李侃, 高永宝, 钱兵, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 2015, 42(3): 630-645. Li Kan, Gao Yongbao, Qian bing, et al. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, 2015, 42(3): 630-645(in Chinese with English abstract).

东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩 年代学、地球化学及 Hf 同位素特征

李 侃'高永宝'钱 兵'何书跃'刘永乐'张照伟'张江伟'王亚磊'

(1. 中国地质调查局西安地质调查中心,国土资源部岩浆作用成矿与找矿重点实验室,陕西西安710054;
 2. 青海省第三地质矿产勘查院,青海西宁810029)

提要:虎头崖铅锌多金属矿床位于东昆仑祁漫塔格地区,矿区内中酸性侵入岩体广泛发育,且与成矿关系密切。 LA-ICP-MS 锆石U-Pb 同位素年龄测试表明,虎头崖V 矿带外围花岗闪长岩形成时代为(224.3±0.6) Ma, WI 号矿带 矿体下部正长花岗岩形成时代为(239.7±0.8) Ma,岩体形成时代为中一晚三叠世。岩石地球化学表明,花岗闪长岩 富钾贫钠(K₂O/Na₂O 为 2.02~2.88),无明显负 Eu 异常(δEu 为 0.68~1.06),富集 Rb、Th、U、K 等大离子亲石元素,明显亏 损 Nb、P、Ti等元素,属I型花岗岩;正长花岗岩具高硅、富碱、低铁镁、贫钙磷钛的特征,负 Eu 强烈(δEu 为 0.08~0.26), 富集 Rb、Th、U、K,亏损 P、Ti、Ba、Sr,属高分异 I型花岗岩;二者均形成于后碰撞构造背景;Hf 同位素组成不均一,指 示其经历了壳幔岩浆混合作用,幔源物质的加入可能带来了丰富的成矿物质。

关 键 词:花岗岩;年代学;地球化学;Hf同位素;虎头崖;东昆仑 中图分类号:P588.12;P618.42-43 **文献标志码**:A **文章编号**:1000-3657(2015)03-0630-16

Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun

LI Kan¹, GAO Yong-bao¹, QIAN bing¹, HE Shu-yue², LIU Yong-le², ZHANG Zhao-wei¹, ZHANG Jiang-wei¹, WANG Ya-lei¹

(1. MLR Key Laboratory of Genesis and Exploration of Magmatic Ore Deposits, Xi'an Center of China Geological Survey, Xi'an 710054, Shaanxi, China; 2. No. 3 Geological Prospecting Institute of Qinghai, Xining 810029, Qinghia, China)

Abstract: The Hutouya Pb-Zn polymetallic ore deposit is located in Qimantag, East Kunlun. Intermediate-acid intrusive rocks occur widely in this area, and are closely related to iron polymetallic mineralization. The results of LA-ICP-MS zircon U-Pb isotope dating reval that the granodiorite in the periphery of No. V ore belt was formed at (224.3 ± 0.6) Ma and the orthoclase granite

基金项目:中国地质调查局地质调查项目(1212011121088、1212011121092和12120114044401)、国家自然科学基金青年基金项目 (41102050)、国家"十一・五"科技支撑计划项目(2006BAB01A01)、陕西省科学技术研究发展计划项目(2015KJXX-71)、 陕西省自然科学基础研究计划项目(2013JM5010)、中国地质调查局青年地质英才计划(2013)联合资助。

收稿日期:2015-01-27;改回日期:2015-04-03

作者简介:李侃,男,1983年生,助理研究员,从事矿床地质及区域成矿规律研究; E-mail: likan1026@sina.com。

in No. We ore belt was formed at (239.7±0.8) Ma. Petrogeochemistry shows that the granodiorite is rich in K and poor in Na, with no strong negative Eu anomalies (δ Eu=0.68-1.06), and is enriched in Rb, Th, U, K, but depleted in Nb, P, Ti, thus belonging probably to I-type granite series. The orthoclase granite is characterized by high SiO₂, high alkali, low TFeO, MgO, CaO, P₂O₅ and TiO₂, strong negative Eu anomalies (δ Eu 0.08-0.26), enrichment of Rb, Th, U, K, and depletion of P, Ti, Ba, Sr, belonging probably to highly fractionated I-type granite series. Both of them were formed at the post-collision stage. Variable Hf isotopic compositions of zircon indicate that it experienced magma mixing, which provided large quantities of ore- forming meterials for large- scale polymetallic mineralization.

Key words: granitoids; geochronology; geochemistry; Hf isotopes; Hutouya; East Kunlun Mountains

About the first author: LI Kan, male, born in 1983, master, assistant researcher, engages in the study of geology of ore deposits and regional metallogenic regularity; E-mail: likan1026@sina.com.

东昆仑造山带是中央造山系的组成部分,其位 于青藏高原北部、柴达木盆地西南缘,属古亚洲构 造域与特提斯构造域结合部位,经历了复杂的地质 构造演化历史,构造-岩浆作用强烈,中酸性侵入岩 类广泛发育,构成一条近东西向展布的巨大花岗岩 带。早古生代和晚古生代至早中生代是主要的岩 浆作用时期,尤其后者是本区最为完整的岩浆构造 作用旋回[1-4]。巨量花岗岩不仅记录了东昆仑造山 带构造演化历史,也与区域铁、铜、金、铅锌、钨锡等 多金属成矿密切相关。祁漫塔格位于东昆仑造山 带的西段,近些年来,集中发现了一大批与中酸性 岩浆侵入活动有关的金属矿床(尕林格、野马泉、它 温查汗、四角羊一牛苦头、卡而却卡、虎头崖等),显 示了良好地找矿潜力,引起众多学者关注。虎头崖 铅锌多金属矿是该区较为典型的矽卡岩型矿床之 一,前人对部分岩体开展了年代学研究工作并探讨 了其形成背景[5-7],但矿区各矿带岩体类型不一,无 法确定这些岩体是否形成于同一时代,并目已有数 据缺乏Hf同位素制约。本文选择虎头崖矿区V矿 带、咖矿带与成矿关系密切的花岗岩为研究对象, 对其开展年代学、岩石地球化学及锆石Hf同位素研 究,以此来探讨其形成时代、构造背景、源区性质及 与成矿的关系,进而为东昆仑构造演化及区域成矿 规律提供基础资料。

1 地质背景

1.1 矿区地质背景

虎头崖铅锌矿床位于青海省祁漫塔格地区,大 地构造位置上处于东昆仑西段北昆仑(祁漫塔格) 岩浆弧带¹⁸¹,其南部以黑山—那陵郭勒断裂为界与 中昆仑微陆块相邻,北部以昆北断裂带为界与柴达

木陆块相邻(图1-a)。

矿区地层属柴达木地层区的柴达木南缘分区, 出露的地层由老到新为:蓟县系狼牙山组(Jxl)浅变 质岩系碳酸盐岩和碎屑岩,主要呈近东西向分布于 矿区南部;奥陶-志留系滩涧山群(O-ST)中浅变 质岩系,岩性主要为陆源碎屑岩、中基性火山岩、碳 酸盐岩等,主要分布于矿区中部东、西两侧,近东西 向展布,地层出露厚度约1600m;下石炭统大干沟 组(C₁dg)碎屑岩、含生物碎屑碳酸盐岩,呈条带状分 布于调查区的中部,与南部狼牙山组(Jxl)及北部滩 间山群(O-ST)均呈断层接触,总体呈近东西向展 布,倾向北,倾角50°~70°,出露厚度600~1000 m,岩 石普遍发生碎裂现象;上石炭统缔敖苏组(C2d)含生 物碎屑碳酸盐岩,主要分布于矿区中部及北部,总 体走向东西向,南部与滩间山群(O-ST)地层呈角 度不整合或断层接触;中生界上三叠统鄂拉山组 (T₃e)陆相中酸性火山岩,分布于矿区北西侧,岩性主 要有晶屑凝灰岩、流纹质含角砾凝灰岩、流纹质玻屑 晶屑角砾熔凝灰岩等,地层北倾,倾角47°~62°,南部 与上石炭统缔敖苏组(C2d)呈断层接触。山麓地带及 河床等广泛发育的第四系(Q)松散堆积物。

矿区内褶皱、断裂等构造发育,褶皱构造以轴 向近东西向背斜构造为主,断裂以东西向为主,断 层破碎带是矿体赋存的有利部位。

矿区侵入岩分布较广,主要出露于矿区中部, 呈岩株状产出,以中酸性侵入岩类为主,岩性为钾 长花岗岩、二长花岗岩、花岗闪长岩等,其中迎庆沟 地区钾长花岗岩中普遍可见暗色微粒包体。岩体 侵入于狼牙山组、滩涧山群、大干沟组及缔敖苏组 等不同时代地层中,接触带附近围岩蚀变强烈,普 遍发育砂卡岩化,伴随强烈地多金属成矿作用。此

