³ 白凤军^{1,2} 成静亮^{1,2} 温静静^{1,2}

(1.河南省有色金属地质勘查总院,河南郑州450052;2.河南省有色金属深部找矿勘查技术研究重点实验室, 河南郑州450052;3.河南省国土资源科学研究院,河南郑州450053)

提要:豫西崤山北部出露一系列中酸性小岩体,为探讨其成因、深部动力学背景及成矿潜力,对其中之一的龙卧沟岩体进行了锆石定年和地球化学成分分析研究。龙卧沟岩体的岩性为斑状黑云母二长花岗岩,发育钾长石巨斑晶。 LA-ICP-MS锆石²⁰⁶Pb/²³⁸U年龄为(128±1)Ma,岩体形成时代为早白垩世。龙卧沟岩体具有高硅、富碱高钾、贫镁低钙的特征,属于高钾钙碱性系列,A/CNK值介于1.00~1.11,岩石学和地球化学特征表明其属于富钾钙碱性花岗岩类(KCG)。龙卧沟岩体的稀土配分模式具有轻稀土富集、重稀土亏损的特征,(La/Yb),x范围为18.55~26.92,无明显Eu异常,微量元素蛛网图中Rb和Th富集,具有明显的Nb-Ta负异常。龙卧沟岩体高Sr、低Y,具有埃达克岩属性,它是加厚大陆下地壳的部分熔融形成的,部分熔融源区残余相矿物包括石榴石、金红石和角闪石。崤山北部地区在早白垩世经历了岩石圈拆沉作用,是对中国东部中生代岩石圈巨大减薄的地质响应之一。龙卧沟岩体形成时代位于东秦岭地区广泛而强烈的成岩成矿作用时限内,且其显示了Au、Ag、Mo和W明显异常,表明龙卧沟岩体(含隐伏部分)具有较大的成矿潜力。

关 键 词:龙卧沟;斑状二长花岗岩;埃达克质;岩石圈拆沉;成矿潜力;崤山 中图分类号:P581⁺;P597⁺.3;P612 文献标志码:A 文章编号:1000-3657(2014)03-0756-17

东秦岭地区是中国重要的内生金属成矿区之一,其与内生金属成矿作用密切相关的酸性侵入岩获得了广泛的关注,如小秦岭Au矿集区内的文峪岩体和娘娘山岩体^[1-5],熊耳山Au、Mo矿集区内的花山岩基、五丈山岩体以及祁雨沟、雷门沟爆破角砾岩^[6-15],栾川北部Mo、W矿集区内的南泥湖、马圈、上房沟等一系列小岩体^[16-18]。相比之下,位于小秦岭和熊耳山之间的崤山北部地区不仅成矿作用规模较小,找矿成果长期未获得突破,而且中酸性小岩体也未获得足够的重视。鉴于此,本文对出露于崤山北部龙卧沟岩体开展了岩石学、锆石LA-ICP-MS定年、地球化学等研究工作,探讨了龙卧沟岩体形成的深部动力学背景和成矿潜力。

1 地质特征

呈NE向展布的崤山位于华北克拉通南缘(图 1-a),东、西两侧分别为熊耳山和小秦岭。崤山主 要出露太古宙太华群变质岩系、中元古代熊耳群火 山岩系及中元古代官道口群碳酸盐岩,其北端局部 出露古生界(图1-b)。崤山北部形成以太华群为核 部、熊耳群为两翼的穹隆背斜,中部和南部分别为 官道口群组成的杜关向斜和夜长坪背斜;断裂构造 以近 EW 向为主,如川口一宫前断裂、潘河—马超 营断裂和银家沟—南坪断裂,其次为近 NE 向和近 NW 向,如夜长坪—银家沟断裂和八宝山—后瑶峪 断裂^[19]。

收稿日期:2013-07-31;改回日期:2014-01-24

基金项目:河南省国土资源厅科技攻关项目(2011-622-36、2011-622-25)和河南省有色金属地质矿产局科研项目(YSDK2012-03)联合资助。 作者简介:卢仁,女,1979年生,博士,工程师,主要从事地质矿产勘查和区域成矿研究工作;E-mail:luren7901@126.com。

图1 豫西崤山北部龙卧沟岩体地质简图

a—河南省构造分区简图(据文献[19]简化),I—华北克拉通,II—秦岭造山带,F—栾川—确山—固始深大断裂带; b—豫西崤山北部地质简图(据文献[19]简化),I—新生界,2—古生界,3—中元古代官道口群,4—中元古代熊耳群, 5—太古宙太华群,6—中元古代辉绿岩,7—中生代花岗岩,8—断层,9—Au矿床; c—龙卧沟岩体地质简图(据文献❶),1—新生界,2—中元古代熊耳群,3—太古宙变质岩系,4—中生代花岗岩 Fig.1 Simplified geological map of Longwogou intrusion in north Xiaoshan Mountain, western Henan Province a-Simplified tectonic geological map of Henan Province (after Reference [19]), I–North China Craton, II–Qinling orogen belt, F–Luanchuan–Queshan–Gushi huge fault belt; b–Simplified geological map of north Xiaoshan Mountain, western Henan Province (after Reference [19]), 1–Cenozoic, 2–Paleozoic, 3–Guandaokou Group (Pt₂), 4–Xiong'er Group (Pt₂), 5–Taihua Group (Ar), 6–Diabase (Pt₂), 7–Mesozoic granite, 8–Fault, 9–Au deposit; c–Simplified geological map of Longwogou intrusion (after Reference ①), 1–Cenozoic, 2–Xiong'er Group (Pt₂), 3–Taihua Group (Ar), 4–Mesozoic granite

崤山岩浆岩活动频繁,除广泛出露的中元古代 熊耳群火山岩之外,还分布有少量的中元古代辉绿 岩、新元古代晋宁期闪长岩、古生代闪长岩和燕山 期(石英)闪长岩、花岗(斑)岩小岩体及正长斑岩岩 脉^[19]。崤山还出露一系列燕山期中酸性小岩体,如 位于崤山北部的龙卧沟、后河和白石崖等岩体,后 瑶峪、柳关等岩体出露于崤山南部。

作为河南省华熊台缘凹陷Au、Ag、Mo、W、S、 Fe多金属成矿带的组成部分之一,崤山地区主要出 露与燕山期浅成、超浅成花岗斑岩相关的Au、Ag、 Mo、W、S、Fe多金属矿床^[20]。崤山北部主要出露石 英脉型和构造蚀变岩型Ag、Au、Pb矿床,如半宽Au (Pb)矿、申家窑Au矿、野乔河Au矿、大方山Au矿、 葫芦峪Au矿和唐山村Au矿(图1-b);崤山南部主要出露斑岩-砂卡岩型S、Fe、Mo、W、Cu、Pb、Zn等 矿床,如银家沟硫铁多金属矿等。

龙卧沟岩体位于崤山北部,出露面积约0.04 km²(龙卧沟内出露约0.015 km²,九峪沟内出露约 0.025 km²),其北端与太古界太华群变质岩系呈侵 入接触关系,其余为新生界不整合覆盖(图1-c)。 龙卧沟岩体岩性为斑状黑云母二长花岗斑岩,新鲜 面呈浅肉红色,似斑状结构,基质为中粒半自形粒 状结构(图2-a)。钾长石巨斑晶肉红色,含量介于 10%~25%,局部可达35%左右,颗粒长轴长度以3~ 7 cm者居多,最大可达10 cm,发育卡氏双晶,钾长 石内部常见到石英、斜长石、黑云母等矿物颗粒。

[●]河南省地质矿产厅. 张村幅1:50000地质图及说明书. 1995: 1-54.

中

基质由斜长石(20%~30%)、石英(20%~35%)、钾长石 (25%~35%)和黑云母(5%~10%)组成,副矿物以榍 石、磁铁矿、磷灰石等为主,镜下可见锆石、黄铁矿 等副矿物以及斜长石、钾长石的绢云母化和土化及 黑云母的绿泥石化。除此以外,后期穿插的石英脉 内发育褐铁矿化(图2-b),局部可见表面氧化的立 方形黄铁矿。

2 锆石LA-ICP-MS测试

2.1 样品特征

锆石定年样品LWG02为斑状黑云母二长花岗 斑岩,块状构造,似斑状结构,基质为半自形粒状结 构,以中粒(2~4 mm)结构为主,局部粒径为1~2 mm。钾长石巨斑晶肉红色,含量约15%,颗粒长轴 长度以2~5 cm者居多,发育卡氏双晶,基质由斜长 石(约25%)、石英(约30%)、钾长石(约35%)和黑云 母(5%)组成,副矿物以榍石、磁铁矿、磷灰石、锆石、 黄铁矿等为主,可见斜长石和钾长石的绢云母化及 黑云母的绿泥石化。

样品 LWG02 中分选获得的锆石数量大于1000 粒,大部分无色透明,个别锆石呈浅淡黄色,部分锆 石可见裂纹和暗色包裹体。大多数锆石晶型完整, 多呈长柱状,锆石长轴粒径以150~250 μm为主,短 轴粒径以50~100 μm为主,锆石长宽比以2:1~3:1 为主,大多数锆石发育清晰、致密、均匀的韵律震荡 环带(图3),为典型岩浆锆石。

