第 42 卷第 4 期	中 国 地 质	Vol.42, No.4
2015年8月	GEOLOGY IN CHINA	Aug. , 2015

陈丽丽, 程志国.内蒙古兴安盟杜尔基地区花岗岩岩石学及锆石U - Pb 年龄[J]. 中国地质, 2015, 42(4): 891-908. Chen Lili, Cheng Zhiguo. Petrology and zircon chronology of the Dorolj granite in Hinggan League, Inner Mongolia[J]. Geology in China, 2015, 42 (4): 891-908(in Chinese with English abstract).

内蒙古兴安盟杜尔基地区花岗岩岩石学 及锆石 U-Pb 年龄

陈丽丽 程志国

(中国地质大学地质过程与矿产资源国家重点实验室,北京100083)

提要:內蒙古兴安盟杜尔基地区花岗岩位于大兴安岭中南段,大地构造位置上处于古亚洲洋构造域、蒙古一鄂霍茨 克洋构造域和滨西太平洋构造域的叠加部位。该区域集中保存了大量与造山事件有关的构造和岩浆记录,是研究 大兴安岭地区造山过程、演化及后期造山作用叠加和改造的理想地区。杜尔基花岗岩主要由中细粒二长花岗岩、中 粗粒二长花岗岩、正长花岗岩、二长花岗斑岩组成。从主量元素上看,杜尔基地区花岗岩属于过铝质高钾钙碱性系 列,整体呈现高硅、高碱、过铝、低钙的特征。岩体中SiO₂含量大于72%,表现为高分异花岗岩的特征。黑云母是本 地区花岗岩中主要的暗色矿物,P₂O₅与SiO₂呈现负相关性,这些特征指示杜尔基地区花岗岩具有I型岩浆岩的特 点。本文采用了激光剥蚀电感耦合等离子质谱(LA-ICP-MS)技术,对杜尔基地区花岗岩中的锆石进行U-Pb同位 素测试。测试结果表明,位于杜尔基镇北侧中细粒二长花岗岩岩体的侵位年龄为(131.5±0.3) Ma;位于杜尔基镇中 部的正长花岗岩体岩的侵位年龄为(213±1) Ma,其中并含有一定量的(238±2) Ma的年龄信息,为捕掳锆石,表明在 正长花岗岩侵位之前可能还存在一期238 Ma的岩浆活动;位于杜尔基镇西侧的正长花岗岩侵位前存在一期较早的岩浆 活动。可将杜尔基地区花岗岩岩浆活动划分为3期:中晚三叠世(213 Ma),晚侏罗世(150 Ma),早白垩世(130 Ma)。杜尔基岩体所呈现的3期岩浆活动,均指示了一个拉张的构造背景,而缺少与俯冲相关的岩浆活动。从年龄 上看,杜尔基岩体总体缺少早侏罗纪的岩浆活动,因而与其周边的孟恩陶勒盖锌铅银矿具有成因上的联系的可能性 不大。

关 键 词:古亚洲洋构造域;大兴安岭;杜尔基花岗岩;"花岗岩海";锆石U-Pb年龄;LA-ICP-MS 中图分类号:P619.22⁺.2;P597⁺.3 **文献标志码:**A **文章编号**:1000-3657(2015)04-0891-18

Petrology and zircon chronology of the Dorolj granite in Hinggan League, Inner Mongolia

CHEN Li-li, CHENG Zhi-guo

(State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, Beijing 100083, China)

收稿日期:2014-12-25;改回日期:2015-04-17

基金项目:国家国际科技合作专项"中美环太平洋成矿带成矿规律对比与资源评价技术研究" (201110FA22460)资助。

作者简介:陈丽丽,女,1988年生,硕士生,地质工程专业;E-mail:08chenlili@163.com。

通讯作者:程志国,男,1987年生,博士生,岩浆岩石学专业;E-mail:cugbczg@163.com。

Abstract: Located in the southern part of the Da Hinggan Mountains of Inner Mongolia, Dorolj granite lies on the superimposition position between ancient Asian tectonic domain, Mongol-Okhotsk tectonic domain and West Pacific plate tectonic domain. The rocks have preserved large amounts of tectonic and magmatic signatures of two orogenic events, and hence Dorolj granite is an ideal object for studying the orogenic process, evolution and post-orogenic superimposition and transformation. Dorolj granite is composed of four units, i.e., medium-fine grained monzonitic granite, coarse-medium grained monzonitic granite, syenogranite, and medium-fine grained biotite-bearing monzonitic granite. Major elements show that Dorolj granite belongs to peraluminous high K calc-alkaline rock series, and is characterized by high silicon, high alkali, peraluminous nature and low calcium. The biotite is the main dark mineral, and P₂O₅ decreases with increasing SiO₂. These characteristics indicate that the Dorolj plutons belong to the I-type granite. The authors tried to probe into the petrology and chronology of the Dorolj granite using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results show that the medium-fine grained monzonitic granite located on the northern side has the emplacement age of (132 ± 0.3) Ma, whereas the syenogranite granite located in the middle part has the emplacement age of (213 ± 1) Ma with (238 ± 2) Ma zircon xenocrysts, indicating that there existed an early magma activity. In addition, the syenogranite located on the western side has the emplacement age of (131 ± 1) Ma with (150 ± 1) Ma zircon xenocrysts. Dorolj magmatic ages have a large span and can be divided into three ranges: (1) the late Triassic (213 Ma); (2) the late Jurassic (150 Ma); (3) Early Cretaceous (130 Ma). These three episodes of magma indicate an extensive environment without any subduction events. Based on the age data obtained by the authors, the Dorolj granites lack magmatism of Jurassic period. It is thus held that the Dorolj granites had nothing to do with the Mengentaolegai silver-polymetallic deposit.

Key words: Ancient Asian tectonic domain; Da Hinggan Mountains; Dorolj granite; zircon U-Pb age; LA-ICP-MS

About the first author: CHEN Li-li, famale, born in 1988, master, majors in geological enginneering; E-mail: 08chenlili@163.com. About the corresponding author: CHENG Zhi-guo, male, born in 1987, doctor, majors in igneous petrology; E-mail: cugbczg@163.com.

中国大兴安岭地区位于中亚造山带的东部,北 邻西伯利亚克拉通,南接华北克拉通(图1)^[1-2],其由 众多不同构造属性的地体拼合而成,期间伴随着显 著的地壳增生事件四部和多期次、多类型的成矿作 用16-71,产生了一系列的热液脉型铅锌银、斑岩型铜 钼、矽卡岩型铁、造山型金等矿床。因此,对大兴安 岭地区的研究具有极其重要的科学意义和经济意 义。大兴安岭地区先后受古亚洲洋、蒙古—鄂霍茨 克洋和太平洋三个构造体制在时间和空间上的叠 加与改造,在如此复杂的构造背景下,对不同时期 岩浆活动构造背景的探讨变得非常困难,这三大构 造的叠加作用时间及作用范围,是近年来的一个热 点。与此同时,大兴安岭地区存在着相当数量的岩浆 岩侵入体,其中大多数由花岗质岩石组成(图1)^[8-9],这 些花岗质岩石蕴含着大量的岩石圈结构、组成和演 化的信息,可以为研究本地区的构造演化提供很多 重要的约束[10-11]。

杜尔基地区花岗岩位于大兴安岭中南段,是本 地区出露面积较大的岩体之一(约190 km²)^[12]。由 于处在特殊的地理位置,杜尔基花岗岩体受到了三 大构造域的叠加作用,因此,对杜尔基花岗岩的深 入研究将有助于解决叠复区域构造转换这一问题。在之前的研究成果中,前人报道的该岩体的年龄变化范围从100~150 Ma不等^[12-14],对于其成岩年龄还存在着较大争议。这些不一致的年龄一方面是由于测试方法的局限性所致,另一方面,可能也表明杜尔基地区花岗岩岩体演化的复杂性,指示其可能存在着多期次的岩浆活动。众所周知,年代学格架的确定对讨论岩体成因、构造背景及构造-岩浆演化具有极其重要的意义^[9]。此外,杜尔基岩体还处在中国一个大型多金属矿集区(Au-Ag-Cu-Pb-Zn-Sn-Fe),基于此,本文试图通过LA-ICP-MS锆石测年对杜尔基花岗岩基中的不同岩性单元进行较精确的年龄测定,查明杜尔基花岗岩岩体的成岩年龄,理清本地区花岗岩的时空展布特征,从而为本区域构造演化和找矿方向提供约束。

1 地质背景

大兴安岭地区夹于西伯利亚板块与华北板块 之间,从南至北,该区可进一步被划分为松嫩地块、 兴安地块和额尔古纳地块,分布在这些板块之间的 主要断裂有德尔布干断裂、二连一贺根山断裂、西