质

图1 区域构造简图(a)及虎头崖矿区地质矿产图(b)(a 图据文献[8]修改;b 图据文献[6]修改) 1一第四系;2一上三叠统鄂拉山组;3一上石炭统缔敖苏组;4一下石炭统大干沟组;5一奥陶一志留系滩间山群;6一蓟县系狼牙山组; 7一二长花岗岩;8一钾长花岗岩;9一花岗闪长岩;10一闪长岩;11一花岗斑岩脉;12一辉绿岩脉;13一砂卡岩化带;14一断层;15一采样位置 Fig.1 Regional tectonic sketch map (a) and geological map of the Hutouya Pb-Zn polymetallic ore deposit (b) 1-Quaternary; 2-Upper Triassic Elashan Formation; 3-Upper Carboniferous Di'aosu Formation; 4-Lower Carboniferous Dagangou Formation; 5-Ordovician-Silurian Tanjianshan Group; 6-Langyashan Formation of Jixian System; 7-Mozonitic granite; 8-Moyite; 9-Granodiorite; 10-Diorite; 11-Granite-porphyry; 12-Diabase vein; 13-Skarn ore belt; 14-Fault; 15-Sampling location

外,矿区南部有闪长岩小面积出露,主要侵入于狼 牙山组中,同时见少量辉绿岩脉(图1-b)。

1.2 矿床地质

矿区矿化规模较大,矿体数量众多,目前共划 分为9条多金属矿带(图1-b),50余条矿体。矿体 主要产于中酸性侵入岩体与碳酸盐岩地层接触之 内外接触带及断层破碎带中,呈层状、似层状、透镜 状产出,矿石金属元素组合复杂,随距离岩体距离 不同矿石矿物组合有所差异。岩体与奥陶一志留 系滩间山群、下石炭统大干沟组、上石炭统缔敖苏 组的接触带形成砂卡岩型铁多金属矿体,矿石矿物 主要为磁铁矿、锡石、方铅矿、闪锌矿及黄铁矿等 (Ⅰ、Ⅱ、Ⅲ、Ⅲ、Ⅳ、Ⅳ矿带),而在断层破碎带中矿化类 型以方铅矿化、闪锌矿化、黄铜矿化、辉钼矿化等为 主(Ⅳ、Ⅴ、Ⅵ、Ⅶ矿带)。脉石矿物主要为透辉石、 阳起石、透闪石、石榴子石、方解石、石英等。围岩 蚀变发育,主要有硅化、绿泥石化、绿帘石化等,具 有较典型砂卡岩化特征。

2 采样位置及岩石学特征

花岗闪长岩样品取自V号矿带北侧,侵入于上 石炭统缔敖苏组浅灰色大理岩、白云质灰岩中,接 触带发育砂卡岩型铜铅锌多金属矿体。矿体地表 主要为网脉状斑铜矿、浸染状方铅矿、闪锌矿及孔 雀石等。取样位置:37°05′16″N,91°36′00″E。岩石 呈浅肉红色,块状构造,似斑状结构。斑晶主要由 斜长石、碱性长石、石英等组成,斜长石含量(约 15%)略高于碱性长石(约10%),石英含量约5%;斜 长石斑晶多产生不同程度的次生蚀变,被绢云母、 帘石和少量方解石交代,蚀变轻者可见斜长石斑晶 或环带结构;碱性长石斑晶种属为正长石,呈板状 或粒状,晶体有轻微次生蚀变,多为泥化。基质中 石英含量增高至20%,斜长石与碱性长石含量约 50%。基质中石英常呈显晶包含有碱性长石小晶 体,形成显微包含结构,斜长石常为细小的粒状晶 体与石英、碱性长石相间分布。

正长花岗岩样品来自100号矿带ZK1501中矿体 底部,侵入于晚石炭世缔敖苏组(C2d)中,与成矿关 系密切。岩石呈肉红色、块状构造,不等粒结构。 矿物成分:斜长石25%,钾长石44%,石英26%,黑云 母2%,金属矿物2%,褐帘石<1%,榍石少量。钾长 石多为条纹长石,晶体形态不规则,粒径大小不等, 可从0.8~7 mm。斜长石呈粒状,粒径小于钾长石。 长石晶体中有泥化现象。

3 分析方法

主量元素、稀土元素、微量元素分析在西安地 质矿产研究所实验测试中心完成,其中主量元素采 用X荧光光谱(XRF)进行分析,分析精度优于1%; 稀土和微量元素利用SX-2型电感耦合等离子质谱 仪(ICP-MS)进行测定,分析精度优于5%~10%。

锆石的CL图像在西北大学大陆动力学国家重 点实验室电子探针仪加载的阴极发光仪上完成。 LA-MC-ICP-MS 锆石 U-Pb定年测试分析在中国 地质科学院矿产资源研究所MC-ICP-MS实验室完 成,定年分析仪器为Finnigan Neptune型MC-ICP-MS 及与之配套的 Newwave UP 213 激光剥蚀系 统。激光剥蚀所用斑束直径为25 μm,以He 为载 气。对锆石标准的定年精度和准确度在1%(2s)左 右,锆石 U-Pb定年以锆石 GJ-1为外标,U、Th含量 以锆石 M127(U: 923×10⁻⁶; Th: 439×10⁻⁶; Th/U: 0.475)¹⁹为外标进行校正。测试过程中在每测定5~ 7个样品前后重复测定2个锆石 GJ-1对样品进行校 正,并测量一个锆石 Plesovice,观察仪器的状态以 保证测试的精确度。数据处理采用 ICPMSDataCal 程序^[10],锆石年龄谐和图用 Isoplot 3.0程序获得。详 细实验测试过程可参见侯可军等^[11]。样品分析过程 中, Plesovice 标样作为未知样品的分析结果为 (337.2±2.0) Ma(n=12, 2σ),对应的年龄推荐值为 (337.13±0.37) Ma(2σ)^[9],两者在误差范围内完全一 致。

锆石 Hf同位素测试也是在中国地质科学院矿 产资源研究所国土资源部成矿作用与资源评价重 点实验室 Neptune 多接收等离子质谱和 Newwave UP213 紫外激光剥蚀系统(LA-MC-ICP-MS)上进 行的,实验过程中采用 He 作为剥蚀物质载气,剥蚀 直径采用 55 μm,测定时使用锆石国际标样 GJ-1 作 为参考物质,分析点与 U-Pb 定年分析点为同一位 置。相关仪器运行条件及详细分析流程见侯可军 等^[12]。分析过程中锆石标准 GJ-1 的¹⁷⁶Hf/¹⁷⁷Hf 测试 加权平均值为(0.281993 ± 15)(2SD, n=21),与文献 报道值^[12-13]在误差范围内完全一致。

4 测试结果

4.1 主量元素

样品的主、微量元素分析结果见表1。花岗闪 长岩SiO₂含量为66.72%~71.30%,全碱(Na₂O+K₂O) 含量5.70%~6.71%,岩石富钾贫钠,K₂O/Na₂O为 2.02~2.88,在SiO₂-K₂O图解中投入高钾钙碱性-钾 玄岩系列中(图2-a);TiO₂较低,含量为0.27%~ 0.29%,A/CNK值为0.95~1.10,为准铝质-弱过铝质 (图2-b);里特曼指数为1.15~1.79。正长花岗岩 SiO₂含量较高(75.84%~76.48%),全碱(Na₂O+K₂O) 含量高(5.70%~6.71%),Na₂O/Na₂O为1.09~1.32,在 SiO₂-K₂O图解中投入高钾钙碱性系列中(图2-a); 含有较低的MgO(0.09%~0.12%)、CaO(1.13%~ 1.58%)、P₂O₅(0.01%)及TiO₂(0.07%~0.08%);A/CNK 值为0.96~0.99,属准铝质(图2-b);里特曼指数为 1.80~1.90。

4.2 稀土及微量元素

虎头崖铅锌多金属矿区花岗闪长岩及正长花 岗岩稀土及微量元素分析结果见表2。花岗闪长岩 稀土元素总量不高,ΣREE为127.59×10⁻⁶~152.46× 10⁻⁶, LREE/HREE为9.32~10.01, La_N/Yb_N为10.14~

岩性	样号	SiO ₂	${\rm TiO}_2$	Al_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO
花岗闪长岩	HTN-01	66.72	0.28	13.93	0.46	3.01	0.27	0.99	3.64
	HT11-23	71.30	0.27	14.18	0.81	1.68	0.12	0.78	3.13
正长花岗岩	HT11-24	70.72	0.29	14.74	0.04	1.63	0.05	0.93	2.98
	HT11-26	75.84	0.07	12.53	1.11	0.45	0.12	0.11	1.17
	HT11-29	76.48	0.08	12.73	0.42	0.40	0.02	0.09	1.13
	HT11-30	76.35	0.08	12.62	0.15	0.34	0.01	0.12	1.58
岩性	样号	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	Total	K ₂ O/Na ₂ O	FeO*	A/CNK
花岗闪长岩	HTN-01	1.70	4.81	0.08	2.18	98.07	2.83	3.42	0.95
	HT11-23	1.86	3.84	0.08	2.09	100.14	2.06	2.41	1.10
	HT11-24	1.73	4.98	0.07	1.77	99.93	2.88	1.67	1.08
正长花岗岩	HT11-26	3.76	4.08	0.01	0.75	100.00	1.09	1.45	0.98
	HT11-29	3.61	4.49	0.01	0.54	100.00	1.24	0.78	0.99
	HT11-30	3.34	4.40	0.01	0.99	99.99	1.32	0.47	0.96