2.2 分析方法

质

样品LWG02的锆石单矿物分选由河北省廊坊 区调所实验室完成。样品经颚式碎样机破碎至40 目后,用人工淘洗的方法进行粗淘,分离出灰色重 砂和尾砂。对灰色重砂部分在强磁环境中去除强 磁性矿物,对非强磁性部分进一步用电磁选仪进行 分选以去除电磁性矿物。之后进行精淘,并对无磁 重矿物用高频介电仪提纯分离出锆石,最后在双目 镜下进行人工精选提纯。

将样品锆石粘贴在环氧树脂表面打磨抛光制 靶,样品靶制成以后先在光学显微镜下对所有锆石 颗粒进行反射光和透射光观察,然后进行阴极发光 (CL)照相,对这些锆石颗粒的影像特征进行综合分 析以初步判别其成因,同时设计最恰当的测点,以 避开包裹体或杂质、裂缝。

LA-ICP-MS锆石定年在北京大学造山带与地 壳演化教育部重点实验室完成。剥蚀系统的激光 发射器使用德国 Coheren 公司的 COMPex Prol02型 准分子激光器,质谱仪型号为美国 Agilent 公司的 ICP-MS 7500ce。定年测试中,标样 91500、 Plesovice、Qinghu、NIST610、NIST612及 NIST614和 样品锆石有序穿插进行测试。锆石测点的 U-Pb 同 位素比值处理和表面年龄计算使用 Glitter 软件来完 成,普通 Pb 校正使用 Andersen^[21]的方法,加权平均

图2 龙卧沟花岗岩野外特征 a一龙卧沟岩体中的钾长石巨斑晶,似斑状结构,基质具粗粒半自形粒状结构; b—龙卧沟岩体石英脉中的褐铁矿化 Fig.2 Photographs of Longwogou granite

a-K-feldspar megacrysts in Longwogou intrusion, porphyriod texture, and granitic texture in matrix of Longwogou intrusion; b-Limonitization in quartz vein of Longwogou intrusion

图 3 龙卧沟岩体样品 LWG02 锆石阴极发光图像 Fig. 3 Cathodoluminescence images of zircons in LWG02 from Longwogou granite

年龄的计算和 U-Pb 协和图的绘制使用 Isoplot 软件^[22]完成。

2.3 锆石 U-Pb 定年结果

样品LWG02的U-Pb锆石LA-ICP-MS定年结果见表1和图4。

对样品 LWG02 累计进行了 31 个锆石测点的分析(表1),所有测点测定值均位于²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U 一致线上(图 4-a),其²⁰⁶Pb/²³⁸U 年龄介于 125~136 Ma, Th/U 比值介于 0.37~0.69。测点 LWG02-05 的 ²⁰⁶Pb/²³⁸U 年龄为(136±2) Ma,其余 30 个测点的加权 平均²⁰⁶Pb/²³⁸U 年龄为(128±1) Ma(95%置信度), MSWD=0.6(图 4-b)。测点LWG02-13和LWG02-14分别位于同一颗锆石的边部和核部,相应的²⁰⁶Pb/²³⁸U 年龄为(128±2)Ma和(130±3)Ma,测点LWG02-29 和LWG02-30也位于同一颗锆石,其²⁰⁶Pb/²³⁸U年龄 分别为(125±2)Ma和(129±3)Ma(图 3)。结合上 述样品锆石CL图像特征,(128±1)Ma可以解释为 同源岩浆锆石的结晶年龄。

3 元素地球化学

对龙卧沟斑状黑云母二长花岗岩岩体的7件 样品进行了主量元素和微量元素分析,测试均由河

图4 龙卧沟岩体样品 LWG02 锆石 U-Pb 谐和曲线及定年结果 Fig.4 Concordia diagrams for U-Pb age of zircons in LWG02 from Longwogou granite

表1 龙卧沟岩体样品LWG02 锆石LA-ICP-MS定年结果											
	Tal	ole 1 LA	-ICP-N	IS dati	ng results of	f zircons in L	WG02 from	m Longwog	ou granite		
测点	*Pb /10 ⁻⁶	Th /10 ⁻⁶	U /10 ⁻⁶	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb (1σ)	207 Pb/ 235 U (1 σ)	²⁰⁶ Pb/ ²³⁸ U (1σ)	²⁰⁷ Pb/ ²⁰⁶ Pb 年龄(1 <i>o</i>) /Ma	²⁰⁷ Pb/ ²³⁵ U 年龄(1 <i>o</i>) /Ma	²⁰⁶ Pb/ ²³⁸ U 年龄(1 <i>o</i>) /Ma	
LWG02-01	10.98	236.08	457.38	0.52	0.0489(27)	0.1354(72)	0.0201(3)	144(91)	129(6)	128(2)	
LWG02-02	6.57	112.67	263.05	0.43	0.0487(43)	0.1359(117)	0.0203(5)	131(151)	129(10)	129(3)	
LWG02-03	12.33	255.75	502.91	0.51	0.0483(26)	0.1340(71)	0.0201(3)	115(91)	128(6)	128(2)	
LWG02-04	10.08	159.60	430.60	0.37	0.0489(25)	0.1342(68)	0.0199(3)	143(88)	128(6)	127(2)	
LWG02-05	8.36	148.53	337.46	0.44	0.0461(29)	0.1360(83)	0.0214(4)	1(99)	129(7)	136(2)	
LWG02-06	7.09	161.20	290.33	0.56	0.0485(35)	0.1329(94)	0.0198(3)	126(127)	127(8)	127(2)	
LWG02-07	6.85	122.09	284.52	0.43	0.0488(34)	0.1352(94)	0.0201(3)	139(124)	129(8)	128(2)	
LWG02-08	12.09	249.18	502.43	0.50	0.0488(23)	0.1342(63)	0.0200(3)	136(80)	128(6)	127(2)	
LWG02-09	11.52	306.23	440.86	0.69	0.0485(24)	0.1355(65)	0.0203(3)	121(82)	129(6)	129(2)	
LWG02-10	21.68	524.81	894.55	0.59	0.0483(17)	0.1304(44)	0.0196(3)	115(55)	124(4)	125(2)	
LWG02-11	18.70	393.26	753.17	0.52	0.0484(19)	0.1346(51)	0.0201(3)	121(63)	128(5)	129(2)	
LWG02-12	14.06	274.21	580.01	0.47	0.0483(24)	0.1334(66)	0.0200(3)	115(86)	127(6)	128(2)	
LWG02-13	14.99	285.30	622.04	0.46	0.0486(19)	0.1343(51)	0.0201(3)	127(63)	128(5)	128(2)	
LWG02-14	7.83	135.26	332.68	0.41	0.0487(50)	0.1375(138)	0.0205(5)	135(181)	131(12)	130(3)	
LWG02-15	12.35	249.54	505.38	0.49	0.0486(23)	0.1386(64)	0.0207(3)	130(78)	132(6)	132(2)	
LWG02-16	13.30	252.49	559.85	0.45	0.0487(20)	0.1337(55)	0.0199(3)	132(69)	127(5)	127(2)	
LWG02-17	16.08	382.58	629.40	0.61	0.0488(20)	0.1374(54)	0.0204(3)	139(67)	131(5)	130(2)	
LWG02-18	9.75	183.05	396.35	0.46	0.0484(25)	0.1359(68)	0.0204(3)	118(85)	129(6)	130(2)	
LWG02-19	13.87	264.46	573.26	0.46	0.0484(18)	0.1344(50)	0.0201(3)	118(62)	128(4)	128(2)	
LWG02-20	14.01	273.58	594.63	0.46	0.0485(18)	0.1340(48)	0.0200(3)	124(58)	128(4)	128(2)	
LWG02-21	11.65	216.64	493.83	0.44	0.0488(21)	0.1340(56)	0.0199(3)	136(70)	128(5)	127(2)	
LWG02-22	8.59	190.63	347.91	0.55	0.0489(28)	0.1364(76)	0.0202(3)	143(97)	130(7)	129(2)	
LWG02-23	10.88	194.41	463.42	0.42	0.0487(37)	0.1330(99)	0.0198(3)	131(135)	127(9)	126(2)	
LWG02-24	14.49	288.83	612.18	0.47	0.0487(20)	0.1320(53)	0.0197(3)	132(67)	126(5)	125(2)	
LWG02-25	12.60	336.47	500.50	0.67	0.0484(21)	0.1333(55)	0.02(3)	121(69)	127(5)	127(2)	
LWG02-26	9.93	200.67	408.83	0.49	0.0484(25)	0.1346(68)	0.0201(3)	119(85)	128(6)	129(2)	
LWG02-27	17.07	379.52	703.81	0.54	0.0486(18)	0.1331(48)	0.0199(3)	129(59)	127(4)	127(2)	
LWG02-28	7.86	162.38	321.08	0.51	0.0489(29)	0.1362(78)	0.0202(3)	142(101)	130(7)	129(2)	
LWG02-29	14.34	275.88	608.17	0.45	0.0496(23)	0.1343(61)	0.0196(3)	177(81)	128(5)	125(2)	
LWG02-30	6.35	108.98	267.90	0.41	0.0485(44)	0.1351(120)	0.0202(4)	122(159)	129(11)	129(3)	
LWG02-31	17.39	401.59	711.43	0.56	0.0483(18)	0.1336(48)	0.0200(3)	114(59)	127(4)	128(2)	