图 1 中国东北部大地构造图 (据文献[15]修改) 1—索伦—贺根山缝合带;2—西拉木伦河断裂带;3—郑—庐断裂带;4—牡丹江断裂;5—敦—密断裂带 Fig.1 Tectonic map of Northeast China (modified after reference [15]) 1-Hegenshan-Solon suture;2-Xar Moron River fault;3-Tan-Lu fault;4-Mudangjiang fault;5-Dun-Mi fault

拉沐沦断裂、华北地台北缘断裂等。从构造单元上 来看,大兴安岭地区是古生代古亚洲洋构造域、中 生代蒙古一鄂霍茨克洋构造域和滨西太平洋构造 域强烈叠加的一部分。古亚洲洋在晚古生代沿西 拉木伦河—长春—延吉—线最终闭合,额尔古纳板 块北边的蒙古—鄂霍茨克洋在三叠纪开始发育并 于侏罗纪最终闭合,从侏罗纪至今大兴安岭地区一 直受到滨西太平洋构造域的影响^[16-17]。关于蒙古— 鄂霍茨克洋的俯冲极性还存在着争议,但是随着研 究的深入,越来越多的证据表明蒙古—鄂霍茨克洋 存在着南向俯冲^[18-19],这对于大兴安岭地区北部的 构造演化及找矿方向具有重要意义。 该区地层从元古宇到新生界均有分布,其中, 元古宇主要是一套变质岩,分布在各大陆亲缘性块 体中的前寒武纪变质岩基底中,古生界为一套海相 碎屑岩-碳酸盐岩和中基性一中酸性火山岩建造, 主要分布在中部地区,中生界以陆相沉积地层和火 山地层为主,广泛分布于全区,新生界发育大规模 的玄武岩,在中西部地区沿沟谷分布。另外,区内 还分布着大量的华力西期和燕山期侵入体,面积可 达200000 km²,素有"花岗岩海"之称^[20]。

内蒙古兴安盟杜尔基花岗岩位于大兴安岭中 南段,是东北地区银、铅、锌矿重要产地之一,距乌 兰浩特市西南约300 km。区内出露的地层主要有

图2 杜尔基地区花岗岩地质简图(据文献[21]修改) Fig.2 Geological sketch map of Dorolj area (modified after reference [21])

二叠纪片理化凝灰质砂岩,侏罗纪酸性岩及其凝灰 岩,第四纪砂砾岩及粘土。杜尔基花岗岩体东南侧 被敖兰敖日格岩体侵入,东侧被孟恩陶勒盖岩体侵 入,东南侧和西侧分布着中侏罗世火山岩和古生界 大石寨组(图2)。杜尔基花岗岩南侧与中侏罗统中 性火山岩呈较清楚的侵入接触,火山岩为粗面安山 岩,发生一定程度的蚀变,靠近岩体的安山岩中的 斜长石斑晶均发生绿帘石、绿泥石化。

本次研究以杜尔基镇为中心进行了野外调查, 包含杜尔基镇北部区域、吐列毛杜区域、毛杜营子 区域、新巴彦哈拉区域和杜尔基镇西部区域。杜尔 基地区花岗岩整体发生不同程度的蚀变,呈粘土 化、绿泥石化。在地貌上,杜尔基花岗岩地势西高 东低,岩体呈北窄南宽,面积约190 km²,主要岩性单 元为黑云母正长花岗岩、中细粒二长花岗岩、中粗 粒二长花岗岩、正长花岗岩及二长花岗斑岩(图 2)。花岗岩岩体有的部分呈高大山体,有的被第四 纪沉积物完全覆盖,露头断续出露,以至于野外接 触关系不易查明。杜尔基地区花岗岩明显受北东 向断裂构造的控制,有些岩性单元呈断层接触。而 且,岩体受后期构造改造明显,发育大量劈理。杜 尔基地区花岗岩被后期多种岩脉穿插,如辉绿岩岩 脉、花岗斑岩岩脉,岩脉走向为北东向(图3)。

2 岩相学

杜尔基花岗岩主要由中细粒二长花岗岩、中粗 粒二长花岗岩、正长花岗岩、二长花岗斑岩组成。 其中,中粗粒二长花岗岩手标本呈肉红色,中粗粒 结构,主要组成矿物为钾长石、斜长石、石英,次要 矿物为黑云母,副矿物为磁铁矿(图4-a、b)。钾长 石含量为35%~45%,粒度0.15 mm×0.08 mm~5 mm×3.5 mm,自形-半自形板状,黏土化,弱蚀变,可 见卡式双晶。斜长石含量约为30%~35%,粒度 0.1mm×0.08 mm~5.2 mm×4 mm,自形-半自形板 状、长条状,蚀变较严重,云母化、黏土化。石英含 量约为20%~25%,粒度0.08 mm~3.8 mm×2.5 mm, 半自形一他形。黑云母含量约为1%,粒度为 0.25 mm×0.35 mm~0.1 mm,片状,强多色 性,颜色为浅黄色至深棕色,平行消光。磁铁矿含 量约为1%,粒状,不透明,粒径为0.07 mm。

中细粒二长花岗岩手标本呈肉红色,中细粒似 斑状,块状构造,主要组成矿物为钾长石、斜长石、 石英,次要矿物为黑云母,副矿物为磁铁矿(图4c)。钾长石含量30%~40%,粒度0.2 mm×0.2 mm~ 0.5 mm×0.6 mm,自形、半自形,板状,可见格子双 晶,弱蚀变,发生粘土化。斜长石含量为30%~40%,

图 3 杜尔基地区花岗岩野外照片 a一斑状花岗岩;b—斑状花岗岩;c—石英斑晶;d—石英二长岩;e—二长花岗岩;f—花岗岩 Fig.3 Field photograph showing Dorolj granite a-Porphyritic granite;b-Porphyritic granite;c-Quartz phenocryst;d-Quartz monzonite;e-Monzonitic granite;f-Granite

质

中

粒度 0.2 mm×0.3 mm~0.5 mm×2 mm,可见聚片双 晶,自形-半自形板状、长条状,弱蚀变,黏土化。石 英含量约为 30%,粒度 0.07 mm~1 mm×3 mm,他形、 半自形。黑云母含量约为 2%,粒度 0.13 mm× 0.15 mm~0.27 mm×0.5 mm,片状,可见一组解理,弱 蚀变,呈深褐色异常干涉色。磁铁矿呈粒状,分布 于主要矿物之间,粒度大小为 0.07 mm。

正长花岗岩呈中粗粒结构,主要矿物为钾长石、斜长石、石英(图4-d、e)。钾长石含量为60%~70%,粒度0.24 mm~5.2 mm×7 mm,可见卡式双晶,粒度较大的颗粒包裹石英和斜长石,板状。石英含量为10%~15%,粒度0.08~0.8 mm,粒状。斜长石约含30%,广泛发育聚片双晶,粒度0.1 mm×0.12 mm~3.2 mm×8 mm。长石发生弱的黏土化。有些正长花岗岩中含有一定量的黑云母(>5%),为黑云母正长花岗岩(图4-f)。

3 样品及测试方法

本次研究采集了中细粒二长花岗岩、中粗粒二 长花岗岩、正长花岗岩样品用于岩石地球化学分析 和锆石U-Pb同位素研究。

主量元素分析在中国地质大学(北京)光谱实 验室完成。主量元素测试采用 Prodigy 仪器,功率 1.1 kW,冷却气 19 L/min,辅助气 0.3 L/min,载气 34PSI,试液提升量1.2 mL/min,温度为22℃,湿度为 25%。微量和稀土元素分析在湖北省测试中心实验 室完成。使用仪器为等离子直读光谱仪 (ICAP6300)、电感耦合等离子体质谱仪(X7),检测 温度25℃,检测湿度55%RH。

锆石U-Pb同位素分析在天津地质矿产研究所 同位素实验室完成,使用仪器为Neptune多接收电 感耦合等离子体质谱和193 nm激光取样系统(LA-MC-ICP-MS)。激光剥蚀的斑束为35 μm,能量密 度为13~14 J/cm²,频率为8~10 Hz,激光剥蚀物质以 He 为载气送入Neptune(LA-MC-ICP-MS)。

4 测试结果

4.1 主量元素

杜尔基花岗岩主量元素分析结果(表1)显示, 样品中氧化物含量为:SiO₂ 73.09%~77.26%,Al₂O₃ 12.13%~14.24%,CaO 0.37%~0.89%,TFe₂O₃ 0.46%~ 2.21%, P_2O_5 0.04%~0.21%, MnO 0.01%~0.04%, TiO₂ 0.04%~0.24%, MgO 0.07%~0.33%, Na₂O 3.01% ~4.19%, K₂O 4.34%~5.05%。K₂O > Na₂O, (Na₂O+ K₂O)为7.78%~8.74%, 里特曼指数(σ =(Na₂O+K₂O)²/ (SiO₂-43)变化范围为1.77~2.54, 属于钙碱性系 列。Na₂O/K₂O 为 0.60~0.92, 属高钾钙碱性系列。 Al₂O₃/(K₂O+Na₂O+CaO)>1, 为过铝质岩石。总体来 看, 岩石整体呈高硅、高钾、富钠、过铝等特征。在 SiO₂-P₂O₅图解上(图5), 大部分样品随着SiO₂的增 多, P₂O₅呈现降低的趋势。