11.56,轻稀土较重稀土明显富集。配分曲线呈轻稀 土明显右倾、重稀土平坦的特征(图3-a),具较弱的负 Eu异常,δEu为0.68~1.06。花岗闪长岩稀土总量比 花岗闪长岩稍高,ΣREE为112.54×10⁻⁶~230.91×10⁻⁶, LREE/HREE为3.83~5.45,La_N/Yb_N为2.78~4.75,轻 稀土较重稀土富集,配分曲线同样显示轻稀土明显 右倾、重稀土平坦的特征,但负Eu明显(图3-a), δEu为0.08~0.26,可能指示了岩浆经历了较强地斜 长石分离结晶作用。 微量元素组成上(图3-b),花岗闪长岩富集Rb、 Th、U、K等大离子亲石元素,明显亏损Nb、P、Ti等 元素;正长花岗岩微量元素同样富集Rb、Th、U、K 等大离子亲石元素,P、Ti等高场强元素亏损更加明 显,与花岗闪长岩不同的是其明显亏损Ba、Sr元素, 可能与斜长石分离结晶作用有关。

4.3 锆石年代学

根据锆石阴极发光图像和镜下特征,选择晶形 完整、颗粒较大的锆石颗粒进行锆石U-Pb同位素

		7	表2 虎头	崖花岗	闪长岩	、正长	花岗岩	微量疗	ī素分	析结果	(10-6)				
	Table 2 C	omposit	tions of r	are ele	ments o	of the g	ranodi	orite/	adam	ellite g	ranite	in Hu	touya	(10 ⁻⁶))	
岩性	样号	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
花岗闪长岩	HTN-01	28.60	53.10	5.67	19.30	3.47	0.73	2.98	0.47	2.91	0.61	1.71	0.30	1.92	0.32	18.20
	HT11-23	24.60	47.60	5.07	18.20	3.30	1.10	2.95	0.46	2.70	0.60	1.72	0.26	1.74	0.29	17.00
	HT11-24	31.60	57.40	6.02	21.50	3.81	0.83	3.32	0.52	3.08	0.68	1.94	0.29	1.96	0.31	19.20
正长花岗岩	HT11-26	28.10	62.50	7.75	26.70	6.05	0.17	6.55	1.00	7.06	1.38	3.67	0.61	4.28	0.66	41.70
	HT11-29	33.90	73.00	9.10	32.00	7.26	0.24	7.10	1.06	8.04	1.61	4.12	0.70	5.12	0.76	46.90
	HT11-30	13.70	29.40	3.65	13.20	3.24	0.29	3.44	0.59	4.43	0.91	2.59	0.48	3.53	0.59	32.50
岩性	样号	ΣREE	LREE HREE	$\frac{La_N}{Yb_N}$	δEu	δCe	Rb	Ва	Tu	U	Та	Nb	Sr	Zr	Hf	Ga
花岗闪长岩	HTN-01	140.29	9.88	10.68	0.68	0.96	243	794	20.8	8.09	1.54	9.12	242	146	4.22	15.1
	HT11-23	127.59	9.32	10.14	1.06	0.99	168	2420	17.6	7.38	1.46	9.18	199	112	3.8	16
	HT11-24	152.46	10.01	11.56	0.70	0.95	291	1150	22.4	9.33	1.49	8.73	309	94.3	3.35	16.5
正长花岗岩	HT11-26	198.18	5.21	4.71	0.08	1.02	251	119	32.2	10.6	2.08	20.3	115	81.5	3.24	19.1
	HT11-29	230.91	5.45	4.75	0.10	1.00	286	161	39.3	13.6	3.31	27	133	104	4.63	20.3
	HT11-30	112.54	3.83	2.78	0.26	1.00	275	293	21.2	8.71	3.46	21.9	173	66.1	3.06	16.8

图 3 花岗闪长岩、正长花岗岩稀土配分图(a)及微量元素蛛网图(b)(标准化值据文献[16]) Fig.3 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams (b) of the granodiorite/ orthoclase granite (normalization values after reference [16])

组成分析。

花岗闪长岩(HTN-01)锆石晶体粗大,晶型以 长柱及短柱状为主,自形程度高,具明显的震荡环 带结构(图4)。Th/U比值为0.33~0.73,平均0.50,具 有岩浆结晶锆石的特征。测试共获取有效数据26 个(表3),集中分布于谐和线附近(图5-a),表明这 些锆石几乎没有U或Pb的丢失和加入,年龄可信度 高。样品²⁰⁶Pb/²³⁸U表观年龄为(222.0±1.3)Ma~ (227.5±1.2) Ma, 加权平均年龄为(224.3±0.6) Ma (MSWD=1.9)(图5-b),代表了花岗闪长岩的形成 年龄。正长花岗岩(HT11-28)锆石以短柱状为主, Th/U比值为0.15~1.18,平均0.56,具震荡环带结构, 属岩浆结晶锆石。测试获取有效数据17个(表3), 集中分布于谐和线附近(图5-c),²⁰⁶Pb/²³⁸U表观年龄 为(238.0±2.0) Ma~(242.9±2.0) Ma, 加权平均年龄为 (239.7±0.8) Ma(MSWD=1.2)(图5-d),代表了正长

图4 花岗闪长岩及正长花岗岩锆石阴极发光图像和²⁰⁶Pb/²³⁸U年龄(Ma)

花岗岩的形成年龄。

4.4 Hf同位素

在紧邻年龄分析点的部位又进行了锆石原位 Hf同位素测试,分析结果见表4。

花岗闪长岩共获得有效测试点 24个, 锆石¹⁷⁶Hf/ ¹⁷⁷Hf为0.282542~0.282664, 平均0.282598; ε_{Hf}(0)为 -8.1~-3.8, 平均为-6.2; 按照加权平均年龄计算, ε_{Hf}(t) 为-3.33~0.80, 平均为-1.49; 二阶段模式年龄*T*_{2DM}为 1207~1470 Ma, 平均为1352 Ma。正长花岗岩的共 获得有效测试点 16个, 锆石¹⁷⁶Hf/¹⁷⁷Hf为0.282574~ 0.282688, 平均0.282619; ε_{Hf}(0)为-7.0~-3.0, 平均 为-5.4; 按照加权平均年龄计算, ε_{Hf}(t)为-1.87~ 1.83, 平均为-0.46, *T*_{2DM}为1153~1388 Ma, 平均为 1299 Ma。

5 讨 论

5.1 岩体年龄

由于与成矿作用关系密切,前人对虎头崖矿床 不同矿带花岗岩已经开展过一些测年工作,积累了 一批岩体年龄数据。刘云华等^[5]获得矿区西段景忍 地区正长花岗岩 SHRIMP 锆石 U-Pb 年龄为(204± 2.6)Ma;丰成友等⁶⁰获得矿区中部 I 矿带和 II 矿带 中间花岗闪长岩 LA-ICP-MS 锆石 U-Pb 年龄为 (235.4±1.8)Ma, II 矿区南侧正长花岗岩 SHRIMP 锆 石 U-Pb 年龄为(219.2±1.4)Ma;张爱奎等⁷⁷获得 VI 矿带钻孔中正长花岗岩 LA-ICP-MS 锆石 U-Pb 年 龄为(217.5±1.1)Ma。本文选择虎头崖矿区 V 矿带 外围花岗闪长岩和 WI号矿带矿体下部正长花岗岩 进行 LA-ICP-MS 锆石 U-Pb测试,得到花岗闪长岩 加权平均年龄为(224.3±0.6)Ma, WI号矿带矿体下部 正长花岗岩加权平均年龄为(239.7±0.8)Ma,分别代 表了岩体形成年龄,二者属于中一晚三叠世,与前 人所获花岗岩年龄基本一致,证明印支期是矿区主 要的中酸性岩浆活动期。

5.2 花岗岩成因分类

花岗闪长岩样品中无碱性暗色矿物及强过铝 矿物,岩石地球化学上SiO₂含量不高(66.72%~ 71.30%),全碱(Na₂O+K₂O)含量中等,A/CNK≤1(平 均1.04),稀土总量较低(127.59×10⁻⁶~152.46×10⁻⁶) 且无明显负Eu异常,过渡元素Sr、Ba相对含量较

Fig.4 CL images and age of ²⁰⁶Pb/²³⁸U of zircons of the granodiorite/adamellite granite (circles are the positions of laser spots)