南省有色金属地质勘查总院检测中心完成。样品 经无污染玛瑙球磨机碎至200目后制样待测,主量 元素及Ba、Rb、Sr和Zr使用ZSX Primus II型X-射 线荧光光谱仪分析测定,FeO含量使用湿化学方法 单独测定,Au、Ag含量使用石墨炉原子吸收光谱 法测定,仪器型号为SOLAAR-S4原子吸收分光光 度计,其余微量元素使用Thermo Fisher X Series 2 等离子体质谱仪(ICP-MS)测定。分析过程中采用 国家一级标样控制准确度及精密度,用重复性密码

分析及异常点抽检来验证其可靠性,其质量控制参数均合格。

3.1 主量元素

7件龙卧沟岩体样品的主量元素含量测试结果 见表2。

龙卧沟岩体7件样品的SiO2含量变化较窄,介于70.06%~72.95%,Al2O3含量介于14.11%~15.56%, FeO和Fe2O3的含量范围分别为0.80%~1.29%和1.10%~1.26%,MgO含量介于0.28%~0.43%,CaO含

卢仁等:豫西崤山龙卧沟岩体锆石U-Pb年代学、地球化学特征及地质意义

表2 龙卧沟岩体样品主量元素分析结果(%) Table 2 Major elements analytical results of Longwogou granite (%)													
样品号	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	总量
LWG03	70.99	0.28	14.41	1.12	1.29	0.08	0.43	1.87	4.36	3.55	0.11	0.96	99.44
LWG05	71.83	0.22	14.42	1.19	0.86	0.09	0.28	1.83	4.08	3.61	0.08	0.86	99.35
LWG06	70.06	0.20	15.56	1.26	0.80	0.08	0.28	1.48	4.08	5.18	0.06	0.76	99.80
LWG07	72.95	0.24	14.41	1.10	1.08	0.10	0.34	1.48	4.07	3.80	0.10	0.80	100.45
LWG08	72.48	0.24	14.11	1.22	0.86	0.07	0.30	1.40	4.01	3.71	0.10	1.18	99.67
LWG09	71.67	0.23	14.31	1.26	0.86	0.07	0.29	1.00	3.78	4.87	0.09	1.67	100.11
LWG11	72.18	0.27	14.95	1.24	0.86	0.08	0.36	1.22	4.00	4.30	0.10	0.67	100.21

量介于1.00%~1.87%, K₂O和Na₂O的含量区间分别为3.55%~5.18%和3.78%~4.36%(表2)。

在Harker图解中(图5),MgO、TiO₂、TFe₂O₃、 CaO、Na₂O和P₂O₅含量与SiO₂具有微弱的正相关关 系,K₂O含量投点发散分布,Al₂O₃含量投点具有一 致的负相关关系。Al₂O₃和CaO含量投点的趋势特 征直接表明其形成过程中无明显的斜长石结晶分 异作用,Na₂O和K₂O含量投点趋势也表明无明显的 钾长石结晶分异作用。

在SiO₂-(Na₂O+K₂O)图解中(图6-a),龙卧沟岩体7件样品投点均落入6区(花岗岩),属于亚碱性系列岩石。在SiO₂-K₂O图解中(图6-b),7件样品投点落入高钾钙碱性系列区域内,样品LWG06中钾长石巨斑晶含量较高致使其K₂O含量较高。结合发育钾长石巨斑晶和副矿物组合特征,根据Barbarin^[23]花岗岩分类,将龙卧沟岩体归属于富钾钙

碱性花岗岩类(KCG类)。龙卧沟岩体7件样品的 A/CNK 值介于1.00~1.11, A/NK 值介于1.24~1.36, 属于过铝质花岗岩。

3.2 微量元素

7件龙卧沟岩体样品的微量元素含量测试结果 见表3。

龙卧沟岩体稀土元素总量介于131.63×10⁻⁶~ 228.19×10⁻⁶,(La/Yb)_N范围为18.55~26.92,其对La_N 的成分投点具有明显的线性正相关性(图7-a),暗 示结晶分异作用与龙卧沟岩体成分变异之间的关 系不大。龙卧沟岩体样品的稀土配分模式具有右 倾、轻稀土富集及重稀土亏损的特征(图7-a),各样 品稀土元素标准化曲线近于平行,暗示它们具有同 源性。龙卧沟岩体稀土配分模式无明显的负Eu异 常,暗示其下具有厚大的陆壳^[27-28]。此外,龙卧沟岩 体的 Dy、Ho、Er含量相对亏损,REE 配分模式中形 成了明显的 Dv-Ho-Er"洼斗"(图7-a)。

龙卧沟岩体样品富集大离子亲石元素(LILE), 如 Rb 含量 181.3×10⁻⁶~227.8×10⁻⁶, Th 含量介于 13.41×10⁻⁶~23.12×10⁻⁶, 亏损高场强元素 Nb、Ta, 在 微量元素蛛网图上显示特征的Nb-Ta负异常(图7-b)。龙卧沟岩体7件样品具有高Sr(477×10⁻⁶~701×10⁻⁶)、低Y(11.53×10⁻⁶~17.66×10⁻⁶)和低Yb(1.32×10⁻⁶~1.50×10⁻⁶)的特征,在Sr-Y图解中样品点均落入埃达克石域内(图8-a)。龙卧沟岩体样品具有SiO₂含量介于70.06%~72.95%、Al₂O₃含量介于14.11%~15.56%、MgO含量低于3%、Sr含量高于400×10⁻⁶、Y含量低于18×10⁻⁶、Yb含量低于1.9×10⁻⁶等特征,表明龙卧沟岩体具有埃达克质岩石的属性,即其起源深度较大^[29],与无明显Eu负异常所揭示的龙卧沟岩体起源深度大相吻合。

4 讨论与结论

4.1 龙卧沟岩体形成时代

龙卧沟岩体 LA-ICP-MS 定年样品 LWG02 为 斑状黑云母二长花岗斑岩, 似斑状结构, 基质为中 粒半自形粒状结构(图 2-a), 锆石具有典型的岩浆 锆石特征, 且所有测点的 Th/U比值大于 0.1, 30 个测 点的加权平均²⁶⁶Pb/²³⁸U 年龄(128±1) Ma(95%置信 度)可以认为是龙卧沟岩体的形成时代。 表3龙卧沟岩体样品微量元素分析结果(10-6)

Table 3 Trace elements analytical results of Longwogou granite (10 ⁻⁶)														
样品号	Ва	Rb	Sr	Th	U	Nb	Та	Zr	Hf	Y	Pb	La	Ce	Pr
LWG03	916	182.0	540	23.12	2.25	34.17	1.54	207.3	2.08	17.66	23.81	58.54	104.60	10.21
LWG05	1039	181.3	646	13.41	2.46	20.89	1.14	164.8	5.22	12.31	129.5	39.17	70.17	7.46
LWG06	1974	221.1	701	14.25	1.83	18.05	0.96	126.3	4.91	11.53	39.00	31.34	58.46	6.33
LWG07	1091	181.5	670	15.46	1.95	21.10	1.11	165.2	5.63	12.68	39.43	39.91	71.96	7.77
LWG08	828	187.0	538	14.60	1.92	19.60	1.06	143.6	4.97	12.23	42.38	39.22	68.34	7.36
LWG09	1073	227.8	477	14.64	1.76	22.39	1.22	172.8	5.73	13.42	34.84	41.22	76.04	8.40
LWG11	1435	196.1	640	14.57	1.96	21.18	1.16	173.0	5.96	13.10	34.51	49.87	86.25	8.95
样品号	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	ΣREE	(La/Yb) _N	Sr/Y
LWG03	35.53	5.27	1.39	5.14	0.56	3.09	0.50	1.39	0.23	1.47	0.28	228.19	26.92	30.60
LWG05	26.05	3.88	1.00	3.47	0.41	1.83	0.32	0.90	0.21	1.36	0.21	156.43	19.42	52.48
LWG06	22.99	3.40	0.96	3.06	0.36	1.63	0.28	1.09	0.20	1.32	0.21	131.63	15.98	60.80
LWG07	27.42	4.11	1.08	3.84	0.44	1.95	0.34	1.06	0.22	1.40	0.22	161.69	19.22	52.86
LWG08	25.70	3.85	1.00	3.47	0.40	1.76	0.30	0.85	0.20	1.32	0.20	153.97	20.09	43.99
LWG09	29.57	4.38	1.01	4.00	0.48	2.20	0.38	1.10	0.23	1.50	0.23	170.74	18.55	35.54
LWG11	31.14	4.45	1.13	4.17	0.47	2.08	0.36	1.04	0.23	1.41	0.22	191.76	23.79	48.85