将样品数据和前人数据¹¹²⁻¹⁴¹投图在SiO₂-K₂O 图解上,大部分点落在高钾钙碱性区域,只有少部 分样品落在钾玄岩系列;在A/NK-A/CNK图解上, 所有样品点落在了过铝质区域(图6)。

4.2 微量元素

样品稀土元素总量(ΣREE=31.26×10⁻⁶~95.17× 10⁻⁶),轻稀土元素含量(LREE=28.24×10⁻⁶~76.74× 10⁻⁶)、重稀土含量(HREE=3.02×10⁻⁶~18.43×10⁻⁶), 轻稀土元素相对富集(LREE/HREE=4.16~9.36)(表 1)。球粒陨石 REE标准化图解呈右倾型,具明显的 Eu负异常(δEu=0.02~0.20)、轻重稀土元素分馏较 明显((La/Yb)_N=2.32~9.87),重稀土元素分馏较差 ((Gd/Yb)_N=0.73~2.48)。

微量元素具高 Sr(14.97×10⁻⁶~683.8×10⁻⁶)、Rb (46.74×10⁻⁶~494.2×10⁻⁶)和低 Yb(0.34×10⁻⁶~3.71× 10⁻⁶)、Y(2.73×10⁻⁶~24.74×10⁻⁶(表1),高 Sr/Y=1.07~ 23.01和低 Rb/Sr=0.72~3.12比值。原始地幔标准化 蛛网图显示,所研究样品富集大离子亲石元素 (LILE)Rb、Ba、Cs和Sr(图7)。

4.3 锆石U-Pb年龄

中细粒二长花岗岩样品(TW03-1)中33颗锆石 U-Th-Pb同位素测试结果见表3。样品中的锆石多 呈长柱状,部分短柱状,CL阴极发光图像中有的颗粒 发育韵律环带,有的不发育,有的还有核。长柱状锆 石长120~150 µm,宽50~100 µm。椭圆状锆石最大 可达230 µm,最小亦有90 µm。锆石U含量为120× 10⁻⁶~3279×10⁻⁶,Pb含量变化为2×10⁻⁶~94×10⁻⁶。这 些锆石的谐和度较好(图8),其中,²⁰⁷Pb/²³⁵U年龄为 129~345 Ma,²⁰⁶Pb/²³⁸U年龄为130~225 Ma,锆石的 ²⁰⁶Pb/²³⁸U加权平均年龄为(131.3±0.3)Ma,MSWD= 0.3。该加权平均年龄代表岩体的侵位时代。

图4 杜尔基花岗岩镜下照片

a一中粗粒二长花岗岩,正交偏光;b—二长花岗斑岩,正交偏光;c—中细粒二长花岗岩,单偏光;d—正长花岗岩,单偏光;e—正长花岗岩,正交 偏光;f—黑云母正长花岗岩,单偏光;Kfs—钾长石;Pl—斜长石;Q—石英;Bi—黑云母;Ms—白云母

Fig.4 Photomicrographs of Dorolj rocks

a-Coarse-medium grained monzonitic granite, crossed nicols; b-Porphyritic granite, crossed nicols; c-Medium-fine grained monzonitic granite, plainlight; d-syenogranite, plainlight; e-Syenogranite, crossed nicols; f-Biotite-bearing monzonitic granite, plainlight; Kfs-k-kfeldspar; Pl-Plagioklase; Q-Quartz; Bi-Bioyite; Ms-Muscovite

2015年

表1 杜尔基地区花岗岩主量元素分析结果(%)、微量元素(10%) 分析结果

Table 1	Analyses of major elements (%) and trace elements of
	Dorolj granite (10 ⁻⁶)

	TW03-1	TW04-1	TW05-4	TW06-2	TW07-1
样品号	中细粒	中细粒			
	二长花岗岩	二长花岗岩	正长花岗岩	正长花岗岩	二长花岗岩
SiO ₂	77.26	76.85	73.92	73.09	73.28
TiO ₂	0.08	0.04	0.24	0.23	0.17
AI_2O_3 TE ₂ O	12.13	12.51	2.71	14.24	102
MnO	0.02	0.40	0.03	0.03	0.04
MgO	0.02	0.07	0.05	0.03	0.21
CaO	0.37	0.61	0.59	0.4	0.89
Na ₂ O	3 44	3 59	3.01	4 19	3.65
K ₂ O	4.34	4.59	5.05	4.55	4.95
P_2O_5	0.11	0.09	0.21	0.11	0.04
TOTAL	98.64	98.82	98.12	99.01	98.72
Li	3.18	26.2	0.07	5.15	6.1
Sc	2.41	2.75	1.28	2.87	1.92
Ga	19.37	16.55	12.83	18.81	13.65
Rb	494.2	251.8	160.66	238.4	114.98
Zr	83.5	159.4	73.3	219.7	174.8
Nb	8.9	6.25	4.77	7.6	4.57
Cd	0.114	0.042	0.114	0.032	0.044
Cs	9.52	16.42	1.76	4.07	3.43
HI	5.26	0.10	4.19	7.46	0.48
1a Dh	0.03	2.43	1.32	2.73	2.20
ru Th	7.03	19.33	5 33	29.94	14.99
I	5.4	5.18	3 29	3 34	2 48
Ba	30.3	259.3	115.7	248.6	481
Sr	14 97	62.82	59 52	51 27	182.9
La	6.83	4.62	14.25	13.76	11.8
Ce	23.2	15.53	36.68	30.98	27.96
Pr	2.18	1.39	4.4	3.5	3.11
Nd	8.13	5.35	16.9	12.66	11.4
Sm	2.36	1.25	4.15	2.73	2.46
Eu	0.04	0.1	0.35	0.47	0.29
Gd	1.87	1.01	3.58	2	2.13
Tb	0.39	0.17	0.75	0.37	0.4
Dy	2.64	0.85	5.05	2.2	2.68
Но	0.55	0.16	1.09	0.44	0.55
Er	1.65	0.4	3.17	1.26	1.72
Im	0.3	0.06	0.54	0.2	0.27
YD	2.11	0.34	5.71	1.55	1.91
Lu V	13.96	2 73	24 74	10.13	13.94

正长花岗岩(TW05-4)中锆石17颗个锆石U-Th-Pb分析数据见表4,共有两组同位素年龄,分别为 (213.0±0.7) Ma和(238.1±1.8) Ma(图9)。一组锆石的 ²⁰⁶Pb/²³⁸U年龄加权平均为(213.0±0.7)Ma(MSWD= 0.42, n=11), 11颗锆石多呈柱状,长40~140 µm,长宽 比为1.1~2.5。阴极发光图像中韵律环带明显;Pb含 量为1×10⁻⁶~110×10⁻⁶,U含量为29×10⁻⁶~2969×10⁻⁶, 这些锆石的207Pb/235U年龄为183~722Ma,206Pb/238U年 龄为186~222 Ma,位于谐和曲线之上目谐和度较 好。另一组锆石的²⁰⁶Pb/²³⁸U年龄加权平均为(238.1± 1.8)Ma(MSWD=1.7, n=6),6颗锆石呈柱状,长柱状 锆石长 80~150 µm,长宽比为 1.2~3.5。阴极发光图 像中韵律环带较为明显。锆石 Pb 含量为1×10⁻⁶~ 87×10⁻⁶,U含量为19×10⁻⁶~2295×10⁻⁶。这些锆石的 ²⁰⁷Pb/²³⁵U年龄为220~406 Ma, ²⁰⁶Pb/²³⁸U年龄为220~ 240 Ma, 位于谐和曲线之上且谐和度较好(图11)。 因此,正长花岗岩(TW05-4)的侵位年龄应该是 (213.0±0.7) Ma, 而(238.1±1.8) Ma可能是正长花岗 岩侵位时捕掳的另一次岩浆活动记录。