			Table	e 3 LA-I	表3 虎 [CP-MS	头崖花岗 U-Pb di	ə岩锆石] ata and a	LA-ICP.	-MS U- of the gr:	-Pb 测试 劲 anitic roo	数据和结 ks in the	i果 5 Hutouy:	a depo	sit					
1 41.485	Pb	²³² Th	²³⁸ U	²⁰⁷ Pb/	/ ²⁰⁶ Pb	²⁰⁷ Pb,	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁸ Pb/	²³² Th	²⁰⁷ Pb/ ²⁰⁶	₽₽,	²⁰⁷ Pb/ ²³⁵ U		²⁰⁶ Pb/ ²³⁸ U		²⁰⁸ Pb/ ²³² 7	4 4
测试员		10-6		比值	1 δ	比值	1 δ	比值	1 δ	比值	18	年龄/Ma	18	年龄/Ma	18	F龄/Ma	18	F龄/Ma	1 δ
花岗闪长岩 (HI	(10-N1)																		
HTN-01-1	13.02755	62.63803	190.81200	0.05212	0.00066	0.25300	0.00347	0.03521	0.00015	0.00514	0.00085	300.1	29.6	229.0	2.8	223.1	0.9	103.7	17.0
HTN-01-2	34.39040	193.61868	370.14016	0.05330	0.00061	0.25770	0.00310	0.03510	0.00015	0.00385	0.00052	342.7	23.1	232.8	2.5	222.4	6.0	77.6	10.5
HTN-01-3	37.56047	155.97385	336.71127	0.05352	0.00050	0.26440	0.00253	0.03586	0.00016	0.00410	0.00052	350.1	20.4	238.2	2.0	227.1	1.0	82.7	10.4
HTN-01-4	16.30980	141.90497	326.96988	0.05308	0.00037	0.25920	0.00198	0.03543	0.00014	0.00357	0.00043	331.5	14.8	234.0	1.6	224.4	6.0	72.1	8.6
HTN-01-5	22.93703	121.14495	245.77836	0.05309	0.00064	0.26131	0.00356	0.03572	0.00020	0.00437	0.00048	331.5	30.6	235.7	2.9	226.3	1.3	88.1	9.7
HTN-01-6	23.72276	233.81498	321.11327	0.05161	0.00034	0.25066	0.00176	0.03524	0.00013	0.00344	0.00032	333.4	14.8	227.1	1.4	223.3	0.8	69.5	6.4
HTN-01-7	26.06965	233.32989	383.64335	0.05206	0.00032	0.25212	0.00147	0.03517	0.00013	0.00341	0.00028	287.1	14.8	228.3	1.2	222.8	0.8	68.7	5.6
HTN-01-8	20.83045	75.37033	189.93806	0.05269	0.00077	0.25825	0.00387	0.03558	0.00015	0.00467	0.00050	316.7	33.3	233.3	3.1	225.4	0.9	94.2	10.1
HTN-01-9	32.58839	258.52137	600.53908	0.05177	0.00023	0.25159	0.00127	0.03527	0.00014	0.00364	0.00025	276.0	11.1	227.9	1.0	223.5	0.9	73.5	5.0
HTN-01-10	34.28859	361.30413	565.86664	0.05257	0.00027	0.25729	0.00128	0.03556	0.00016	0.00359	0.00021	309.3	11.1	232.5	1.0	225.2	1.0	72.4	4.3
HTN-01-11	33.26008	350.16289	554.60847	0.05208	0.00028	0.25217	0.00183	0.03513	0.00018	0.00342	0.00017	287.1	13.0	228.3	1.5	222.6	П	0.69	3.5
HTN-01-12	55.75806	524.69586	1031.24539	0.05333	0.00016	0.26189	0.00212	0.03562	0.00027	0.00309	0.00016	342.7	2.8	236.2	1.7	225.6	1.7	62.3	3.1
HTN-01-13	43.81151	345.81222	669.93553	0.05364	0.00024	0.26535	0.00143	0.03593	0.00019	0.00384	0.00018	366.7	9.3	239.0	1.1	227.5	1.2	77.5	3.7
HTN-01-14	21.64954	310.51480	523.52811	0.05159	0.00028	0.25138	0.00257	0.03535	0.00032	0.00127	0.00014	333.4	13.0	227.7	2.1	223.9	2.0	25.7	2.9
HTN-01-15	37.97553	536.94088	1085.57711	0.05226	0.00021	0.25485	0.00151	0.03541	0.00021	0.00129	0.00015	298.2	9.3	230.5	1.2	224.3	1.3	26.1	3.1
HTN-01-16	20.80708	167.06568	496.37380	0.05360	0.00045	0.26408	0.00193	0.03584	0.00019	0.00149	0.00021	353.8	13.9	238.0	1.5	227.0	1.2	30.0	4.3
HTN-01-17	17.91077	179.90872	432.81868	0.05336	0.00045	0.26106	0.00208	0.03559	0.00020	0.00144	0.00024	342.7	20.4	235.5	1.7	225.4	1.2	29.1	4.7
HTN-01-18	17.22262	209.01256	569.33232	0.05135	0.00025	0.24986	0.00150	0.03530	0.00017	0.00132	0.00024	257.5	38.9	226.5	1.2	223.7	1.1	26.7	4.8
HTN-01-19	19.26045	268.26106	423.25613	0.05278	0.00043	0.25805	0.00220	0.03555	0.00025	0.00112	0.00023	320.4	18.5	233.1	1.8	225.2	1.5	22.6	4.7
HTN-01-20	15.83623	169.25089	508.78704	0.05279	0.00047	0.25810	0.00275	0.03555	0.00030	0.00140	0.00024	320.4	20.4	233.1	2.2	225.2	1.9	28.2	4.9
HTN-01-21	22.98295	312.14126	514.29301	0.05271	0.00034	0.25614	0.00214	0.03530	0.00025	0.00121	0.00019	316.7	14.8	231.6	1.7	223.6	1.6	24.4	3.8

第42卷第3期 李侃等:东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征

637

http://geochina.cgs.gov.cn 中国地质, 2015, 42(3)