前人先后两次报道了龙卧沟岩体的K-Ar同位 素定年结果,即111 Ma^{□191}和106 Ma[●],其中K-Ar年 龄为106 Ma的样品采集于龙卧沟岩体在九峪沟水 库附近的露头处(图1-c)。鉴于K-Ar同位素体系 难以在花岗岩造岩矿物中保持封闭,往往使得K-Ar 年龄低于真实结晶年龄,龙卧沟岩体的K-Ar年龄 仅供参考。

在崤山北部地区,龙卧沟岩体南约3km处后河 岩体的LA-ICP-MS 锆石 U-Pb 年龄为(128±1) Ma^[30],龙卧沟岩体东约16km处白石崖岩体的LA-

图 7 龙卧沟岩体稀土元紊配分模式图和微重元素蛛网图 a—龙卧沟岩体球粒陨石标准化稀土元素配分模式图,球粒陨石标准化数据据文献[31]; b—龙卧沟岩体微量元素蛛网图,标准化数据据文献[32] Fig.7 REE patterns and spider diagram for Longwogou granite

a-Chondrite-normalized REE patterns of Longwogou intrusion, chondrite values after Reference [31]; b-Chondrite-normalized spider diagram of Longwogou intrusion, chondrite values after Reference [32]

●河南省地质矿产厅. 张村幅1:50000地质图说明书[R]. 1995: 1-54.

2-Metabasaltic and eclogite experimental melts hybridized by peridotite; 3-Metabasaltic and eclogite experimental melts (1.0-4.0 GPa); 4-Thick lower crust-derived adakitic rocks (base map after Reference [34])

ICP-MS 锆石 U-Pb 年龄为(135±3) Ma^[33]。崤山南 部后瑶峪岩体和柳关岩体的锆石 U-Pb 年龄分别为 (131±1) Ma 和(132±1) Ma^[36]。这表明龙卧沟岩体 LA-ICP-MS 锆石定年结果可信度高,并且在崤山 发育与龙卧沟岩体形成时代相接近的花岗岩岩浆 活动。

所以,龙卧沟岩体形成于(128±1) Ma,为早白 垩世岩浆活动的产物。

4.2 岩石成因

龙卧沟岩体内发育钾长石巨斑晶(图2-a),副 矿物以榍石、磁铁矿、磷灰石、锆石、黄铁矿等为主, 岩石地球化学表明其属于高钾钙碱性系列岩石(图 6-b),与Barbarin^[23]花岗岩分类中富钾钙碱性花岗 岩类(KCG类)的特征相吻合,即龙卧沟斑状黑云母 二长花岗岩为KCG类花岗岩。KCG类花岗岩是 壳、幔混合来源的钙碱性花岗岩类,富K₂O贫CaO 的地壳端元为主要组成部分^[23,37]。

龙卧沟岩体7件样品点落入埃达克岩区域内 (图7-a),且龙卧沟岩体样品的SiO₂、Al₂O₃、MgO、 Sr、Y和Yb的含量也符合埃达克岩的元素地球化学 判别依据^[29],这表明龙卧沟岩体属于埃达克质岩 石。除俯冲板片部分熔融成因模式之外^[38],埃达克 质岩石的形成还有以下3种方式:玄武质岩浆的 AFC演化^[39]、加厚下地壳部分熔融^[40]和拆沉下地壳 部分熔融^[41]。印支末期扬子板块与华北板块的完全 对接拼合形成统一的板块,秦岭地区的地质演化进 入了板内阶段^[42-43],这表明崤山北部在早白垩世不 存在洋壳俯冲,否定了埃达克质的龙卧沟岩体与板 块俯冲之间具有成因联系。另外,龙卧沟岩体 SiO₂ 含量介于70.06%~72.95%(表2),这排除了通过玄 武质岩浆的 AFC 演化形成埃达克质龙卧沟岩体的 可能性。

由加厚下地壳部分熔融形成的埃达克质岩浆 在地壳底部与源区分离并向上运移,而拆沉下地壳 部分熔融形成埃达克质岩浆在上升伊始与地幔橄 榄岩部分熔融形成的基性(或含超基性)岩浆发生 混合作用,二者在MgO、Cr、Ni等元素含量上具有明 显的差别^[44-45]。龙卧沟岩体的SiO₂(70.06%~ 72.95%)和K₂O(3.55%~5.18%)较高,MgO含量极低 (0.28%~0.43%),在SiO₂-MgO图解中,龙卧沟岩体 样品投点均落入加厚下地壳部分熔融起源的埃达 克质岩石区域内(图8-b)。所以,龙卧沟埃达克质 岩浆是加厚下地壳部分熔融形成的。

龙卧沟岩体 HREE、Y 及高场强元素 Nb、Ta、Ti

强烈亏损,Sr含量高(477×10⁻⁶~701×10⁻⁶),轻、重稀 土分馏明显,无明显负Eu异常,REE 配分模式中因 Dy、Ho、Er含量的相对亏损而形成了明显的Dy-Ho-Er"洼斗"(图7-a,b)。由于HREE和Y在石榴 石/熔体中的分配系数大,石榴石是部分熔融熔体 相中轻、重稀土分馏程度的主要控制因素,龙卧沟 岩体 HREE 和 Y 的强烈亏损应当是部分熔融源区 出现石榴石残余相所致,也表明部分熔融源区深度 至少大于50 km^[31]。在金红石/长英质熔体体系中, Nb、Ta是强烈的相容元素[46-47],金红石本身也是富 Ti矿物相,龙卧沟岩体的TiO2、Nb和Ta含量均比较 低,含量区间依次为0.20%~0.28%、19.60×10-6~ 34.17×10⁻⁶和0.96×10⁻⁶~1.54×10⁻⁶,在蛛网图中显示 了强烈的Nb、Ta、Ti亏损,这表明龙卧沟埃达克质 岩浆部分熔融源区出现金红石残余相。龙卧沟岩 体REE 配分模式图中显示了明显的 Dy-Ho-Er"洼 斗"(图7-a),小秦岭(文峪和娘娘山岩体)和熊耳山 地区(花山岩基和金山庙)的花岗岩也具有类似的 REE 配分特征,其中以文峪岩体最为明显(图9),这 不仅表明龙卧沟岩体样品化学成分数据具有较高 的可信度,而且暗示部分熔融源区残余相中除石榴 石之外还有其他矿物相控制着 Dy、Ho和 Er含量, 如角闪石。斜长石是主要的富AI造岩矿物,也是 富 Sr 及控制 Eu 含量的重要矿物, 龙卧沟岩体的 Al₂O₃和Sr含量高及无明显Eu异常,这表明其源区 无(富钙)斜长石残留。

所以,龙卧沟斑状黑云母二长花岗岩为KCG类 花岗岩,埃达克质的龙卧沟岩体是加厚下地壳的部 分熔融形成的,源区深度应大于50km,部分熔融源 区残余相矿物包括石榴石、金红石和角闪石。

4.3 构造背景

小秦岭文峪和娘娘山岩体的锆石U-Pb定年表 明它们均形成于早白垩世^[2-3,5],其中²⁰⁶Pb/²³⁸U年龄谐 和程度较好的文峪和娘娘山岩体定年结果分别为 (130.6±1.4) Ma和(133.7±1.4) Ma^[5]。它们与龙卧 沟岩体的形成时代相接近,文峪岩体、娘娘山岩体 和高庙岩体均具有埃达克岩属性,是华北克拉通岩 石圈减薄的产物^[2-5]。

熊耳山花山岩基的4件样品的锆石U-Pb年龄 集中于(127.6±1.1) Ma~(131±2) Ma^[14-15,48],斑竹寺 岩体的LA-ICP-MS 锆石 U-Pb 年龄为(129±1) Ma^[49],金山庙岩体2件样品的U-Pb年龄分别为(127.6±1.6)Ma和(129.3±1.5)Ma^[15,48]。蒿坪沟花 岗斑岩形成于(134±1)Ma^[50],石窑沟Mo矿含矿斑 岩3件样品的U-Pb年龄介于(132.8±1.1)Ma~(134.0±1.0)Ma^[51]。祁雨沟Au矿16号爆破角砾岩 下伏花岗斑岩的LA-ICP-MS 锆石年龄为(136.6±2.3)Ma^[13],雷门沟Mo矿中斑岩体的形成时代为(136.2±1.5)Ma^[12],鱼池岭Mo矿中花岗斑岩体的LA-ICP-MS 锆石 U-Pb定年结果为(133.6±1.3)Ma^[52]。由此可见,无论出露面积大小,熊耳山地区 也存在与龙卧沟岩体时代相近的花岗岩,其中石窑 沟斑岩和鱼池岭斑岩是对华北克拉通岩石圈减薄 的地质响应^[51-52]。