正长花岗岩(TW06-2)中50颗锆石U-Th-Pb 同位素测年结果见表4,有两组同位素年龄,分别是 (130.5±0.5)Ma和(150.2±0.4)Ma(图 12)。一组锆石 的²⁰⁶Pb/²³⁸U年龄加权平均为(130.5±0.5)Ma(MSWD= 3.3, n=29), 29颗锆石呈柱状, 长柱状锆石长 60~100 µm,长宽比为1~2。韵律环带明显。Pb含量为4×10⁻ 6~56×10-6,U含量为200×10-6~2718×10-6。这些锆石 的²⁰⁷Pb/²³⁵U年龄为129~132 Ma,²⁰⁶Pb/²³⁸U年龄为 128~133 Ma, 位于谐和曲线之上(图 13)。另一组错 石的²⁰⁶Pb/²³⁸U年龄加权平均为(150.2±0.4)Ma, (MSWD=0.96, n=21), 21颗锆石呈柱状状,长柱状锆 石长60~120 μm,长宽比为1~2。韵律环带发育。锆 石Pb含量为4×10⁻⁶~56×10⁻⁶,U含量为168×10⁻⁶~ 2393×10-6。这些锆石的207Pb/235U年龄为148~151 Ma,206Pb/238U年龄为148~152 Ma,位于谐和曲线之上 (图 14)。正长花岗岩(TW06-2)的侵位年龄为 (130.5±0.5)Ma, 而(150.2±0.4)Ma的锆石很可能是正 长花岗岩侵位时捕掳的更早一期岩浆活动的记录。

讨论 5

5.1 岩体侵位时代

前人对该区花岗岩进行过同位素测年,1:20万

图5 杜尔基地区花岗岩SiO₂-P₂O₅投图 Fig.5 SiO₂-P₂O₅ diagram of Dorolj granite

图 6 主量元素投图(SiO₂-K₂O引自文献[23];A/NK-A/CNK引自文献[24]) Fig.6 Projection of main elements (SiO₂-K₂O after reference [23];A/NK-A/CNK after reference [24])

图7 杜尔基花岗岩的微量元素蛛网图(据文献[25])和稀土曲线配分图(据文献[26])

Fig.7 Primitive mantle-normalized trace element spider diagram (a, normalization values after reference [25]) and chondritenormalized REE patterns (b, normalization values after reference [26]) of Dorolj granite

图 8 杜尔基中细粒二长花岗岩锆石年龄谐和图和²⁰⁶Pb/²³⁸U平均年龄直方图 Fig.8 U-Pb concordia diagrams and ²⁰⁶Pb/²³⁸U weighted-age histogram of zircons of medium-fine grained monzonitic granite from Dorolj

图9杜尔基正长花岗岩锆石年龄谐和图和²⁰⁶Pb/²³⁸U平均年龄直方图

 $Fig.9 \hspace{0.1 cm} U-Pb \hspace{0.1 cm} concordia \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} {}^{206}Pb/{}^{238}U \hspace{0.1 cm} weighted-age \hspace{0.1 cm} histogram \hspace{0.1 cm} of \hspace{0.1 cm} zircons \hspace{0.1 cm} of \hspace{0.1 cm} the \hspace{0.1 cm} syenogramite \hspace{0.1 cm} from \hspace{0.1 cm} Dorolj \hspace{0.1 cm} granite$

图10杜尔基正长花岗岩锆石年龄谐和图和206Pb/238U平均年龄直方图

 $Fig. 10 \hspace{0.1 cm} U-Pb \hspace{0.1 cm} concordia \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} {}^{206}Pb/{}^{238}U \hspace{0.1 cm} weighted-age \hspace{0.1 cm} histogram \hspace{0.1 cm} of \hspace{0.1 cm} zircons \hspace{0.1 cm} of \hspace{0.1 cm} the \hspace{0.1 cm} synoptimes \hspace{0.1 cm} concordia \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} {}^{206}Pb/{}^{238}U \hspace{0.1 cm} weighted-age \hspace{0.1 cm} histogram \hspace{0.1 cm} of \hspace{0.1 cm} zircons \hspace{0.1 cm} of \hspace{0.1 cm} the \hspace{0.1 cm} synoptimes \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} {}^{206}Pb/{}^{238}U \hspace{0.1 cm} weighted-age \hspace{0.1 cm} histogram \hspace{0.1 cm} of \hspace{0.1 cm} zircons \hspace{0.1 cm} of \hspace{0.1 cm} the \hspace{0.1 cm} synoptimes \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} {}^{206}Pb/{}^{238}U \hspace{0.1 cm} weighted-age \hspace{0.1 cm} histogram \hspace{0.1 cm} of \hspace{0.1 cm} zircons \hspace{0.1 cm} of \hspace{0.1 cm} the \hspace{0.1 cm} synoptimes \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} bistogram \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} bistogram \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0.1 cm} bistogram \hspace{0.1 cm} and \hspace{0.1 cm} bistogram \hspace{0.1 cm} diagrams \hspace{0.1 cm} and \hspace{0$

图 11 杜尔基正长花岗岩锆石年龄谐和图和²⁰⁶Pb/²³⁸U平均年龄直方图 Fig. 11 U-Pb concordia diagrams and ²⁰⁶Pb/²³⁸U weighted-age histogram of zircons of syenogranite from Dorolj granite

图 12 杜尔基花岗岩正长花岗岩锆石年龄谐和图和²⁶Pb/²³⁸U平均年龄直方图 Fig. 12 U-Pb concordia diagrams of zircons²⁰⁶Pb/²³⁸U weighted-age histogram of the syenogranite from Dorolj

图 13 杜尔基正长花岗岩锆石年龄谐和图和²⁰⁶Pb/²³⁸U平均年龄直方图 Fig.13 U-Pb concordia diagrams and ²⁰⁶Pb/²³⁸U weighted-age histogram of zircons of the syenogranite from Dorolj

图 14 杜尔基正长花岗岩锆石年龄谐和图和²⁰⁶Pb/²³⁸U平均年龄直方图 Fig.14 U-Pb concordia diagrams and ²⁰⁶Pb/²³⁸U weighted-age histogram of zircons of the syenogranite from Dorolj

中

《科尔沁右翼中旗幅》区调报告对白岗质花岗岩中钾 长石进行了 K-Ar 法测定,其同位素年龄为127.9 Ma。丛利民等^[12]用了 K-Ar 法测年技术测得杜尔基 地区岩体中细粒二长花岗斑岩年龄(115.9±1.0)Ma、 花岗斑岩年龄(120.3±1.1)Ma、中粗粒二长花岗岩年 龄(100.2±0.8)Ma和细粒二长花岗岩年龄(105.9± 0.8)Ma,年龄范围为100.2~120.3 Ma,平均值为110.6 Ma,并结合野外露头观察、推断杜尔基花岗岩形成于 早白垩世。阿木古冷等^[13]、于福生等^[21]利用了这套测 年数据并将研究扩展到杜尔基地区西面的铁特格岩 体、木德吐岩体,得到年龄变化范围为100.2~120.3 Ma,平均值为111 Ma。江思宏等^[14]采用LA-MC-ICP-MS锆石测年方法对杜尔基地区花岗岩中黑云 母正长花岗岩进行了研究(图1),其锆石年龄为 (154.5±0.5)Ma,认为该岩体属于侏罗纪。

锆石U-Pb体系是目前已知矿物同位素体系中 封闭温度最高的,锆石中Pb的扩散封闭温度可以达 到900℃,是确定岩浆岩结晶年龄的理想对象[27-28]。 锆石在花岗岩中作为副矿物广泛存在,极易容易被 挑选出来,因此成为了用于花岗岩测年的首选矿 物。而K-Ar同位素体系封闭温度较低,可能受到 后期地质运动的干扰。由于天山一兴安造山系的 北山一内蒙古一吉林造山带多期次的构造活动和 岩浆活动在本区表现强烈,故除位于岩体内部相的 一个数据外,前人在本区获得的其他K-Ar同位素 年龄结果都较锆石U-Pb年龄年轻,可能没有代表 真实的岩体形成时代。本次测试结果显示,位于杜 尔基地区花岗岩北侧的中细粒二长花岗岩的侵位 年龄为(131.5±0.3)Ma;位于中部的正长花岗岩的侵 位年龄为(213±1)Ma,并含有一定量的(238±2)Ma 的年龄信息,为捕掳锆石;位于西侧的正长花岗岩 的侵位年龄为(131±1)Ma,其中含有一定量的(50± 1)Ma的年龄信息。结合江思宏等(2011)¹⁴对位于 杜尔基地区东南侧的黑云母正长花岗岩的锆石U-Pb年龄(150 Ma),得出杜尔基地区岩体主要存在三 期岩浆活动:中晚三叠世(213 Ma),岩性以中细粒 二长花岗岩为主,分布在杜尔基地区花岗岩的中 部;晚侏罗世(150 Ma),岩性以正长花岗岩为主,分 布在东南部;早白垩世(130 Ma),岩性以正长花岗 岩为主,分布在岩体内部及西部。这与大兴安岭南 段火山活动主要集中在晚三叠世一中侏罗世和晚 侏罗世—早白垩世中期两个主要阶段符合[29]。