									中	1		玉		地		厉	贡									
展3	Γh	18		4.4	4.4	4.4	5.6	3.9		4.3	3.5	2.8	4.2	4.1	6.8	3.0	4.6	4.3	4.5	3.4	6.9	3.5	5.0	2.5	6.6	3.8
续考	²⁰⁸ Pb/ ²³² 7	F蓉/Ma		29.1	31.7	32.5	34.1	28.5		88.5	65.8	67.2	61.8	64.3	67.7	59.4	62.0	72.1	55.2	48.8	72.6	49.3	46.8	25.5	31.0	14.7
	5	18		1.8	1.6	1.3	2.2	1.1		2.2	1.8	2.0	4.9	1.2	1.2	0.8	0.7	1.4	2.4	2.2	2.2	2.1	1.6	2.0	1.8	1.7
	²⁰⁶ Pb/ ²³⁸ l	F龄/Ma		224.1	224.0	222.0	224.2	223.4		241.3	240.2	242.9	242.3	241.6	239.3	239.3	238.0	241.5	242.3	238.3	239.9	238.7	242.1	238.0	238.2	240.5
	n	18		1.6	1.9	4.0	2.4	3.2		2.3	2.2	2.0	5.3	1.6	2.2	1.1	1.4	1.7	2.6	2.6	4.0	2.4	2.2	2.2	2.5	2.1
	²⁰⁷ Pb/ ²³⁵	年龄/Ma		225.9	232.4	221.9	224.3	224.4		262.2	248.5	251.5	261.9	242.0	243.8	253.0	237.9	255.5	255.1	251.1	245.4	252.6	254.0	247.7	241.5	249.3
	Pb	18		20.4	20.4	56.5	23.1	32.4		2.8	8.3	7.4	20.4	11.1	-13.9	9.3	8.3	13.0	13.0	8.3	31.5	11.1	16.7	1.11	20.4	13.0
	²⁰⁷ Pb/ ²⁰⁶	F谐/Ma		257.5	324.1	239.0	227.8	242.7		453.8	327.8	331.5	442.6	255.6	287.1	383.4	235.3	387.1	376.0	368.6	300.1	383.4	364.9	338.9	272.3	331.5
	² Th	18		0.00022	0.00022	0.00022	0.00028	0.00019		0.00021	0.00017	0.00014	0.00021	0.00020	0.00034	0.00015	0.00023	0.00021	0.00022	0.00017	0.00034	0.00017	0.00025	0.00012	0.00033	0.00019
	²⁰⁸ Pb/ ²³	比值		.00144	00157.	.00161	.00169	.00141		0.00439	0.00326	0.00333	0.00306	0.00318	0.00336	0.00295	0.00307	0.00357	0.00273	0.00242	0.00360	0.00244	0.00232	0.00126	0.00153	0.00073
	u U	18		0.00030 0	0.00026 0	0.00020 0	0.00035 0	0.00018 0		0.00035 (0.00029	0.00032	0.00079	0.00020	0.00019	0.00013 (0.00011	0.00022	0.00038	0.00036	0.00035	0.00034 (0.00025	0.00032	0.00029	0.00027
	²⁰⁶ Pb/ ²²	比值		.03537	.03536	.03504	.03539	.03526		0.03815	0.03796	0.03840	0.03831	0.03818	0.03781	0.03782	0.03761	0.03817	0.03830	0.03766	0.03792	0.03772	0.03827	0.03760	0.03765	0.03801
	D,	18		0.00203 0	0.00232 0	0.00493 0	0.00298 0	0.00389 0		0.00292 (0.00276 (0.00257 (0.00673 (0.00198 (0.00279 (0.00137 (0.00173 (0.00216 (0.00330 (0.00333 (0.00500	0.00299 (0.00279 (0.00281 (0.00312 (0.00267 (
	²⁰⁷ Pb/ ²³⁵	比值		24922 (25714 (24420 (24721 (24731 (.29459	.27731	.28104	.29427	.26908	.27140	.28291	.26401	.28609	.28562	.28050	.27336	.28247	.28421	.27633	.26853	.27834
		δ		047 0.	0.46 0.	0.114 0.	0.44	0.81 0.		0018 0	0030 0	0018 0	0051 0	0028 0	0040 0	0020 0	0029 0	0032 0	0029 0	0030 0	0071 0	0025 0	0043 0	0022 0	0046 0	0032 0
	Pb/ ²⁰⁶ Pb	-)0.0(0.00	0.00	0.0	0.00		1 0.0	7 0.0	8 0.0	1 0.0	2 0.0	3 0.0	6 0.0	2 0.0	8 0.0	8 0.0	8 0.0	4 0.0	7 0.0	0.0 6	4 0.0	3 0.0	9 0.0
	207	比值		0.05140	0.05292	0.05097	0.05074	0.05101		0.0560	0.0529	0.0530	0.0557	0.0511	0.0520	0.0542	0.0509	0.0543	0.0540	0.0539	0.0521	0.0542	0.0538	0.0532	0.0517	0.0530
	D ²³⁸ U			392.82609	415.83823	481.34429	247.20493	713.51327		1353.905569	228.5643829	1407.049932	335.3590823	402.6345652	248.5408041	467.1030536	242.4449292	323.1347629	931.0794186	1107.261886	498.24496	861.2444763	248.7304303	2282.726524	269.0312509	765.2566249
	²³² Th	10^{-6}		82.90401	87.87861	206.90642	41.63140	\$57.74798		35.7220537	39.1117536	11.980995	97.0257608	32.9640912	73.1647414	17.7625251	71.9511201	92.0035237	08.8724531	89.8271823	4.27521072	21.5649004	40.7632601	07.0866573	19.5106308	45.5631647
	Pb		(-01)	16.30257 1	18.31425 1	18.15265 2	7.10536 1	29.64577 3	-28)	255.7607038 3.	139.660469 2	594.9901831 9	248.3817286 3	235.3892489 3.	116.7602772 1	263.2780691 4	103.3472254 1	125.4858459 1	117.342596 2	140.5787702 2	33.57807878 7	102.1700582 2	68.24108791 1	274.3068693 6	52.23963681 1	206.9125926 4
	고, 주, 治房	N N N	花岗闪长岩(HTN	HTN-01-22	HTN-01-23	HTN-01-24	HTN-01-25	HTN-01-26	正长花岗岩(HT11-	HT11-28-1	HT11-28-2	HT11-28-3	HT11-28-4	HT11-28-5	HT11-28-6	HT11-28-7	HT11-28-8	HT11-28-9	HT11-28-10	HT11-28-11	HT11-28-12	HT11-28-13	HT11-28-14	HT11-28-15	HT11-28-16	HT11-28-17

http://geochina.cgs.gov.cn 中国地质, 2015, 42(3)

2015年

图 5 锆石 U-Pb 谐和图(a,c)及加权平均年龄(b,d) Fig.5 Zircon U-Pb concordia diagrams and weighted average of ²⁰⁶Pb/²³⁸U age

高,显示出I型花岗岩的特点^[20]。

正长花岗岩具高硅、富碱、低铁镁、贫钙磷钛的 特征,FeO'/MgO值高(3.96~13.17),样品中无角闪 石,岩石分异指数(DI)达91.2~93.3,表明岩石经历了 较高程度的分异演化。样品中无董青石、石榴子石 及白云母等强过铝矿物;A/CNK<1,CIPW标准矿物 计算中并不出现刚玉分子;具很低的P₂O₅含量,而 在准铝质到弱过铝质岩浆中,磷灰石的溶解度很 低,并在岩浆分异过程中随SiO₂的增加而降低^[21],这 些特征与S型花岗岩有显著区别。而样品中无碱性 暗色矿物出现,FeO*<1.00%(平均0.90%),Rb含量> 270×10⁻⁶(平均271×10⁻⁶),Zr+Nb+Ce+Y<350×10⁻⁶ (平均202×10⁻⁶),Ba、Sr、Ga含量均相对较低与A型 花岗岩相区别,而符合高分异型I型花岗岩的特 征^[22]。其富集Th、U等大离子亲石元素,明显亏损 Nb、P、Ti等元素,较强的负Eu异常等特点,均可与 冈底斯东部察隅^[23]及华南佛冈^[24]高分异I型花岗岩 对比。综上认为正长花岗岩属高分异I型花岗岩。

5.3 构造背景

在 Pearce 花岗岩构造环境判别图解^[25]上,花岗 闪长岩落入火山弧和同碰撞花岗岩区(图6-a),正 长花岗岩则落入板内花岗岩区(图6-b)。对于高分 异 I 型花岗岩而言,由于其与A型花岗岩在地球化 学特征的相似性,造成常用构造环境判别图解失 效^[26],在 Pearce 花岗岩构造判别图中通常落于板内 花岗岩区域^[27]。花岗闪长岩与正长花岗岩在 Rb/30 -Hf-3×Ta图解^[28]中均落入同碰撞-碰撞后花岗岩区 (图6-c),同时落入 Pearce 于 Rb-(Y+Nb)图解中划 出的后碰撞构造环境区域^[29](图6-d)。

东昆仑造山带是一个多期叠加的多旋回造山带^[30-31],前人根据沉积构造、火成岩构造组合等方面证据,认为东昆仑造山带华力西一印支造山期为一

	Table 4 Z	Lircon in si	tu Hf isoto _j	pic data of	the graniti	c rocks in	the Hutou	ya deposit	
御時寺 宇	¹⁷⁶ Lu	/ ¹⁷⁷ Hf	¹⁷⁶ Hf	7 ¹⁷⁷ Hf	左	40	- (0)	- (1)	T DAa
砌风息	比值	2 σ	比值	2 σ	-µ-ы₹/Ivia	/8	$\epsilon_{\rm Hf}(0)$	$\varepsilon_{\mathrm{Hf}}(t)$	I _{2DM} /IVIa
花岗闪长岩	(HTN-01)								
HTN-01-1	0.000786	0.000004	0.282587	0.000018	224.3	-0.98	-6.5	-1.73	1368
HTN-01-2	0.001387	0.000015	0.282560	0.000020	224.3	-0.96	-7.5	-2.78	1434
HTN-01-3	0.001866	0.000033	0.282550	0.000024	224.3	-0.94	-7.9	-3.20	1461
HTN-01-4	0.000825	0.000009	0.282542	0.000020	224.3	-0.98	-8.1	-3.33	1470
HTN-01-5	0.001493	0.000080	0.282586	0.000022	224.3	-0.96	-6.6	-1.87	1377
HTN-01-6	0.002640	0.000088	0.282583	0.000030	224.3	-0.92	-6.7	-2.15	1394
HTN-01-7	0.001525	0.000009	0.282569	0.000024	224.3	-0.95	-7.2	-2.48	1415
HTN-01-9	0.002759	0.000022	0.282578	0.000031	224.3	-0.92	-6.9	-2.34	1407
HTN-01-10	0.001904	0.000013	0.282584	0.000017	224.3	-0.94	-6.6	-2.00	1385
HTN-01-11	0.001543	0.000021	0.282615	0.000018	224.3	-0.95	-5.6	-0.85	1312
HTN-01-12	0.001654	0.000030	0.282594	0.000016	224.3	-0.95	-6.3	-1.61	1360
HTN-01-13	0.001717	0.000042	0.282597	0.000017	224.3	-0.95	-6.2	-1.52	1354
HTN-01-14	0.001061	0.000011	0.282548	0.000023	224.3	-0.97	-7.9	-3.15	1458
HTN-01-15	0.002516	0.000034	0.282656	0.000023	224.3	-0.92	-4.1	0.45	1229
HTN-01-16	0.001764	0.000007	0.282618	0.000021	224.3	-0.95	-5.4	-0.78	1307
HTN-01-17	0.001602	0.000022	0.282640	0.000021	224.3	-0.95	-4.7	0.02	1256
HTN-01-18	0.001723	0.000010	0.282575	0.000019	224.3	-0.95	-7.0	-2.30	1404
HTN-01-19	0.001778	0.000017	0.282597	0.000020	224.3	-0.95	-6.2	-1.53	1355
HTN-01-20	0.001655	0.000025	0.282650	0.000017	224.3	-0.95	-4.3	0.37	1234
HTN-01-21	0.002082	0.000028	0.282664	0.000022	224.3	-0.94	-3.8	0.80	1207
HTN-01-23	0.000660	0.000007	0.282593	0.000018	224.3	-0.98	-6.3	-1.50	1353
HTN-01-24	0.001971	0.000056	0.282604	0.000017	224.3	-0.95	-5.6	-0.91	1316
HTN-01-25	0.000975	0.000016	0.282638	0.000019	224.3	-0.94	-5.9	-1.31	1341
HTN-01-26	0.001784	0.000024	0.282640	0.000015	224.3	-0.97	-4.7	0.04	1255
正长花岗岩	(HT11–28)								
HT11-28-1	0.002401	0.000025	0.282584	0.000021	239.7	-0.93	-6.7	-1.77	1382
HT11–28–2	0.001568	0.000018	0.282615	0.000023	239.7	-0.95	-5.6	-0.54	1304
HT11-28-3	0.001787	0.000015	0.282611	0.000019	239.7	-0.95	-5.7	-0.72	1315
HT11–28–4	0.000730	0.000019	0.282597	0.000019	239.7	-0.98	-6.2	-1.04	1335
HT11–28–5	0.001257	0.000007	0.282604	0.000019	239.7	-0.96	-6.0	-0.89	1326
HT11–28–6	0.001503	0.000029	0.282625	0.000020	239.7	-0.95	-5.2	-0.18	1281
HT11–28–7	0.002011	0.000029	0.282587	0.000022	239.7	-0.94	-6.5	-1.58	1370
HT11–28–8	0.001377	0.000010	0.282676	0.000019	239.7	-0.96	-3.4	1.64	1165
HT11–28–9	0.001679	0.000026	0.282595	0.000023	239.7	-0.95	-6.3	-1.26	1350
HT11-28-10	0.003963	0.000047	0.282657	0.000015	239.7	-0.88	-4.1	0.56	1233
HT11–28–12	0.001716	0.000024	0.282598	0.000014	239.7	-0.95	-6.2	-1.16	1343
HT11–28–13	0.003006	0.000015	0.282688	0.000019	239.7	-0.91	-3.0	1.83	1153
HT11–28–14	0.001610	0.000017	0.282612	0.000020	239.7	-0.95	-5.7	-0.66	1312
HT11-28-15	0.004446	0.000040	0.282679	0.000021	239.7	-0.87	-3.3	1.27	1188
HT11–28–16	0.000888	0.000015	0.282574	0.000021	239.7	-0.97	-7.0	-1.87	1388
HT11–28–17	0.001311	0.000022	0.282601	0.000018	239.7	-0.96	-6.1	-0.99	1333