崤山及相邻的小秦岭、熊耳山地区广泛出露时 代相近具有岩浆混合成因的花岗岩,这表明存在基 性岩浆底侵作用。基性岩浆在固结之后可以转变 为密度高于地幔橄榄岩的榴辉岩,如果底侵岩浆体 积足够大,其固结之后将会显著提升相应区域岩石 圈的重力不稳定性,进而引发岩石圈拆沉和软流圈 地幔被动上涌,规模足够大时将导致发生区域隆 升^[53]。龙卧沟埃达克质岩浆部分熔融源区深度大于 50 km,即相应的在大约128 Ma时崤山北部地壳厚 度也应不小于50 km,现如今崤山北部莫霍面埋深 约35 km^[54-55],二者之间至少15 km的差距足以表明 崤山北部地区在早白垩世经历了岩石圈拆沉作

Chondrite values after Reference [31], REE data after Reference [2-5]

质

中

用。这不仅与小秦岭一熊耳山地区在大约128 Ma 中基性岩墙所揭示的岩石圈拆沉作用^[56]相吻合,而 且与文峪、娘娘山、高庙、石窑沟及鱼池岭等岩体的 深部动力学过程相互印证,还与包括秦岭在内的中 国东部岩石圈巨大减薄^[27, 57]这一重大地质构造事件 相一致。

所以,龙卧沟岩体侵位的崤山北部地区在早白 垩世经历了岩石圈拆沉作用,是对中国东部中生代 岩石圈巨大减薄的地质响应之一。

4.4 成矿潜力

崤山北部柳树沟 Au 矿段石英和方铅矿的 Ar-Ar 等时线年龄分别为(133.0±2.7) Ma 和(126.0± 2.5) Ma^[58],表明崤山北部存在与龙卧沟岩体近同时 代的 Au 成矿作用。小秦岭东闯 Au 矿的主成矿期^[1,59] 与龙卧沟岩体的形成时代相接近,红土岭 Au 矿 2件 黑云母样品的 Ar-Ar 等时线年龄分别为(128.3± 0.3) Ma 和(126.9±0.3) Ma^[60],泉家峪 Mo-Au 矿的 2 件辉钼矿的 Re-Os 模式年龄分别为(129.1±1.6) Ma 和(130.8±1.5) Ma^[61],这表明在小秦岭地区也存在 一期与龙卧沟岩体近同时的 Au 成矿作用。

熊耳山地区也存在一期与龙卧沟岩体形成时 代相接近的内生金属成矿作用。蒿坪沟Ag多金属 矿和铁炉坪Ag多金属矿的成矿时代分别为(134.9± 0.8) Ma^[50]和(134.6±1.2) Ma^[62]。石窑沟Mo矿的辉 钼矿 Re-Os 加权平均年龄为(133.4±1.0) Ma,等时 线年龄为(135.2±1.8) Ma^[63], Han 等^[51]获得石窑沟 Mo矿辉钼矿 Re-Os 加权平均年龄和等时线年龄分 别为(132.2±2.8) Ma和(135.2±2.9) Ma。沙坡岭 Mo 矿 6件样品的辉钼矿 Re-Os 同位素模式年龄介于 (125.4±2.2) Ma~(129.4±3.4) Ma^[64-65], 雷门沟 Mo矿 中辉钼矿 Re-Os 同位素加权平均年龄为(132.4± 1.9) Ma^[12], 鱼池岭 Mo矿辉钼矿 Re-Os 同位素的加 权平均年龄为(131.1±0.8) Ma^[66]。祁雨沟 Au 矿 4 号 角砾岩筒中的黄铁矿的 Rb-Sr 等时线年龄(126± 11) Ma^[67], 7 号角砾岩中辉钼矿 Re-Os 同位素等时 线年龄为(135.6±5.6) Ma^[13]。

由此可见,小秦岭一熊耳山地区存在一期广泛 而强烈的、与龙卧沟岩体形成时代相接近的内生金 属成矿作用,且它们均与小秦岭一熊耳山地区同时 代的花岗岩具有密切的时空关系。崤山北部存在 以龙卧沟岩体为露头的隐伏岩体,它从SW(深处) 向NE(浅处)侵入,产状具有SW缓倾、NE陡倾的特 征^[68-69]。岩石圈拆沉有助于大规模的深部流体的快 速释放^[53],崤山地区具有深源性的含Au成矿流体^[70] 是在岩石圈拆沉作用下得以释放,并快速运移至地 表浅部成矿。龙卧沟岩体具有良好的Au、Ag、Mo和 W异常显示(表4),且样品LWG08和LWG09的Au 含量分别为177.8×10⁻⁹和126.8×10⁻⁹,暗示龙卧沟岩 体及其隐伏组成部分具有较大的成矿潜力,可能成为 崤山北部隐伏矿床寻找有望获得突破的地区之一。

Table	Table 4 Content of Au, Ag, Cu, 19, 2h, Wo and W in Longwogou init usion													
样品编号	Au/10 ⁻⁹	Ag/10 ⁻⁶	Cu/10 ⁻⁶	Pb/10 ⁻⁶	Zn/10 ⁻⁶	Mo/10 ⁻⁶	W/10 ⁻⁶							
LWG03	2.55	0.09	7.10	23.81	78.72	1.53	12.58							
LWG05	3.56	0.31	2.58	129.5	58.34	2.03	7.96							
LWG06	3.91	0.32	1.55	39.00	43.27	1.94	4.50							
LWG07	2.12	0.16	2.92	39.43	47.29	0.81	2.57							
LWG08	177.8	14.00	2.65	42.38	46.84	1.47	12.45							
LWG09	126.8	0.67	3.29	34.84	47.31	2.20	6.64							
LWG11	2.34	0.07	3.78	34.51	46.23	1.46	6.59							
华北地台花岗岩 元素丰度	0.38	0.052	4.9	21	36	0.50	0.49							
秦岭-大别造山带 花岗岩元素丰度	0.50	0.053	5.4	33	38	0.44	0.47							

表4 龙卧沟岩体 Au、Ag、Cu、Pb、Zn、Mo 和W元素含量 Table 4 Content of Au, Ag, Cu, Pb, Zn, Mo and Win Longwogou intrusion

注:华北地台花岗岩和秦岭一大别造山带花岗岩元素丰度数据据文献[71]。

5 结 论

(1) 龙卧沟斑状黑云母二长花岗岩的锆石²⁰⁶Pb/²³⁸U年龄为(128±1) Ma,属早白垩世。

(2) 龙卧沟岩体具有埃达克质岩的属性,是加 厚下地壳的部分熔融形成的,部分熔融源区残余相 矿物包括石榴石、金红石和角闪石。

(3)龙卧沟岩体侵位的崤山北部地区在早白垩 世经历了岩石圈拆沉作用,是对中国东部中生代岩 石圈巨大减薄的地质响应之一,龙卧沟岩体及其隐 伏组成部分具有较大的成矿潜力。

参考文献(References):

[1] 徐启东, 钟增球, 周汉文, 等. 豫西小秦岭金矿区的一组"Ar/"Ar 定年数据[J]. 地质论评, 1998, 44(3): 323-327.

Xu Qidong, Zhong Zengqiu, Zhou Hanwen, et al. ⁴⁰Ar/³⁹Ar dating of the Xiaoqinling gold area in Henan Province[J]. Geological Review, 1998, 44(3): 323–327(in Chinese with English abstract).

[2] 王义天, 叶会寿, 叶安旺, 等. 小秦岭文峪和娘娘山花岗岩体锆石 SHRIMP U-Pb 年龄及其意义[J]. 地质科学, 2010, 45(1): 167-180.

Wang Yitian, Ye Huishou, Ye Anwang, et al. Zircon SHRIMP U– Pb ages and their significances of the Wenyu and Niangniangshan granitic plutons in the Xiaoqinling area, central China[J]. Chinese Journal of Geology, 2010, 45(1): 167–180(in Chinese with English abstract).

[3] 高昕宇,赵太平,高剑峰,等.华北陆块南缘小秦岭地区早白垩世 埃达克质花岗岩的LA-ICP-MS锆石U-Pb年龄、Hf同位素和元 素地球化学特征[J].地球化学,2012,41(4):303-325.

Gao Xinyu, Zhao Taiping, Gao Jianfeng, et al. LA–ICP–MS zircon U–Pb ages, Hf isotopic composition and geochemistry of adakitic granites in the Xiaoqinling region, the south margin of the North China block[J]. Geochimica, 2012, 41(4): 303–325(in Chinese with English abstract).

- [4] 肖鸿,魏俊浩,谭俊,等.小秦岭地区早白垩世酸性侵入岩地球化 学特征及构造环境[J].地质科技情报,2012,31(3):39-48.
 Xiao Hong, Wei Junhao, Tan Jun, et al. Geochemistry of the early Cretaceous acidic intrusions in Xiaoqinling, central China: constraints on tectonic setting[J]. Geological Science and Technology Information, 2012, 31(3): 39-48(in Chinese with English abstract).
- [5] Zhao Haixiang, Jiang Shaoyong, Hartwig E F, et al. Geochemistry, geochronology and Sr–Nd–Hf isotopes of two Mesozoic granitoids

in the Xiaoqinling gold district: Implication for large- scale lithospheric thinning in the North China Craton[J]. Chemical Geology, 2012, 294–295: 173–189.