5.2 对中国东部中生代构造事件的反映

质

岩浆活动的分布具有时空上的不均一性,然而, 这些岩浆活动的形成和构造环境密切相关[30-33]。不 同的岩石组合在时空上的分布特征可以为构造背 景的重建提供重要的信息[34-36]。前人的研究表明, 大兴安岭地区的中生代岩浆活动在构造上同时受 古亚洲洋的闭合、蒙古--鄂霍茨克洋的南向俯冲和 太平洋板块向的北西向俯冲控制[37-38]。因此,在如 此复杂的构造背景下,对不同时期的岩浆活动的构 造背景的探讨变得非常困难。一些学者通过统计 前人的年代学数据,提出大兴安岭地区的岩浆活动 期次,如王召林等199认为大兴安岭地区的花岗岩可 分为4个阶段:130~132 Ma、171~190 Ma、229~236 Ma、460~500 Ma, 王忠和朱红森^[40]提出大兴安岭中 南段的中生代火山岩可划分为晚三叠世、早一中侏 罗世、晚侏罗世和早白垩世4个喷发旋回,而 Ouyang et al^[41]通过详细地研究该地区的成矿作用的 时空分布,认为大兴安岭地区的岩浆活动应该划分 为5期,分别为240~205 Ma、190~165 Ma、155~145 Ma、140~120 Ma 和 115~100 Ma。

前人的研究表明,大兴安岭区域内发育的A型 花岗岩的侵位年龄变化范围为241~201 Ma^[42-45]。鉴 于A型花岗岩可以指示一个拉张的构造环境,Wu et al^[40]认为东西走向的古亚洲洋在约250 Ma的时候 发生最终闭合。因此,中晚三叠世(240~205 Ma)的花 岗岩和中亚造山带的后造山的构造环境有关[42,46]。分 布在兴安造山带、辽东半岛、松辽盆地的中早侏罗世 (190~165 Ma)花岗岩属于高K钙碱性,并具有弧的特 征,因此被认为和太平洋板块的俯冲有关[47-49]。在晚 侏罗世(155~145 Ma),区域内发育拉伸盆地(如海拉 尔盆地和松辽盆地等),兴蒙造山带还出现了花岗岩 与双峰式火山岩伴生的岩石组合,表明在晚侏罗世该 地区处于一个拉伸的构造环境下[42,50]。一些学者将 其归因于蒙古—鄂霍茨克洋南向俯冲板块断离造 成的板内拉张环境^[45]。在早白垩世(140~120Ma), 该区再次发育A型花岗岩,表明再次处于一个拉张 环境。而且,早白垩世也是整个中国东部地区岩浆 活动的峰值,伴随着大规模的岩石圈减薄[51-52]。因 此,此时的岩浆活动应该处于岩石圈因受太平洋俯 冲而大规模减薄、软流圈物质不断上涌的构造背景

	含量	≹/10 ^{−6}		同位素比值			表面年龄/Ma							
样品号	Pb	U	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1 σ
TW03-1 #	中细粒二	二长花岗	<u>山</u> 石											
1	28	1402	0.0206	0.0002	0.1382	0.0026	0.0487	0.0008	131	1	131	2	135	41
3	9	429	0.0205	0.0002	0.1381	0.0083	0.0488	0.0029	131	1	131	8	137	138
4	43	2073	0.0207	0.0002	0.1392	0.0017	0.0488	0.0005	132	1	132	2	137	25
5	38	1661	0.0207	0.0001	0.1384	0.0025	0.0486	0.0009	132	1	132	2	128	42
6	29	1258	0.0205	0.0001	0.138	0.003	0.0487	0.001	131	1	131	3	134	50
7	31	1375	0.0207	0.0001	0.1389	0.0027	0.0488	0.0009	132	1	132	3	138	43
8	55	2264	0.0206	0.0001	0.1377	0.0013	0.0484	0.0005	132	1	131	1	118	23
9	35	1627	0.0206	0.0001	0.1383	0.0017	0.0486	0.0006	132	1	132	2	129	29
10	16	578	0.0256	0.0002	0.2613	0.0068	0.0741	0.0019	163	1	236	6	1045	52
11	36	1615	0.0206	0.0001	0.1366	0.0018	0.0481	0.0006	131	1	130	2	102	31
12	17	790	0.0206	0.0001	0.1378	0.0026	0.0485	0.0009	132	1	131	2	122	43
14	24	1059	0.0206	0.0001	0.1381	0.002	0.0485	0.0007	132	1	131	2	124	32
16	94	3279	0.0205	0.0001	0.4042	0.0065	0.1429	0.0021	131	1	345	6	2263	25
17	23	1078	0.0205	0.0001	0.138	0.0027	0.0488	0.0009	131	1	131	3	138	46
18	52	2252	0.0207	0.0001	0.138	0.0018	0.0484	0.0006	132	1	131	2	117	29
19	23	1101	0.0206	0.0001	0.1378	0.0026	0.0486	0.0009	131	1	131	2	128	44
20	8	366	0.0205	0.0001	0.1382	0.0075	0.0488	0.0027	131	1	131	7	137	128
21	13	564	0.0232	0.0001	0.1716	0.0044	0.0536	0.0014	148	1	161	4	356	57
22	51	2197	0.0206	0.0001	0.1378	0.0016	0.0486	0.0005	131	1	131	2	129	26
23	48	2279	0.0208	0.0001	0.1381	0.0015	0.0482	0.0005	133	1	131	1	111	24
24	36	1001	0.0355	0.0002	0.3623	0.0035	0.074	0.0007	225	1	314	3	1042	20
25	9	455	0.0207	0.0001	0.1378	0.0047	0.0483	0.0016	132	1	131	5	113	80
26	16	756	0.0205	0.0001	0.1377	0.0036	0.0486	0.0012	131	1	131	3	129	60
27	39	1617	0.0206	0.0001	0.1376	0.0026	0.0484	0.0008	132	1	131	3	117	40
28	18	875	0.0206	0.0001	0.138	0.0037	0.0487	0.0013	131	1	131	3	132	62
29	27	1264	0.0206	0.0001	0.1382	0.002	0.0486	0.0007	132	1	131	2	128	34
31	11	463	0.0207	0.0001	0.1369	0.0026	0.0479	0.0008	132	1	130	2	97	42
32	4	206	0.0207	0.0001	0.1391	0.0029	0.0488	0.0009	132	1	132	3	140	44
33	7	315	0.0206	0.0001	0.1368	0.0025	0.0482	0.0009	131	1	130	2	109	42
34	3	149	0.0205	0.0001	0.136	0.0014	0.048	0.0006	131	1	129	1	101	27
35	8	376	0.0205	0.0001	0.1376	0.0027	0.0487	0.0008	131	1	131	3	134	41
36	5	234	0.0205	0.0001	0.1376	0.0022	0.0487	0.0007	131	1	131	2	131	34
37	6	284	0.0206	0.0001	0.1385	0.0016	0.0488	0.0006	131	1	132	2	139	27
38	6	305	0.0206	0.0001	0.1389	0.0023	0.0488	0.0008	132	1	132	2	138	39
39	5	229	0.0206	0.0001	0.1386	0.0027	0.0488	0.0009	132	1	132	3	137	44
40	4	200	0.0205	0.0001	0.1388	0.0026	0.049	0.0009	131	1	132	2	148	43
41	3	165	0.0204	0.0002	0.1377	0.0015	0.0489	0.0003	130	1	131	1	143	16
43	2	120	0.0204	0.0001	0.1387	0.0032	0.0492	0.001	130	1	132	3	158	49
46	4	181	0.0213	0.0001	0.1458	0.0017	0.0495	0.0006	136	1	138	2	173	27