表4 虎头崖地区锆石原位 Hf同位素测试结果 Fable 4 Zircon in situ Hf isotonic data of the granitic rocks in the Hutouva depos

$$\begin{split} & \nexists : \epsilon_{\rm Hf}(t) = 10000 \times \{ [(^{^{176}}{\rm Hf})^{^{177}}{\rm Hf})_{\rm s} - (^{^{176}}{\rm Lu})^{^{177}}{\rm Hf}_{\rm s} \times (e\lambda^t - 1)] / [(^{^{176}}{\rm Hf})^{^{177}}{\rm Hf})_{\rm CHUR,0} - (^{^{176}}{\rm Lu})^{^{177}}{\rm Hf})_{\rm CHUR} \times (e\lambda^t - 1)] - 1 \} ; \end{split}$$

 $T_{\rm DM} = 1/\lambda \ln \{1 + [(^{176} \text{Hf}/^{177} \text{Hf})_{\text{S}} - (^{176} \text{Hf}/^{177} \text{Hf})_{\text{DM}}] / [(^{176} \text{Hf}/^{177} \text{Hf})_{\text{S}} - (^{176} \text{Lu}/^{177} \text{Hf})_{\text{DM}}] \}; T_{2\text{DM}} = T_{\rm DM} - (T_{\rm DM} - t) \times [(f_{\approx} - f_{\rm DM})],$

 $f_{Lu/H} = ({}^{176}Lu/{}^{177}Hf)_{s}/({}^{176}Lu/{}^{177}Hf)_{CHUR} - 1; 其中: \lambda = 1.867 \times 10^{-11}/a(据文献[17]); ({}^{176}Lu/{}^{177}Hf)_{s} 和({}^{176}Hf/{}^{177}Hf)_{s} 为样品测量值, ({}^{176}Lu/{}^{177}Hf)_{CHUR} = 0.0332, ({}^{176}Hf/{}^{177}Hf)_{CHUR,0} = 0.2822772(据文献[18]); ({}^{176}Lu/{}^{177}Hf)_{DM} = 0.0384, ({}^{176}Hf/{}^{177}Hf)_{DM} = 0.28325(B文献[19]); ({}^{176}Lu/{}^{177}Hf)_{\mp 50\%} = 0.015; f_{a} = [({}^{176}Lu/{}^{177}Hf)_{\mp 50\%} / ({}^{176}Lu/{}^{177}Hf)_{CHUR}] - 1, f_{s} = f_{LuHr}; f_{DM} = [({}^{176}Lu/{}^{177}Hf)_{CHUR}] - 1.$

10

图6 虎头崖矿床花岗岩构造环境判别图 Fig.6 Granite tectonic discrimination diagrams of the Hutouva deposit

3×Ta

个完整的造山旋回[32-34]。晚泥盆世陆相磨拉石的发 育及区域性不整合的存在,标志着早古生代造山旋 回的结束及华力西—印支造山旋回的开始^[34]:泥盆 纪一二叠纪东昆仑总体处于拉张的大陆动力学背 景下,形成了裂陷海盆和有限洋盆^[35],发育浅海相碎 屑岩-碳酸盐岩建造(大干沟组、迪奥苏组、打柴沟 组):板块俯冲自中一晚石炭世开始,中一晚二叠世 到早三叠世为主要的俯冲造山期,广泛发育与安底 斯活动大陆边缘弧火成岩类相似的弧火山岩类和 弧花岗岩类^[34];中一晚三叠世为碰撞一后碰撞阶 段。据已有研究表明,后碰撞岩浆作用高钾钙碱性 岩浆最为发育¹³⁰,多数造山带的后碰撞花岗岩类以 中一高钾钙碱性I型花岗岩为主,有些花岗岩类具 有更高的钾含量,属于钾玄岩系列^[37]。虎头崖V矿 带花岗闪长岩为高钾钙碱性---钾玄岩系列, III 矿带 正长花岗岩为高钾钙碱性系列,综合其时代信息, 应该形成于碰撞造山背景下的后碰撞阶段。

WPG

100

10

0.1

0.01

Hf

0.1

с

Γa/10⁻⁶ 1 a

5.4 源区性质

锆石具有较高的Hf含量,而Lu的含量又极低,

因此,锆石在形成后基本没有明显的放射性成因Hf 的积累,所测定的1%Hf/17Hf比值基本代表了其形成 时体系的Hf同位素组成。同时锆石较高的结晶温 度、极强的稳定性使其较少受后期变质事件及风化 作用的影响,因此锆石成为目前探讨地壳演化和示 踪岩石源区的重要工具[38-41]。本次测试锆石分析点 的¹⁷⁶Hf/¹⁷⁷Hf比值较小(大多数小于0.002),表明错 石形成后放射性成因Hf积累十分有限。花岗闪长 岩锆石二阶段模式年龄 T2DM 为 1207~1470 Ma,平均 1352 Ma; 正长花岗岩 T2DM 为 1153~1388 Ma, 平均 1299 Ma,均远大干其结晶年龄,表明其主要由古老 地壳物质重熔形成;T2DM较为接近(图7-a),暗示其 有共同的物质来源。花岗闪长岩与正长花岗岩锆 石 $\varepsilon_{\rm H}(t)$ 变化范围均较大(图7-b),Hf同位素的不均 一性可能指示了更具放射成因 Hf 的幔源和有较少 放射成因Hf的壳源这两种端元之间的相互作 用[42]。东昆仑造山带存在地幔源岩浆底侵活动[43-50], 碰撞一后碰撞背景下幔源岩浆底底侵诱发古老陆 壳重熔,岩体二阶段模式年龄可能是幔源物质的加

100

(Y+Nb) / 10⁻⁶

641

1000

图 7 虎头崖矿区岩体锆石 $\epsilon_{\text{Hf}}(t)$ 分布直方图(a)和 $\epsilon_{\text{Hf}}(t)$ 一锆石年龄相关图(b) Fig.7 Histogram of $\epsilon_{\text{Hf}}(t)$ for zircon (a) and $\epsilon_{\text{Hf}}(t)$ versus U-Pb age diagram for zircon (b) of granitic rock in the Hutouya deposit