[6] 卢欣祥. 河南省秦岭一大别山地区燕山期中酸性小岩体的基本 地质特征及成矿专属性[J]. 河南地质, 1983, 1(1): 49-55.

Lu Xinxiang. Basic characteristics of Yanshanian minor intermediate– acid rock masses and their metallogenic specialization in the Qinling– Dabie Mountains region, Henan Province[J]. Henan geology, 1983, 1(1): 49–55(in Chinese).

[7] 卢欣祥. 河南省秦岭一大别山地区燕山期中酸性小岩体的基本 特征及成矿作用[J]. 中国区域地质, 1985, 4(3): 115-123.

Lu Xinxiang. Basic characteristics of Yanshanian minor intermediate- acid rock masses and their mineralization in the Qinling- Dabie Mountains region, Henan Province[J]. Regional geology of China, 1985, 4(3): 115–123(in Chinese).

[8] 卢欣祥. 东秦岭两类花岗岩与两个金矿系列[J]. 地质论评, 1994, 40(5): 418-428.

Lu Xinxiang. Two types of granites and two series of gold deposits in eastern Qinling[J]. Geological Review, 1994, 40(5): 418–428(in Chinese with English abstract).

- [9] 严正富,杨正光,程海,等. 雷门沟钼矿化花岗斑岩成因浅析[J]. 南京大学学报(自然科学版), 1986, 22(3): 525-535.
 Yan Zhengfu, Yang Zhengguang, Cheng Hai, et al. Genesis of the Leimengou molybdenum mineralized granite porphyry[J]. Journal of Nanjing University (Natural Sciences), 1986, 22(3): 525-535(in Chinese with English abstract).
- [10] 孙卫志,张灯堂,孟宪锋,等.豫西矿集区Au、Mo地球化学块体 分布特征及资源潜力分析[J].中国地质, 2012, 39(2): 349-358.
 Sun Weizhi, Zhang Dengtang, Meng Xianfeng, et al. Characteristics of Au and Mo geochemical blocks and an analysis of resource potential in the west Henan ore concentrated area[J]. Geology in China, 2012, 39(2): 349-358(in Chinese with English abstract).
- [11] 毕献武, 骆庭川. 洛宁花山岩体地球化学特征及成因的探讨[J]. 矿物学报, 1995, 15(4): 433-441.

Bi Xianwu, Luo Tingchuan. Geochemical characteristics and genesis of Huashan granite mass[J]. Acta Mineralogica Sinica, 1995, 15(4): 433–441(in Chinese with English abstract).

[12] 李永峰, 毛景文, 刘敦一, 等. 豫西雷门沟斑岩钼矿 SHRIMP 锆 石 U-Pb 和辉钼矿 Re-Os 测年及其地质意义[J]. 地质论评, 2006, 52(1): 122-128.

Li Yongfeng, Mao Jingwen, Liu Dunyi, et al. SHRIMP zircon U– Pb and molybdenite Re–Os dating for the Leimengou porphyry molybdenum deposit, western Henan and its geological

地

质

implication[J]. Geological Review, 2006, 52(1): 122– 128(in Chinese with English abstract).

[13] 姚军明,赵太平,李晶,等.河南祁雨沟金成矿系统辉钼矿Re-Os年龄和锆石U-Pb年龄及Hf同位素地球化学[J].岩石学报, 2009, 25(2): 374-384.

Yao Junming, Zhao Taiping, Li Jing, et al. Molybdenite Re–Os age and zircon U–Pb age and Hf isotope geochemistry of the Qiyugou gold system, Henan Province[J]. Acta Petrologica Sinica, 2009, 25(2): 374–384(in Chinese with English abstract).

- [14] Mao Jingwen, Xie Guiqing, Pirajno F, et al. Late Jurassic– Cretaceous granitoid magmatism in the eastern Qinling, Central– eastern China: SHRIMP zircon U– Pb ages and tectonic implications[J]. Australian Journal of Earth Science, 2010, 57: 51– 78.
- [15] 肖娥, 胡建, 张遵忠, 等. 东秦岭花山复式岩基中蒿坪与金山庙 花岗岩体岩石地球化学、锆石 U-Pb 年代学和 Lu-Hf 同位素组 成[J]. 岩石学报, 2012, 28(12): 4031-4076.
 Xiao E, Hu Jian, Zhang Zunzhong, et al. Petrogeochemistry,

Alao E, Hu Jian, Zhang Zuhzhong, et al. Petrogecenemissy, zircon U– Pb dating and Lu– Hf isotopic compositions of the Haoping and Jinshanmiao granites from the Huashan complex batholith in eastern Qinling Orogen[J]. Acta Petrologica Sinica, 2012, 28(12): 4031–4076(in Chinese with English abstract).

[16] 杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石 U-Pb 年龄、岩石地球化学及 Hf 同位素组成[J]. 中国地质, 2012, 39(6): 1525-1542.

Yang Yang, Wang Xiaoxia, Ke Changhui, et al. Zircon U–Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China, 2012, 39(6): 1525–1542(in Chinese with English abstract).

[17] 包志伟,曾乔松,赵太平,等.东秦岭钼矿带南泥湖一上房沟花 岗斑岩成因及其对钼成矿作用的制约[J]. 岩石学报, 2009, 25 (10): 2523-2536.

Bao Zhiwei, Zeng Qiaosong, Zhao Taiping, et al. Geochemistry and petrogenesis of the ore–related Nannihu and Shangfanggou granite porphyries from east Qinling belt and their constraints on the molybdenum mineralization[J]. Acta Petrologica Sinica, 2009, 25(10): 2523–2536(in Chinese with English abstract).

[18] 向君峰,毛景文,裴荣富,等.南泥湖一三道庄钼(钨)矿的成岩成 矿年龄新数据及其地质意义[J].中国地质, 2012, 39(2): 458-473.

Xiang Junfeng, Mao Jingwen, Pei Rongfu, et al. New geochronological data of granites and ores from the Nannihu–Sandaozhuang Mo (W) deposit[J]. Geology in China, 2012, 39(2):

458–473(in Chinese with English abstract).

[19]河南省地质矿产局.河南省区域地质志[M].北京:地质出版社, 1989:1-772.

Bereau of Geology and Mineral Resources of Henan Province. Regional Geology of Henan Province[M]. Beijing: Geological Publishing House, 1989: 1–772(in Chinese).

- [20] 罗铭玖, 黎世美, 卢欣祥, 等. 河南省主要矿产的成矿作用及矿 床成矿系列[M]. 北京: 地质出版社, 2000: 1–125.
 Luo Mingjiu, Li Shimei, Lu Xinxiang, et al. Metallogenesis and Deposit Series of Main Mineral Resources of Henan Province[M].
 Beijing: Geological Publishing House, 2000: 1–125(in Chinese with English abstract).
- [21] Andersen T. Correction of common Pb in U–Pb analysis that do not report²⁰⁴Pb[J]. Chemical Geology, 2002, 192: 59–79.
- [22] Ludwing K R. Users Manual for Isoplot/Ex (rev 2.49): A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronological Center Special Publication, 2001: 1: 1–55.
- [23] Barbarin B. A review of the relationships between granitoid types, their origrins and their geodynamic environments[J]. Lithos, 1999, 46: 605–626.
- [24] Middlemost E A K. Iron oxidation ratios, norms and the classification of volcanic rocks[J]. Chemical Geology, 1989, 77 (1): 19–26.
- [25] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Science, 1971, 8: 523–548.
- [26] Rollison H R. Using Geochemical Data: Evalution, Presentation, Interpretation[M]. New York: Longman Scientific & Technical, 1993: 102–213.
- [27] 邓晋福, 赵海玲, 莫宣学, 等. 大陆根--柱构造——大陆动力学的 钥匙[M]. 北京: 地质出版社, 1996: 1-110.
 Deng Jinfu, Zhao Hailing, Mo Xuanxue, et al. Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics[M].
 Beijing: Geological Publishing House, 1996: 1-110(in Chinese with English abstract).
- [28] 邓晋福, 罗照华, 苏尚国, 等. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004: 1-149.
 Deng Jinfu, Luo Zhaohua, Su Shangguo, et al. Petrogenesis, Tectonic Environment and Metallogenesis[M]. Beijing: Geological Publishing House, 2004: 1-149(in Chinese).
- [29] 张旗, 王焰, 熊小林, 等. 埃达克岩与花岗岩: 机遇与挑战[M]. 北京: 中国大地出版社. 2008: 1–178.
 Zhang Qi, Wang Yan, Xiong Xiaolin, et al. Adakite and Granite:

Challenge and Opportunity[M]. Beijing: China Land Press, 2008: 1–178(in Chinese).