表2 杜尔基花岗岩锆石U-Pb年龄数据 Table 2 Zircon U-Pb data of Dorolj granite

 	 	 _

绩	丰	2
头	へく	2

	含量/	10 ⁻⁶	同位素比值 表面年					表面年龄	表面年龄/Ma					
样品号 -	Pb	U	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ
TW05-4 正	长花岗岩													
2	51	1521	0.0336	0.0002	0.2332	0.004	0.0504	0.0008	213	1	213	4	214	36
3	16	410	0.0335	0.0002	0.2341	0.0109	0.0507	0.0024	213	1	214	10	225	108
5	1	29	0.0343	0.0009	0.425	0.0859	0.0898	0.0197	218	6	360	73	1421	420
7	43	1250	0.0334	0.0002	0.2319	0.0026	0.0503	0.0006	212	1	212	2	208	25
10	58	1631	0.0337	0.0002	0.2345	0.0023	0.0504	0.0005	214	1	214	2	215	22
17	8	221	0.0337	0.0002	0.233	0.0153	0.0501	0.0033	214	1	213	14	202	151
19	36	1108	0.0335	0.0002	0.2323	0.0028	0.0503	0.0006	213	1	212	3	207	29
21	69	2044	0.0337	0.0002	0.2342	0.0026	0.0504	0.0006	214	1	214	2	213	26
22	37	1129	0.0335	0.0002	0.232	0.0028	0.0502	0.0006	213	1	212	3	203	29
25	21	614	0.0336	0.0002	0.2352	0.0086	0.0507	0.0018	213	1	214	8	228	82
29	43	1307	0.0309	0.0003	0.2771	0.0036	0.0651	0.0008	196	2	248	3	778	25
35	32 25	915	0.0334	0.0002	0.2352	0.0028	0.0511	0.0006	212	1	214	3	246	27
30	35	993	0.035	0.0002	0.2438	0.0045	0.0505	0.0009	101	1	722	4	218	42
40	1	21	0.03	0.0002	0.1076	0.0152	0.2303	0.0037	191	1	122	- 11 - E	140	23
44	21	2278	0.0292	0.0002	0.1976	0.0035	0.049	0.0015	180	1	210	2	149	25
8	26	908	0.0334	0.0002	0.2293	0.0023	0.0497	0.0003	212	1	210	- 7	272	23 61
11	20	730	0.0371	0.0002	0.2049	0.0074	0.051	0.0014	233	1	239	4	275	28
15	20 52	1476	0.0351	0.0002	0.2034	0.0045	0.051	0.0008	239	1	239	3	731	26
20	73	1963	0.0379	0.0002	0.2663	0.0038	0.0509	0.0008	240	1	240	2	238	20
23	18	500	0.0374	0.0002	0.2658	0.0132	0.0515	0.0003	240	3	239	12	258	104
TW06-2 正	长花岗岩	500	0.0074	0.0004	0.2050	0.0152	0.0515	0.0025	251	5	237	12	205	104
1	29	1419	0.0206	0.0001	0.1378	0.0017	0.0485	0.0006	131	1	131	2	126	29
4	32	1500	0.0201	0.0001	0.1356	0.0016	0.0489	0.0006	128	1	129	2	145	28
5	14	705	0.0201	0.0001	0.1357	0.0028	0.0489	0.001	128	1	129	3	145	48
7	12	605	0.02	0.0001	0.1354	0.0034	0.0491	0.0012	128	1	129	3	152	58
10	27	1312	0.0203	0.0001	0.1366	0.0017	0.0488	0.0006	129	1	130	2	140	29
11	25	1211	0.0204	0.0001	0.1367	0.0018	0.0487	0.0006	130	1	130	2	133	31
12	14	715	0.0201	0.0001	0.1353	0.0024	0.0487	0.0009	128	1	129	2	136	42
15	10	504	0.0204	0.0001	0.1365	0.0048	0.0486	0.0017	130	1	130	5	128	83
16	13	662	0.0206	0.0001	0.1377	0.0026	0.0484	0.0009	132	1	131	2	118	44
17	12	586	0.0205	0.0001	0.1367	0.0026	0.0483	0.0009	131	1	130	2	114	44
18	25	1185	0.0207	0.0001	0.1372	0.004	0.0481	0.0014	132	1	131	4	106	68
19	20	903	0.0205	0.0001	0.1377	0.0021	0.0486	0.0007	131	1	131	2	131	36
20	11	554	0.0206	0.0001	0.138	0.0038	0.0486	0.0013	131	1	131	4	130	64
21	16	771	0.0204	0.0001	0.136	0.0026	0.0482	0.0009	130	1	129	3	111	45
22	32	1417	0.0208	0.0001	0.1372	0.0036	0.0479	0.0013	133	1	131	3	92	62
24	30	1476	0.0206	0.0001	0.1383	0.0015	0.0486	0.0005	132	1	132	1	130	25
26	10	460	0.0206	0.0001	0.1363	0.0034	0.048	0.0012	131	1	130	3	99	58
27	18	829	0.0204	0.0001	0.1364	0.0034	0.0484	0.0012	130	1	130	3	120	58
28	25	1191	0.0206	0.0001	0.1377	0.0032	0.0484	0.0011	132	1	131	3	118	54
29	14	643	0.0207	0.0001	0.1366	0.0031	0.0478	0.0011	132	1	130	3	89	53
31	12	559	0.0204	0.0001	0.1364	0.0081	0.0484	0.0028	130	1	130	8	119	139
32	4	200	0.0206	0.0001	0.1376	0.012	0.0484	0.0042	132	1	131	11	117	204
33	56	2718	0.0205	0.0001	0.1374	0.0023	0.0487	0.0008	131	1	131	2	131	38
35	11	560	0.0204	0.0001	0.1381	0.002	0.049	0.0007	130	1	131	2	148	33
36	21	1071	0.0204	0.0001	0.1368	0.0091	0.0486	0.0032	130	1	130	9	130	154
37	6	276	0.0204	0.0001	0.1384	0.0031	0.0493	0.0011	130	1	132	3	160	52
40	28	1409	0.0204	0.0001	0.1367	0.0013	0.0487	0.0005	130	1	130	1	133	22
43	24	1176	0.0204	0.0001	0.1371	0.0077	0.0487	0.0026	130	1	130	/	132	126
44	8	367	0.0204	0.0001	0.1371	0.003	0.0488	0.001	130	1	130	5	139	50
45	1/	822	0.0204	0.0001	0.1366	0.002	0.0486	0.0007	130	1	130	2	128	33 75
46	24 6	1230	0.0203	0.0001	0.127	0.0043	0.0480	0.0015	130	1	130	4	127	15
50	U	505	0.0204	0.0001	0.137	0.0010	U.U+07	0.0005	130	1	130	1	101	23

下^[53-54]。进入早白垩世晚期(115~100 Ma),由于太 平洋俯冲方向的转变,该区域内的岩浆活动再次具 有弧的特征,而被认为是与太平洋板块俯冲的环境 相关^[53-54]。 走向的古亚洲洋、蒙古一鄂霍茨克洋和南北走向的 古太平洋共同影响。杜尔基地区花岗岩锆石U-Pb 年龄跨度较大,共发生3期岩浆活动,分别为晚三叠 世(213~238 Ma)、晚侏罗世(150 Ma)和早白垩世 (130 Ma),从化学成分上看,它们都属于高钾钙碱

位于大兴安岭中南部的杜尔基花岗岩,受东西

Table 4 Granite types and their origin and geodynamic environment(after reference[55])

花岗岩类类型		来源	地球动力学环境
含白云母过铝质花岗岩类	MPG	壳源	大陆碰撞
含堇青石过铝花岗岩类	CPG	过铝质花岗岩类	
富钾钙碱性花岗岩类	KCG	混合源	构造体制转换地带
(高钾-低钙)		(地壳+幔壳)	
含角闪石钙碱性花岗岩类	ACG	偏铝质和钙碱性	俯冲作用
(低钾 - 高钙)		花岗岩类	
岛弧拉斑玄武质花岗岩类	ATG	幔源	
洋中脊拉斑玄武质花岗岩类	RTG	拉斑玄武质碱性	大洋扩张或大陆
过碱性及碱性花岗岩类	PAG	和过碱性花岗岩	的隆起作用和裂
		类	谷作用

性系列。黑云母是本地区花岗岩中主要的暗色矿物,P₂O₅与SiO₂呈现负相关性,这些特征指示杜尔基地区花岗岩具有I型岩浆岩的特点。这3期岩浆活动与上述学者的研究成果相对应,表明晚三叠世(213~238 Ma)的斑状二长花岗岩和粗粒二长花岗岩对应一个后造山的环境,晚侏罗世(150 Ma)的斑状钾长花岗岩和黑云母正长花岗岩对应一个板内拉张的环境,而早白垩世(130 Ma)中细粒二长花岗岩可能和华北克拉通大减薄的构造背景下相对应。杜尔基岩体所呈现的3期岩浆活动,均指示了一个拉张的构造背景,而缺少与俯冲相关的岩浆活动,这也与杜尔基岩体的岩石地球化学特征所呈现出来的非弧特征是一致的(没有显示出高场强元素的负异常,如Nb、Ta、Zr、Hf等)。

Barbarin综合考虑了花岗岩类的矿物学、岩石 学和地球化学特征^[55],以海西造山带演化为基础,将 花岗岩形成的构造环境划分为大陆碰撞、构造体制 转换地带、俯冲作用、大洋扩张或大陆的隆起作用 和裂谷作用。花岗岩的类型划分为白云母过铝质 花岗岩(MPG)、堇青石过铝质花岗岩类(CPG)、富 钾钙碱性花岗岩(KCG)、含角闪石钙碱性花岗岩类 (ACG)、岛弧拉斑玄武质花岗岩类(ACG)或大洋中 脊拉斑玄武质花岗岩类(RTG)、过碱质碱性花岗岩 类(PAG)。它们的来源及地球动力学环境如表4。

从主微量元素上看,杜尔基地区花岗岩属于过 铝质高钾钙碱性系列,整体呈现高硅、高碱、过铝、 低钙的特征。通过镜下观察,黑云母是本地区花岗 岩中主要的暗色矿物。与表4进行对比发现杜尔基 地区花岗岩比较符合KCG类型,其来源为混合源, 地球动力学环境为构造体制转换地带。