入并与中酸性岩浆混合的结果。

5.5 岩浆作用与成矿

祁漫塔格地区中一晚三叠世中酸性侵入岩体 广泛发育,与成矿作用有关的有约格鲁花岗闪长 岩^[45](242 Ma),乌兰乌珠儿花岗斑岩^[51](215.1 Ma), 鸭子沟钾长花岗斑岩^[52](224.0 Ma),玛兴大坂二长 花岗岩^[53](218 Ma),尕林格石英二长闪长岩和石英 二长岩^[48](228.3 Ma、234.4 Ma),野马泉南带石英二 长闪长岩、正长花岗岩^[49](219 Ma、213 Ma)、它温查 汉花岗岩^[50](227.7 Ma),长山钾长花岗岩^[50](219.9 Ma)等,说明该区在印支期中一晚三叠世不仅曾发 生大量地花岗质岩浆侵入活动,而且还产生强烈的 多金属成矿作用。

虎头崖矿床 V 矿带西民采硐内砂卡岩型铜钼 多金属矿石 Re-Os 等时线年龄(225±4.0)Ma, UI 矿 带西段砂卡岩型铜钼矿石 Re-Os 等时线年龄 (230.1±4.7)Ma^[6],与岩体形成时代基本相同,成岩 成矿作用均发生在中一晚三叠世。矿体主要产于 中酸性侵入岩体与地层接触部位及断层破碎带中, 电子探针数据显示闪锌矿中 Zn/Cd<300(135~198), 方铅矿中 Ag 含量为33×10⁻⁶~302×10⁻⁶,具有岩浆热 液成因特征;流体包裹体测试表明成矿流体以岩浆 水为主,并有少量大气降水的混入^[54];矿石组合、脉 石矿物及围岩蚀变等均显示矽卡岩型矿床的特 点。矿石 S、Pb 同位素数据显示虎头崖矿区成矿物 质主要来源于深源岩浆区,Pb 为上地壳和地幔混合 来源^[54-55];碰撞-后碰撞背景下幔源岩浆底侵并发生

6 结 论

(1)通过LA-ICP-MS锆石U-Pb同位素年龄测定,虎头崖V矿带外围花岗闪长岩加权平均年龄为 (224.3±0.6) Ma, WI号矿带矿体下部正长花岗岩加 权平均年龄为(239.7±0.8) Ma,岩体形成时代为中 一晚三叠世。

(2)花岗闪长岩为I型花岗岩,正长花岗岩具高 分异I型花岗岩特征,二者均形成于东昆仑造山带 晚古生代—早中生代构造旋构造旋回的碰撞-后碰 撞造山阶段。Hf同位素数据显示岩浆可能经历了 壳幔岩浆混合作用。

(3)矿床成因类型为矽卡岩型矿床,成矿物质 主要来源于中酸性岩浆活动。东昆仑广泛分布的 中酸性岩体说明本区有巨大的找矿潜力。

致谢:野外工作期间得到了青海省第三地质矿 产勘查院工作人员的大力帮助;薄片鉴定中得到了 西安地质调查中心叶芳研究员的有益指导;样品测 试得到了中国地质科学院侯可军副研究员的积极 帮助;论文投稿后审稿人提出了宝贵修改意见,在 此一并致以衷心的感谢。

参考文献(References):

[1] 郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末一中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352.

Guo Zhengfu, Deng Jinfu, Xu Zhiqin, et al. Late palaeozoic– Mesozoic intracontinental orogenic process and intermedate– acidic igneous rocks from the Eastern Kunlun Mountains of Northwestern China[J]. Geology in China, 1998, 12(3): 344–352 (in Chinese with English abstract).

- [2] 刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类 Pb-Sr-Nd-O同位素特征[J]. 地球学报, 2003, 24(6): 584-588.
 Liu Chengdong, Mo Xuanxue, Luo Zhaohua, et al. Pb-Sr-Nd-O isotope characteristics of granitoids in East Kunlun orogenic belt[J]. Acta Geoscientica Sinica, 2003, 24(6): 584-588 (in Chinese with English abstract).
- [3] 刘成东,周肃,莫宣学,等.东昆仑造山带后碰撞花岗岩岩石地球 化学和⁴⁰Ar/⁶⁹Ar同位素年代学约束[J]. 华东地质学院学报,2003, 26(4):301-305.

Liu Chengdong, Zhou Su, Mo Xuanxue, et al. Constraints of Petrochemistry and ⁴⁰Ar/³⁹Ar aging of post– collision granites in Eastern Kunlun Orogenic Belt[J]. Journal of East China Geological Institute, 2003, 26(4): 301–305 (in Chinese with English abstract).

- [4] 刘成东, 莫宣学, 罗照华, 等. 东昆仑壳--幔岩浆混合作用:来自锆 石 SHRIMP 年代学的证据[J]. 科学通报, 2004, 47(6): 596-602. Liu Chengdong, Mo Xuanxue, Luo Zhaohua, et al. Mixing events between the crust- and mantle- derived magmas in Eastern Kunlun: Evidence from zircon SHRIMP II chronology[J]. Chinese Science Bulletin, 2004, 49(8): 828-834 (in Chinese).
- [5] 刘云华, 莫宣学, 喻学惠, 等. 东昆仑野马泉地区景忍花岗岩锆石 SHRIMP U-Pb 定年及其地质意义[J]. 岩石学报, 2006, 22(10): 2457-2463.

Liu Yunhua, Mo Xuanxue, Yu Xuehui, et al. Zircon SHEIMP U– Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance[J]. Acta Petrologica Sinica, 2006, 22(10): 2457–2463 (in Chinese with English abstract).

[6] 丰成友, 王雪萍, 舒晓峰, 等. 青海祁漫塔格虎头崖铅锌多金属矿 区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1806-1816.

Feng Chengyou, Wang Xueping, Shu Xiaofeng, et al. Isotopic chronology of the Hutouya skarn lead- zinc polymetallic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6): 1806–1816 (in Chinese with English abstract).

- [7] 张爱奎, 刘光莲, 丰成友, 等. 青海省虎头崖多金属矿床地球化学特征及成矿-控矿因素研究[J]. 矿床地质, 2013, 21(1): 94-108. Zhang Aikui, Liu Guanglian, Feng Chengyou, et al. Geochemical characteristics and ore-controlling factors of Hutouya polymetallic deposit, Qinghai Province[J]. Mineral Deposits, 2013, 21(1): 94-108 (in Chinese with English abstract).
- [8] 李荣社, 计文化, 杨永成. 昆仑山及邻区地质[M]. 北京: 地质出版 社, 2008: 1-400.

Li Rongshe, Ji Wenhua, Yang Yongcheng. The Geology in Kunlun and its Adjacent Region [M]. Beijing: Geological Publishing House, 2008: 1-400 (in Chinese).

- [9] Slama J, Kosler J, Condon D J, et al. Plesovice zircon: A new natural reference material for U– Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1–35.
- [10] Liu YS, Gao S, Hu ZC,et al. Continental and oceanic crust recycling- induced melt- peridotite interactions in the Trans-North China Orogen: U- Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537–571.
- [11] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS 锆石微区原位 U-Pb 定年技术[J]. 矿床地质, 2009, 28(4): 481-492.
 Hou Kejun, Li Yanhe, Tian Yourong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492 (in Chinese with English abstract).
- [12] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS 锆石 Hf 同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595-2604.
 Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604 (in Chinese with English abstract).
- [13] Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ- red zircon standard by laser ablation[J]. Geochim et Cosmochim. Acta, 2006, 70(18 s): A158.
- [14] Castro A, Ptaino Douce A E, Corretge L C, et al. Origin of peraluminous granites and granodiortes, Iberian massif, Spain: an experimental test of granite petrogenesis[J]. Contributions to Mineralogy and Petrology, 1999, 135: 255–273.
- [15] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,1989, 101: 635–643.
- [16] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in the Ocean Basins. London: Geological Soc. Spec. Pub.,1989, 42(1): 313–345.
- [17] 吴锁平, 王梅英, 威开静. A 型花岗岩研究现状及其评述[J]. 岩石 矿物学杂志, 2007, 26(1): 57-66.
 Wu Suoping, Wang Meiying, Qi Kaijing. Present situation of researches on A-type granites: A review[J]. Acta Petrologica et Mineralogica, 2007, 26(1): 57-66 (in Chinese with English abstract).
- [18] Söderlund U, Patchett P J, Vervoort J D, et al. The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.
- [19] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243–258.
- [20] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope

质

composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

- [21] Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism[J]. Geochim Cosmochim Acta, 1994, 58: 4127–4145.
- [22] 王强, 赵振华, 熊小林. 桐柏一大别造山带燕山晚期 A 型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, 19(4): 297-306.
 Wang Qiang, Zhao Zhenhua, Xiong Xiaolin. The ascertainment of Late-Yanshanian A- type granite in Tongbai-Dabie orogenic belt[J]. Acta Petrologica et Mineralogica, 2000, 19(4): 297-306 (in Chinese with English abstract).
- [23] 朱弟成, 莫宣学, 王立全, 等. 西藏冈底斯东部察隅高分异1型花 岗岩的成因: 锆石 U-Pb 年代学、地球化学和 Sr-Nd-Hf 同位素 约束[J]. 中国科学(D辑), 2009, 39(7): 833-848.
 Zhu Dicheng, Mo Xuanxue, Wang Liquan, et al. Pterogenesis of highly fractionated I-type granites in the Chayu area of Eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Science in China(Series D), 2009, 39(7): 833-848 (in Chinese with English abstract).
- [24] Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A- type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flatslab?[J]. Lithos, 2007, 96: 186–204.
- [25] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J petrol, 1984, 25: 56–983.
- [26] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480.
 Jia Xiaohui, Wang Qiang, Tang Gongjian. A- type granites: research progress and implications[J]. Geotectonica et Metalloginia, 2009, 33(3): 465-480 (in Chinese with English abstract).
- [27] Whalen J B, CurrieK L, Chappe II B W. A- type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Mineral. Petrol., 1987, 95: 407–419.
- [28] Brown G C, Thorpe R S, Webb P C. The geochemical characteristics of granitoids in contrasting arc and comments on magma arcs[J]. J. Geol. Soc. London, 1984, 141: 411–426.
- [29] Pearce J A. Source and settings of granitic rocks[J]. Episodes, 1996, 19: 120-125.
- [30] 任继舜, 姜春发, 张正坤, 等. 中国大地构造及其演化[M]. 北京: 科学出版社,1980: 1-124.
 Ren Jishun, Jiang Chunfa, Zhang Zhengkun, et al. Tectonics and Evolution of China[M]. Beijing: Science Press, 1980: 1-124 (in Chinese with English abstract).
- [31] 殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学, 1998, 23(5): 437-442.

Yin Hongfu, Zhang Kexin. Evolution and characteristics of the Central Orogenic Belt[J]. Earth Science, 23(5): 437–442 (in Chinese with English abstract).

[32] 罗照华, 邓晋福, 曹永清, 等. 青海省东昆仑地区晚古生代一早中生代火山活动与区域构造演化[J]. 现代地质, 1999, 13(1): 51-56.

Luo Zhaohua, Deng Jinfu, Cao Yongqing, et al. On late Paleozoic– early Mesozoic volcanism and regional tectonic evolution of Eastern Kunlun, Qinghai peovince[J]. Geoscience, 1999,13(1): 51–56 (in Chinese with English abstract).

- [33] 袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花 岗岩记录[J]. 地质论评, 2000, 46(2): 203-211.
 Yuan Wanming, Mo Xuanxue, Yu Xuehui, et al. The record of indosinian tectonic setting from the granotoid of Eastern Kunlun Mountains[J]. Geological Review, 2000, 46(2): 203-211 (in Chinese with English abstract).
- [34] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.
 Mo Xuanxue, Luo Zhaohua, Deng Jinfu, et al. Granitoids and crustal growth in the East-Kunlun orogenic belt[J]. Geological Journal of China Universities, 2007, 13(3): 403-414 (in Chinese with English abstract).
- [35] 校培喜, 高晓峰, 胡云绪, 等. 阿尔金一东昆仑西段成矿带地质 背景研究[M]. 北京: 地质出版社, 2014: 1-261.

Xiao Peixi, Gao Xiaofeng, Hu Yunxu, et al. The Geology Background Research in Western Segment of Altun–East Kunlun Metallogenic Belt[M]. Beijing: Geological Publishing House, 2014: 1–261 (in Chinese).

- [36] Liegeois G P, Navez J, Hertongen J, et al. Contrasting origin of post- collisional high- K calc- alkaline and shoshonitic versus alkaline and peralkaline granitoids: the use of sliding normalization[J]. Lithos, 1998, 45: 1–28.
- [37] 韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂 性[J]. 地学前缘, 2007, 14(3): 64-72.
 Han Baofu. Diverse postt-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3): 64-72(in Chinese with English abstract).
- [38] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.
 Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf isotopic systematic and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220(in Chinese with English abstract).
- [39] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399: 252–255.
- [40] Amelin Y, Lee D C, Halliday A N. Early–Middle Archean crustal evolution deduced from Lu– Hf and U– Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 2000, 64: 4205–4225.

- [41] Griffin W L, Wang X, Jackson S E, et al. Zircon geochemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61: 237–269.
- [42] Bolhar R, Weaver S D, Whitehouse M J, et al. Source and evolution of arc magmas inferred from coupled O and Hf isotope systematic of plutonic zircons from the Cretaceous Separation Point Suite(New Zealand)[J]. Earth Planet Sci., 2008, 268: 312– 324.
- [43] 罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292-297.
 Luo Zhaohua, Ke Shan, Cao Yongqing, et al. Late Indosinian mantle- derived magmatism in the East Kunlun [J]. Geological Bulletin of China, 2002, 21(6): 292-297 (in Chinese with English abstract).
- [44] 刘红涛. 祁漫塔格陆相火山岩: 塔里木陆块南缘印支期活动大陆边缘的岩石学证据[J]. 岩石学报, 2001, 17(3): 337-351.
 Liu Hongtao. Qimantag terrestrial volcanics: petrologic evidence of active continental margin of Tarim Plate during late Indo-China epoch[J]. Acta Petrologica Sinica, 2001,17(3): 337-351 (in Chinese with English abstract).
- [45] 刘成东,张文秦,莫宣学,等.东昆仑约格鲁岩体暗色微粒包体特征及成因[J].地质通报,2002,21(11):739-744.
 Liu Chengdong, Zhang Wenqin, Mo Xuanxue, et al. Features and origin of mafic microgranular enclaves in the Yuegelu granite in the Eastern Kunlun[J]. Geological Bulletin of China, 2002, 21 (11): 739-744 (in Chinese with English abstract).
- [46] 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑造山带三叠纪岩浆混合成 因花岗岩的岩浆底侵作用机制[J]. 中国地质, 2005, 32(3): 386-395.

Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt [J]. Geology in China, 2005, 32(3): 386–395 (in Chinese with English abstract).

[47] 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的 SHRIMP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1): 25-32.

Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica et Mineralogica, 2006, 25(1): 25–32(in Chinese with English abstract).

[48] 高永宝, 李文渊, 马晓光, 等. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版), 2012, 48(2): 36-47.

Gao Yongbao, Li Wenyuan, Ma Xiaoguang, et al. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, Eastern Kunlun[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(2): 36–47 (in Chinese with English abstract).

[49] 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体

年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647-1665.

Gao Yongbao, Li Wenyuan, Qian Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China [J]. Acta Petrologica Sinica, 2014, 30(6): 1647–1665 (in Chinese with English abstract).

- [50] 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩:年 代学、地球化学及成因意义[J]. 岩石学报, 2012, 28(2): 665-678.
 Feng Chengyou, Wang Song, Li Guochen, et al. Middle to late Triassic granitoids in the Qimantag area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28(2): 665-678 (in Chinese with English abstract).
- [51] 佘宏全, 张德全, 景向阳, 等. 青海省乌兰乌珠尔斑岩铜矿床地 质特征与成因[J]. 中国地质, 2007, 34(2): 306-314. She Hongquan, Zhang Dequan, Jing Xiangyang, et al. Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai[J]. Geology in China, 2007, 34(2): 306-314(in Chinese with English abstract).
- [52] 李世金, 孙丰月, 丰成友, 等. 青海东昆仑鸭子沟多金属矿的成 矿年代学研究[J]. 地质学报, 2008, 82(7): 949-955.
 Li Shijin, Sun Fengyue, Feng Chengyou, et al. Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province[J]. Acta Geologica Sinica, 2008, 82(7): 949-955(in Chinese with English abstract).
- [53] 吴祥珂, 孟繁聪, 许虹, 等. 青海祁漫塔格玛兴大坂晚三叠世花 岗岩年代学、地球化学及 Nd-Hf 同位素组成[J]. 岩石学报, 2011, 27(11): 3380-3394.

Wu Xiangke, Meng Fancong, Xu Hong, et al. Zircon U– Pb dating, geochemistry and Nd– Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the Eastern Kunlun [J]. Acta Petrologica Sinica, 2011, 27(11): 3380–3394 (in Chinese with English abstract).

[54] 高永宝, 李文渊, 李侃, 等. 青海祁漫塔格虎头崖铅锌矿床流体 包裹体、同位素地球化学及矿床成因[J]. 地质通报, 2013, 32 (10): 1631-1642.

Gao Yongbao, Li Wenyuan, Li Kan, et al. Fluid inclusions, isotopic geochemistry and genesis of the Hutouya Zn-Pb deposit in Qimantag, Qinghai Province[J]. Geological Bulletin of China, 2013, 32(10):1631–1642(in Chinese with English abstract).

[55] 马圣钞, 丰成友, 李国臣, 等. 青海虎头崖铜铅锌多金属矿床硫、 铅同位素组成及成因意义[J]. 地质与勘探, 2012, 48(2): 321-331.

Ma Shengchao, Feng Chengyou, Li Guochen, et al. Sulfur and lead isotope compositions of the Hutouya copper– lead– zinc polymetallic deposit in Qinghai Province and their genetic significance[J]. Geology and Exploration, 2012, 48(2): 321–331 (in Chinese with English abstract).