[30] 卢仁, 梁涛, 卢欣祥, 等. 豫西崤山龙卧沟岩体和后河岩体 LA-ICP-MS 锆石 U-Pb 年代学[J]. 高校地质学报, 2013, 19(增刊): 474-475.

Lu Ren, Liang Tao, Lu Xinxiang, et al. LA-ICP-MS zircons datings of Longwogou and Houhe granites in Xiao Mountain, western Henan Province[J]. Geological Journal of China Universities, 2013, 19(Supp.): 474–475(in Chinese).

- [31] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P(ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984: 63–114.
- [32] Thompson R N. Magmatism of the British Tertiary volcanic province[J]. Scottish Journal of Geology, 1982, 18: 59–107.
- [33] Defant M J, Xu Jifeng, Kepezhinskas P, et al. Adakites: Some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18: 129– 142(in English).
- [34] Wang Qiang, Xu Jifeng, Jian Ping, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47: 119–144.
- [35] Liang Tao, Bai Fengjun, Lu Ren, et al. LA- ICP- MS zircons dating of Baishiya body in Xiao Mountain, western Henan Province, and its geologic implications[J]. Acta Geologica Sinica (English Edition), 2013, 87(Supp.), 722–725.
- [36] 胡浩,李建威,邓晓东. 洛南一卢氏地区与铁铜多金属矿床有关的中酸性侵入岩锆石 U-Pb 定年及其地质意义[J]. 矿床地质, 2011, 30(6): 979-1001.

Hu Hao, Li Jianwei, Deng Xiaodong. LA–ICP–MS zircon U–Pb dating of granitoid intrusions related to iron–copper polymetallic deposits in Luonan–Lushi area of southern North China Craton and its geological implications[J]. Mineral Deposits, 2011, 30(6): 979–1001(in Chinese with English abstract).

- [37] 肖庆辉, 卢欣祥. 花岗岩构造环境判别方法[C]//肖庆辉主编. 花岗岩研究思维与方法. 北京: 地质出版社, 2002: 12-52.
 Xiao Qinghui, and Lu Xinxiang. Discrimination for tectonic setting granitoids[C]//Xiao Qinghui(ed.). The Ways of Investigation on Granitoids. Beijing: Geological Publishing House, 2002: 12-52(in Chinese).
- [38] Defant M J, Drummond M S. Derivation of some modes is magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662–665.
- [39] Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin island, southern Philipines: Insights to

the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 1999, 134: 33–51.

- [40] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362: 144– 146.
- [41] Xu Jifeng, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30: 1111–1114.
- [42] 卢欣祥. 秦岭花岗岩大地构造图[M]. 西安: 西安地图出版社, 2000: 1-33.

Lu Xinxiang. Granitoid Tectonic Map of Qinling Belt[M]. Xi'an: Xi'an Cartographic Publishing House, 2000: 1–33(in Chinese).

- [43] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-729.
 Zhang Guowei, Zhang Benren, Yuan Xuecheng, et al. Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 2001: 1-729(in Chinese with English abstract).
- [44] 许继峰, 王强. Adakitic 火成岩对大陆地壳增厚过程的指示: 以 青藏北部火山岩为例[J]. 地学前缘, 2003, 10(4): 401-406.
 Xu Jifeng, Wang Qiang. Tracing the thickening process of continental crust through studying adakitic rock: Evidence from volcanic rocks in the north Tibet[J]. Earth Science Frontiers, 2003, 10(4): 401-406(in Chinese with English abstract).
- [45]王强,赵振华,许继峰,等.鄂东南铜山口、殷祖埃达克质 (adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑 岩铜矿的成因[J]. 岩石学报, 2004, 20(2): 351-360.
 Wang Qiang, Zhao Zhenhua, Xu Jifeng, et al. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rock in southeastern Hubei: (Delaminated) lower crustal melting and the genesis of porphyry copper deposit[J]. Acta Petrologica Sinica, 2004, 20(2): 351-360(in Chinese with English
- [46] Xiong Xiaolin, Adam J, Green T H, et al. Trace element characteristics of partial melts produced by melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts[J]. Science in China(Series D), 2006, 49(9): 915– 925.
- [47] 熊小林, 韩江伟, 吴金花. 变质玄武岩体系相平衡及矿物-熔体 微量元素分配:限定TTG/埃达克岩形成条件和大陆壳生长模 型[J]. 地学前缘, 2007, 14(2): 149–158.

Xiong Xiaolin, Han Jiangwei, Wu Jinhua. Phase equilibrium and trace element partitioning between minerals and melt in the metabasalt system: Constraints on the formation conditions of

abstract).

地

质

TTG/adakite magmas and the growth of early continental crust[J]. Earth Science Frontiers, 2007, 14(2): 149–158(in Chinese with English abstract).

[48] 孟芳, 叶会寿, 高亚龙. 豫西熊耳山地区花岗岩地质特征及 SHRIMP 锆石 U-Pb 年龄[J]. 矿床地质, 2012, 31(增刊): 591-592.

Meng Fang, Ye Huishou, Gao Yalong. Geologic features and SHRIMP zircon U–Pb dating of granites in Xiong'er Mountain, western Henan Province[J]. Mineral Deposits, 2012, 31(Supp.): 591–592(in Chinese with English abstract).

[49] 梁涛, 白凤军, 罗照华, 等. 豫西熊耳山斑竹寺岩体 LA-ICP-MS 锆石 U-Pb 定年及地质意义[J]. 地质学报, 2013, 87(增刊): 44-46.

Liang Tao, Bai Fengjun, Luo Zhaohua, et al. 2013. LA–ICP–MS zircon dating of Banzhusi body in Xiong'er Mountain, western Henan Province, and its geologic implications[J]. Acta Geologica Sinica, 2013, 87(Supp.): 44–46(in Chinese).

[50] 叶会寿. 华北陆块南缘中生代构造演化与铅锌银成矿作用[D]. 北京: 中国地质科学院, 2006.

Ye Huishou. The Mesozoic Tectonic Evolution and Pb–Zn–Ag Metallogeny in the South Margin of North China Craton[D]. Beijing: Chinese Academy of Geological Sciences, 2006(in Chinese with English abstract).

- [51] Han Yigui, Zhang Shihong, Pirajno F, et al. U–Pb and Re–Os isotopic systematics and zircon Ce⁴⁺/Ce³⁺ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: Insights into the oxidation state of granitoids and Mo(Au)mineralization[J]. Ore Geology Reviews, 2013, 55: 29–47.
- [52] Li Nuo, Chen YanJing, Pirajno F, et al. LA–ICP–MS zircon U–Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: Implications for Mesozoic tectono–magmatic evolution[J]. Lithos, 2012, 142–143: 34–47.
- [53] 罗照华, 梁涛, 陈必河, 等. 板内造山作用与成矿[J]. 岩石学报, 2007, 23(8): 1945–1956.
 Luo Zhaohua, Liang Tao, Chen Bihe, et al. Intraplate orogenesis and its implications in metallogenesis[J]. Acta Petrologica Sinica, 2007, 23(8): 1945–1956(in Chinese with English abstract).
- [54] 周国藩. 秦巴地区地球物理场特征与地壳构造格架关系的研究[M]. 武汉: 中国地质大学出版社, 1992: 1-87. Zhou Guofan. Research on Relationship between Characteristics of Geophysical Field and Crustal Architecture and Deep Structure in the Qinling–Daba Mountains[M]. Wuhan: China University of Geosciences Press, 1992: 1-87(in Chinese).

[55] 袁学诚. 秦岭岩石圈速度结构与蘑菇云构造模型[J]. 中国科学 (D辑), 1996, 26(3): 209-215.

Yuan Xuecheng. 1996. Velocity structure of the Qinling lithosphere and mushroom cloud model[J]. Science in China (Serise D), 1996, 26(3): 209–215(in Chinese).

[56] 王团华, 毛景文, 王彦斌. 秦岭-熊耳山地区岩墙锆石 SHRIMP 年代学研究——秦岭造山带岩石圈拆沉的证据[J]. 岩石学报, 2008, 24(6): 1273–1287.

Wang Tuanhua, Mao Jingwen, Wang Yanbin. Research on SHRIMP U– Pb chronology in Xiaoqinling– Xionger'shan area: the evidence of delamination of lithosphere in Qinling orogenic belt[J]. Acta Petrologica Sinica, 2008, 24(6): 1273– 1287(in Chinese with English abstract).

[57] 邓晋福, 莫宣学, 赵海玲, 等. 中国东部岩石圈根/去根作用与大陆"活化"——东亚型大陆动力学模式研究计划[J]. 现代地质, 1994, 8(3): 349–356.

Deng Jinfu, Mo Xuanxue, Zhao Hailing, et al. Lithosphere root/ de- rooting and actition of the east China continent[J]. Geoscience, 1994, 8(3): 349– 356(in Chinese with English abstract).