5.3 与孟恩陶勒盖银铅锌矿床成矿之间的关系

由于受三个构造域的叠加作用,杜尔基岩体处 在一个大的多金属成矿区内,其周边地区具有良好 成矿条件,如在杜尔基岩体东南侧的孟恩花岗岩中 就发育着大型热液脉型铅锌银矿(孟恩陶勒盖矿 床)。孟恩陶勒盖矿床呈脉状直接发育在孟恩岩体 中心,被认为与花岗岩具有成因上的联系¹¹⁴。然而, 目前的研究仍然没有查清具体是哪个岩体与成矿 有直接联系。张炯飞等^[50]对矿床中云英岩阶段的白 云母进行了Ar-Ar法测试并获得了180 Ma的坪年 龄,认为可以代表矿床的形成年龄。江思宏等[14]对 孟恩陶勒盖矿床的寄主岩体中的黑云母斜长花岗 岩和白云母斜长花岗岩分别做了测试,结果显示, 寄主岩体的成岩年龄(240 Ma)远远大于矿床成矿 年龄,因此,孟恩岩体不太可能与矿床有成因上的联 系。但是,由于本地区中生代岩浆活动广泛发育,并 不能排除在孟恩岩体周边地区存在和矿床有关联的 岩体的可能性。在矿床西侧的杜尔基岩体被有些学 者认为可能和成矿有关。而解决杜尔基岩体与孟恩 陶勒盖锌铅银矿之间的联系问题的关键就是二者的 形成年龄是否能够耦合。江思宏等¹¹⁴报道了杜尔基 岩体中距离孟恩岩体最近的黑云母花岗岩的年龄为 154 Ma,同样小于孟恩岩体的的成矿年龄。然而,如 前所述,杜尔基岩体岩性组合复杂,那么,是否存在其 他的岩性单元和成矿有关联呢?

根据本次研究结果,杜尔基岩体的岩浆活动时 限为130~238 Ma,似乎涵盖了孟恩陶勒盖锌铅银矿 的成矿年龄。但是,经过详细对比发现,杜尔基岩 体尽管年龄上跨度较大,但是从岩浆活动的期次上 看,恰恰缺少和成矿年龄(180 Ma)相对应的活动期 次,即缺少早侏罗世的岩浆活动。因此,杜尔基岩 体很难和孟恩陶勒盖铅锌银矿的成矿作用存在成 因上的联系。当然,也有可能是成矿岩体仍未出露

质

906

或已经被稍晚期次的岩浆活动完全改造。

6 结 论

(1)杜尔基地区花岗岩是由中细粒二长花岗 岩、中粗粒二长花岗岩、正长花岗岩、二长花岗斑岩 等岩性组成的杂岩体。

(2)杜尔基地区岩浆活动年龄跨度较大,可分为3期:晚三叠世(213~238 Ma),晚侏罗世(150 Ma),早白垩世(130 Ma)。杜尔基岩体所呈现的三期岩浆活动,均指示了一个拉张的构造背景,而缺少与俯冲相关的岩浆活动。

(3)杜尔基地区花岗岩里特曼指数变化范围为 1.77~2.54,为钙碱性系列,在SiO₂-K₂O上投在了高 钾钙碱性系列区域,在A/NK-A/CNK图解上投在 了过铝质岩石区域,总体来看,杜尔基地区花岗岩 属于高钾钙碱性系列过铝质岩石,整体呈现高硅, 高碱,过铝,贫铁、镁、锰,低磷、钛、钙的特征。

(4)从年龄上看,杜尔基岩体缺少早侏罗纪的 岩浆活动,因而不大可能与其周边的孟恩陶勒盖锌 铅银矿具有成因上的联系。

致谢:感谢徐东卓、邱磊、张国庆同学在野外的 无私帮助,感谢中国地质大学(北京)冯子齐、田雪 萍、李希等同学对笔者学习上的帮助;感谢邓晋福 老师、周肃老师、王瑜老师、刘翠老师、周红英老师、 秦虹老师、宝宏岩高工对实验、野外工作的帮助。

参考文献(References):

- 邓晋福, 腾吉文, 彭聪, 等. 中国地球物理场特征及深部地质与找 矿[M]. 北京: 地质出版社, 2008.
 Deng Jinfu, Teng Jiwen, Peng Chong, et al. Chinese Geophysical Field Character and Deep Geological and Prospecting[M].Beijing: Geological Publishing House, 2008(in Chinese).
 Ying W. L. Windley, P. F. Allen, M. P. et al. Palaazaia multipla
- [2] Xiao W J, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2012, 23(4): 1–12.
- [3] 任纪舜, 王作勋, 陈炳蔚, 等.从全球看中国大地构造——中国及 邻区大地构造图简要说明[M]. 北京:地质出版社, 1999.
 Ren Jishun, Wang Zuoxun, Chen Bingwei, et al. Looked from the Global Tectonic, China——China and its Adjacent Area Tectonic Map Brief Explanation[M]. Beijing: Geological Publishing House, 1999(in Chinese).
- [4] Jahn B M, Wu F, Chen B. Massive granitoid generation in Central Asian: Nd isotope evidence and implication for continental growth

in the Phanerozoic[J]. Episodes, 2000, 23(2):82-92.

- [5] Gao J, Klemd R, Qian Q, et al. The collision between the Yili and Tarim blocks of the Southwestern Altaids: Geochemical and age constraints of a leucogranite dike crosscutting the HP- LT metamorphic belt in the Chinese Tianshan Orogen[J]. Tectonophysics, 2011, 499: 118-131.
- [6] Mao J W, Xie G Q, Bierlein F, et al. Tectonic implications from Re– Os dating of Mesozoic molybdenum deposits in the East Qinling– Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4607–4626.
- [7] Yakubchuk A S, Seltmann R., Shatov V, et al. The Altaids: tectonic evolution and metallogeny[J]. Society of Economical Geologists Newletters, 2001, 46: 7–14.

Deng Jinfu, Mo Xuanxue, Luo Zhaohua, et al. Igneous petrotectonic assemblage and crust-mantle metallogenic system[J]. Earth Science Fronties, 1999, 6(4): 259–269(in Chinese with English abstract).

[9] 周漪, 葛文春, 王清海. 大兴安岭中部乌兰浩特地区中生代花岗 岩的成因[J].岩石矿物学杂志, 2011, 30(5): 1-23.
Zhou Yi, Ge Wenchun, Wang Qinghai.Petrogenesis of Mesozoic granite in Wulanhaote region, cental Da Hinggan Mountains: constraints from geochemistry and Sr-Nd-Hf istope[J]. Acta Petrologica et Mineralogica, 2011, 30(5): 1-23 (in Chinese with English abstract).

[10] 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报.1999, 29(4): 313-318.

Wu Fuyuan, Sun Haide. The Mesozoic magmatism and lithospheric thinning in eastern China[J]. Journal of Changchun University Of Science And Technology.1999, 29(4): 313-318(in Chinese with English abstract).

[11] 邓晋福, 赵国春, 苏尚国, 等. 燕山造山带燕山期构造叠加及其 大地构造背景[J].大地构造与成矿学, 2005, 29(2):157-165.
Deng Jinfu, Zhao Guochun, Su Shangguo, et al. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan era[J]. Geotectonica et Metallogenia, 2005, 29(2): 157-165 (in Chinese with English abstract).

 [12] 丛利民,李国志.内蒙古兴安盟杜尔基花岗岩特征研究[J].甘肃 地质, 2008, 17(3):74-79.
 Cong Limin, Li Guozhi. Study on characteristics of Duerji

intrusive in Xinganmeng area of Inner Mongolia[J]. Gansu Geology, 2008, 17(3):74–79(in Chinese with English abstract).

[13] 阿木古冷, 吉珍娃, 董德君, 等. 大兴安岭中南段杜尔基地区早 白垩世侵入岩岩石地球化学特征及构造环境[J].资源调查与环 境, 2009, 30(1):1-8. A Muguleng, Ji Zhenwa, Dong Dejun, et al. Lithogeochemical characteristics and tectonic setting of Early Cretaceous intrusive rocks form Duerji area in the middle part of Daxin' an Mountains[J]. Resources Survey & Environment, 2009, 30(1): 1–8(in Chinese with English abstract).

[14] 江思宏, 聂凤军, 刘翼飞, 等. 内蒙古孟恩陶勒盖银多金属矿床 及其附近侵入岩的年代学[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1755-1769.

Jing Sihong, Nie Fengjun, Liu Yifei, et al. Geochronology of Intrusive Rocks Occurring in and Around the Mengentaolegai Silver–Polymetallic Deposit, Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(6): 1755–1769 (in Chinese with English abstract).

- [15] Guo F, Fan W, Gao X.F, et al. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth[J]. Lithos, 2010, 120: 563-578.
- [16] Wang H, Ren Y S, Hou H N. The genesis and mineralization age of the Dashihe Mo deposit in Yanbian, Jilin Province[J]. Acta Mineralogica Sinica, 2011, 1: 96–97
- [17] Wang J G, He Z Z, Xu, W L. Petrogenesis of riebeckite rhyolites in the southern Da Hinggan Mts: Geochronological and geochemical evidence[J]. Acta Petrologica Sinica, 2013, 853– 863.
- [18] 王伟, 许文良, 王枫, 等. 满洲里一额尔古纳地区中生代花岗岩的锆石 U-Pb 年代学与岩石组合:对区域构造演化的制约[J]. 高校地质学报, 2012, 18(1): 88-105.

Wang Wei, Xu Wenliang, Wang Feng, et al. Zircon U– Pb chronology and assemblages of Mesozoic granitoids in the Manzhouli– Erguna area, NE China: Constraints on the regional tectonic evolution[J]. Geological Journal of China Universities, 2012, 18(1): 88–105 (in Chinese with English abstract).

[19] 曾维顺,周建波,董策,等.蒙古一鄂霍茨克洋俯冲的记录:额尔 古纳地区八大关变质杂岩的证据[J]. 岩石学报, 2014, 30(7): 1948-1960.

Zeng Weishun, Zhoujianbo, Dong Ce, et al. Subduction record of Mongol–Okhotsk Ocean:Constrains from Badaguan metamorphic complexes in the Erguma massif, NE China[J]. Acta Petrologica Sinica, 2014, 30(7): 1948–1960(in Chinese with English abstract).

- [20] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41: 1–30.
- [21] 阿木古冷,吉珍娃,董德君,等.大兴安岭中南段杜尔基地区早 白垩世侵入岩岩石地球化学特征及构造环境[J].资源调查与环 境,2009,30(1):1-8.

Amu Guleng, Ji Zhenwa, Dong Dejun, et al. Lithogeochemical characteristics and tectonic setting of Early Cretaceous intrusive rocks from Duerji area in the middle part of Daxin' an Mountains[J]. Resources Survey & Environment, 2009, 30(1):1 – 8(in Chinese with English abstract).

- [22] 侯可军, 李延河, 田有容. LA-MC-ICP-MS 锆石微区原位 U-Pb定年技术[J]. 矿床地质, 2009, 28(4):481-492.
 Hou Kejun, Li Yanhe, Tian Youqing. In situ U-Pb zircon dating using laser ablation-multi ion counting LA-MC-ICP-MS[J].
 Mineral Deposits, 2009, 28(4): 481-492(in Chinese with English abstract).
- [23] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63–81.
- [24] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 635–643.
- [25] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and process[C]//Saunders A D, Norry M J (eds.). Magmatism in Ocean Basins. Geol. Soc. London. Spec. Publ., 1989, 42:313–345.
- [26] Taylor S R, Mclennan S M. 1985. The continental crust: its compsition and evolution[M]. Oxford: Blackwell. Scientific Publications, 1985: 143–209.
- [27] Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 159–162.
- [28] Cherniak D J, Watson E.B. Pb diffusion in zircon [J]. Chemical Geology, 2000, 5–24.

[29] 张万益, 聂凤军, 刘树文, 等. 大兴安岭南段西坡金属矿床特征及成矿规律[J]. 中国地质, 2013, 40(5): 1583-1599.
Zhang Wanyi, Nie Fengjun, Liu Shuwen, et al. Characteristics and metallogenic regularities of ore deposits on the western slope of the southern section of the Da Hinggan Mountains metallogenic belt[J]. Geology in China, 2013, 40(5): 1583-1599 (in Chinese with English abstract).

- [30] Groves D I, Bierlein F P. Geodynamic settings of mineral deposit systems[J]. Journal of the Geological Society, 2007, 164: 19–30.
- [31] Bierlein F P, Groves D I, Cawood P A. Metallogeny of accretionary orogens—the connection between lithospheric processes and metal endowment [J]. Ore Geology Reviews, 2009, 36: 282–292.
- [32] Mao J W, Chen Y B, Chen M H, et al. Major types and timespace distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48: 267–294.
- [33] Zhai M G, Santosh M. Metallogeny of the North China Craton: link with secular changes in the evolving Earth[J]. Gondwana

质

Research, 2013, 24: 275-297.

- [34] Hu R Z, Zhou M F. Multiple Mesozoic mineralization events in South China — an introduction to the thematic issue[J]. Mineralium Deposita, 2012, 47: 579–588.
- [35] Pirajno F, Seltmann R, Yang Y. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China[J]. Geoscience Frontiers, 2011, 2: 157–185.
- [36] Li S R, Santosh M. Metallogeny and craton destruction: records from the North China Craton[J]. Ore Geology Reviews, 2013. http://dx.doi.org/10.1016/j.oregeorev.2013.03.002.
- [37] Dmitry V M, Valery A V, Alexey Y K, et al. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 2010, 18, 400–419.
- [38] Donskaya T V, Gladkochub D P, Mazukabzov A M, et al. Late Paleozoic- Mesozoic subduction- related magmatism at the southern margin of the Siberian continent and the 150 millionyear history of the Mongol-Okhotsk Ocean[J]. Journal of Asian Earth Sciences, 2012, http://dx.doi.org/10.1016/ j. jseaes.2012.1007.1023.
- [39] 王召林,金浚,李占龙,等.大兴安岭中北段莫尔道嘎地区含矿 斑岩的锆石U-Pb年龄、Hf同位素特征及成矿意义[J].岩石矿物 学杂志,2010,29(6):796-810.

Wang Zhaolin, Jin Jun, Li Zhanlong, et al. Zircon U–Pb ages and Hf isotopic characteristics of mineralized porphyries in the Mordaoga area, northern– central Da Hinggan Mountains, and their metallogenic significance[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 796– 810(in Chinese with English abstract).

- [40] 王忠,朱洪森.大兴安岭中南段中生代火山岩特征及演化[J].中国区域地质, 1999, 18(4):351-358.
 Wang Zhong, Zhu Hongsen. Temporal and spatial evolution of the Mesozoic volcanism in mid- southern Daxinganling Mountain[J]. Regional Geology of China, 1999, 18(4): 351-358 (in Chinese with English abstract).
- [41] Ouyang H G, Mao J W, Santosh M, et al. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio- temporal distribution patterns of ore deposits[J]. Journal of Asian Earth Sciences, 2013, http://dx.doi. org/10.1016/j.jseaes.2013.07.011.
- [42] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187: 143–173.
- [43] Ge W C, Wu F Y, Zhou C Y, et al. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range[C]. Chinese Science Bulletin, 2005, 50: 2097–2105.

- [44] Xu W L, Pei F P, Gao F H, et al. Zircon U– Pb age from basement granites in Yishu granben and its tectonic implications[J]. Earth Sciences, 2008, 33: 145–150.
- [45] Wang F, Xu W L, Meng E, et al. Caledonian Amalgamation of the Songnen–Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: geochronological and geochemical evidence from granitoids and rhyolites[J]. Journal of Asian Earth Sciences, 2012, 234: 234–248.
- [46] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41: 1–30.
- [47] Wu F Y, Jahn B M, Wilde S A, et al. Highlyfractionated I-type granites in NE China (I): geochronology and petrogenesis[J]. Lithos, 2003, 241–273
- [48] Gao F H, Xu W L, Yang D B, et al. LA–ICP–MS zircon U–Pb dating from granitoids in southern basement of Songliao basin[J]. Science in China Series D: Earth Sciences, 2007, 50: 995–1004.
- [49] Chu S X, Liu J M, Xu J H, et al. Zircon U- Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe- Cu deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 2012, 28: 433-450.
- [50] Jahn B M, Litvinovsky B A, Zanvilevich A N, et al.Peralkaline granitoid magmatism in the Mongolian– Transbaikalian Belt: evolution, petrogenesis and tectonic significance[J]. Lithos, 2009, 113: 521–539.
- [51] Gao S, Rudnick R L, Carlson R W, et al. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters, 2002, 198: 307–322.
- [52] Zhu R X, Chen L, Wu F Y, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science in China (Series D), 2011, 54: 789–797.
- [53] Mao J W, Wang Y T, Zhang Z H, et al. Geodynamic settings of Mesozoic large- scale mineralization in the North China and adjacent areas: implication from the highly precise and accurate ages of metal deposits[J]. Sciences of China (Series D), 2003, 46: 838–851.
- [54] Wu F Y, Li X H, Yang J H, et al.Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23: 1217–1238.
- [55] Barbarin B A. Review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 605–626.
- [56] 张炯飞, 庞庆邦, 朱群, 等. 内蒙古孟恩陶勒盖银铅锌矿床白云母Ar-Ar年龄及其意义[J]. 矿床地质, 2003, 22(3):253-255. Zhang Jiongfei, Pang Qingbang, Zhu Qun, et al . mengentaolegai Ag-Pb-Zn deposit in Inner Mongolia: Ar-Ar age of muscovite and its significance[J].Mineral Deposits, 2003, 22(3): 253-255.