- [58] 朱嘉伟, 张天义, 薛良伟. 豫西崤山地区金矿成矿年龄的测定及 其意义[J]. 地质论评, 1999, 45(4): 418-422. Zhu Jiawei, Zhang Tianyi, Xue Liangwei. Determination of the ore- forming age of gold deposits in Xiaoshan, Western Henan and its geological significance[J]. Geological Review, 1999, 45 (4): 418-422(in Chinese with English abstract).
- [59] Li Qiangzhi, Chen Yanjing, Zhong Zengqiu, et al. Ar-Ar dating on the metallogenesis of the Dongchuang gold deposit in the Xiaoqinling area[J]. Acta Geologica Sinica, 2002, 76(4): 488– 493.
- [60] 王义天,毛景文,卢欣祥,等.河南小秦岭金矿区Q875脉中深部 矿化蚀变岩的"Ar-3"Ar年龄及其意义[J].科学通报,2002,47 (18):1427-1431.

Wang Yitian, Mao Jingwen, Lu Xinxiang, et al. ⁴⁰Ar-³⁹Ar dating and geological implication of auriferous altered rocks from the middle– deep section of Q875 gold– quartz vein in Xiaoqinling area, Henan, China[J]. Chinese Science Bulletin, 2002, 47(20): 1750–1755.

[61] 李厚民, 叶会寿, 毛景文, 等. 小秦岭金(钼)矿床辉钼矿铼-锇定 年及其地质意义[J]. 矿床地质, 2007, 26(4): 417-424.

Li Houmin, Ye Huishou, Mao Jinwen, et al. Re– Os dating of molybdenites from Au (– Mo) deposits in Xiaoqinling gold ore district and its geological significance[J]. Mineral deposits, 2007, 26(4): 417–424(in Chinese with English abstract).

[62] 高建京, 毛景文, 陈懋弘, 等. 豫西铁炉坪银铅矿床矿脉构造解 析及近矿蚀变岩绢云母⁴⁰Ar-³⁹Ar 年龄测定[J]. 地质学报, 2011, 85(7): 1172-1187.

第41卷第3期

Gao Jianjing, Mao Jingwen, Chen Maohong, et al. Vein structure analysis and ⁴⁰Ar–³⁹Ar dating of sericite from sub–ore altered rock in the Tieluping large– size Ag– Pb deposit of western Henan Province[J]. Acta Geologica Sinica, 2011, 85(7): 1172–1187(in Chinese with English abstract).

- [63] 高亚龙,张江明,叶会寿,等.东秦岭石窑沟斑岩钼矿床地质特 征及辉钼矿Re-Os年龄[J].岩石学报, 2010, 26(3): 729-739.
 Gao Yalong, Zhang Jiangming, Ye Huishou, et al. Geological characteristics and molybdenite Re- Os isotope dating of Shiyaogou porphyry molybdenum deposit in the east Qinling[J].
 Acta Petrologica Sinica, 2010, 26(3): 729-739(in Chinese with English abstract).
- [64] 苏捷, 张宝林, 孙大亥, 等. 东秦岭东段新发现的沙坡岭细脉浸 染型钼矿地质特征、Re-Os同位素年龄及其地质意义[J]. 地质 学报, 2009, 83(10): 1490-1496.

Su Jie, Zhang Baolin, Sun Dahai, et al. Geological features and Re– Os isotopic dating of newly discovered Shapoling veinlet– disseminated Mo deposit in the eastern section of east Qinling Mountains and its geological significance[J]. Acta Geologica Sinica, 2009, 83(10): 1490– 1496(in Chinese with English abstract).

- [65] 刘军, 武广, 贾守民, 等. 豫西沙坡岭钼矿床辉钼矿 Re-Os 同位 素年龄及其地质意义[J]. 矿物岩石, 2011, 31(1): 56-62.
 Liu Jun, Wu Guang, Jia Shoumin, et al. Re-Os isotopic dating of molybdenites from the Shapoling molybdenum deposit in western Henan Province and its geological significance[J]. Journal of Mineralogy and Petrology, 2011, 31(1): 56-62(in Chinese with English abstract).

Zhou Ke, Ye Huishou, Mao Jingwen, et al. Geological characteristics and molybdenite Re– Os isotopic dating of Yuchiling porphyry Mo deposit in western Henan Province[J]. Mineral Deposits, 2009, 28(2): 170–184(in Chinese with English abstract).

[67] 韩以贵,李向辉,张世红,等.豫西祁雨沟金矿单颗粒和碎裂状 黄铁矿 Rb-Sr等时线定年[J].科学通报,2007,52(11):1307-1311.

Han Yigui, Li Xianghui, Zhang Shihong, et al. Single grain Rb–Sr dating of euhedral and cataclastic pyrite from the Qiyugou gold deposit in western Henan, central China[J]. Chinese Science Bulletin, 2007, 52(13): 1820–1826.

[68] 陈铁华, 赵保军, 张天义, 等. 崤山地区隐伏花岗岩体及其找金 前景[J]. 河南地质, 1997, 15(1): 11–18.

Chen Tiehua, Zhao Baojun, Zhang Tianyi, et al. A buried granitic mass and its prospecting for gold deposits in Xiaoshan region, Henan Province[J]. Henan Geology, 1997, 15(1): 11– 18(in Chinese with English abstract).

[69] 张林, 张录星, 杨彦峰. 崤山地区重磁异常与成矿[J]. 矿产与地质, 2003, 17(增刊): 475-478.

Zhang Lin, Zhang Luxing, Yang Yanfeng. Gravity and magnetic anomaly related to metallogenesis in Xiaoshan area[J]. Mineral Resources and Geology, 2003, 17(Supp.): 475–478(in Chinese).

- [70] 卢欣祥, 尉向东, 董有, 等. 小秦岭-熊耳山地区金矿特征与地幔流体[M]. 北京: 地质出版社, 2004: 1–128.
 Lu Xinxiang, Yu Xiangdong, Dong You, et al. The Characteristics of Gold Deposits and Mantle Fluids of Xiaoqinling-Xiong'ershan Region[M]. Beijing: Geological Publishing House, 2004: 1–128
- [71] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 1-37.

(in Chinese).

Chi Qinghua, Yan Mingcai. Handbook of Elemental Abundance for Applied Geochemistry[M]. Beijing: Geological Publishing House, 2007: 1–37(in Chinese).

Geochronology and geochemical features of Longwogou granite in Xiaoshan Mountain, western Henan Province, and their geological implications

LU Ren^{1,2}, LIANG Tao^{1,2}, LU Xin-xiang³, BAI Feng-jun^{1,2}, CHENG Jing-liang^{1,2}, WEN Jing-jing^{1,2}

(1. General Institute of Nonferrous Metals Geological Exploration, Zhengzhou 450052, Henan, China;

2. Key Laboratory of Deep Ore-prospecting Technology Research for Non-ferrous Metals of Henan Province, Zhengzhou

450052, Henan, China; 3. Institute of Land and Resources of Henan Province, Zhengzhou 450053, Henan, China)

Abstract: In order to study petrogenesis, geodynamics and mineralization potential of small intermediate-acid igneous bodies in north Xiaoshan Mountain, the authors determined the age and geochemical compositions of Longwogou granite body, which is one of these igneous bodies. Longwogou body is composed of porphyritic biotite monzonitic granite with extensively distributed Kfeldspar megacrysts. 206Pb/238U ages of 30 zircons by LA-ICP-MS method are from 125 Ma to 132 Ma, and the weighted average age is (128 \pm 1) Ma. Longwogou granite is characterized by higher SiO₂ and alkali, enrichment of K₂O, and lower MgO and CaO. Compositional spots of Longwogou granite fall into high-K calc-alkaline series in the $SiO_2 - K_2O$ diagram. A/CNK ratios of Longwogou granite are from 1.00 to 1.11. According to the petrologic and geochemical features of Longwogou granite, it belongs to K- rich calc- alkaline granite (KCG). In chondrite- normalized REE patterns, Longwogou granite samples have shown the characteristics of LREE-enrichment and HREE depletion without obvious Eu anomaly. The (La/Yb)_N ratios of Longwogou granite are from 18.55 to 26.92. In spider diagram, the enrichment of Rb, Th, and trough of Nb and Ta are displayed. Samples of Longwogou granite have higher Sr and lower Y, and the Sr/Y ratios are in the range of 30.8-60.8, suggesting that Longwogou granite is adakitic granite. Longwogou granite originated from partial melting of the thickened lower crust, and its residual phases of partial melting source included garnet, rutile and hornblende. North Xiaoshan Mountain area underwent lithosphere delamination in early Cretaceous, and it was one of geological responses to huge lithosphere thinning of eastern China in Mesozoic. The formation age of Longwogou body falls into the time interval of extensive and intensive endogenetic mineralization in east Qinling orogen belt. Samples from Longwogou body display obvious enrichment of Au, Ag, Mo and W. It is considered that Longwogou granite and its concealed part have large mineralization potential.

Key words: Longwogou; porphyric biotite monzonitic granite; adakitic; lithosphere delamination; mineralization potential; Xiaoshan Mountain

About the first author: LU Ren, female, born in 1979, doctor and engineer, mainly engages in geological exploration and metallogenesis research; E-mail:luren7901@126.com.