付俊彧, 汪岩, 那福超, 等. 内蒙古哈达阳镁铁-超镁铁质岩锆石 U-Pb 年代学及地球化学特征: 对嫩江—黑河地区晚泥盆世俯冲背景的制约[J]. 中国地质, 2015, 42(6): 1740-1753.

Fu Junyu, Wang Yan, Na Fuchao, et al. Zircon U–Pb geochronology and geochemistry of the Hadayang mafic–ultramafic rocks in Inner Mongolia: Constraints on the Late Devonian subduction of Nenjiang–Heihe area, Northeast China[J]. Geology in China, 2015, 42(6): 1740–1753(in Chinese with English abstract).

内蒙古哈达阳镁铁--超镁铁质岩锆石U-Pb年代学及 地球化学特征:对嫩江--黑河地区晚泥盆世俯冲背景 的制约

付後或 汪 岩 那福超 孙 巍 杨 帆 钟 辉 张广宇 刘英才

(中国地质调查局沈阳地质调查中心,辽宁沈阳110034)

提要:哈达阳地区出露的镁铁-超镁铁质岩石,分布于嫩江—黑河构造带哈达阳构造混杂岩中,岩石类型主要为角 闪辉长岩和角闪石岩,呈异地岩块产出。笔者对其进行了LA-ICP-MS 锆石 U-Pb 年代学及全岩地球化学研究,获 得角闪石岩和角闪辉长岩中锆石的加权平均²⁶⁰Pb/²³⁸U 年龄分别为(362.09±0.55)Ma(n=26)和(363.4±1.2)Ma(n=33),属晚泥盆世,为该构造带内迄今报道的最古老的镁铁-超镁铁质岩年龄。岩石地球化学特征研究表明,角闪石 岩低 Ti(TiO₂=0.65%~0.97%)、低 K(K₂O=0.04%~0.12%)和高 Mg(MgO=20.42%~24.07%)、高 Fe(TFeO=10.25%~11.46%);LREE 和 HREE 分馏较为明显((La/Yb)_N=2.35~3.97),Th、Hf、Ce、Nb 富集和 Ba、Sr、K、Zr 亏损,Zr/Nb=10.04~17.12。角闪辉长岩高 Ti(TiO₂=1.30%~5.04%)、高 Na(Na₂O=2.92%~3.14%)、相对高K(K₂O=0.31%~0.45%),Mg 相对偏低(MgO=5.94%~8.25%),LREE 和 HREE 分馏也较为明显((La/Yb)_N=1.90~3.23),Zr、Nb 亏损,明显富集 Th、Sr。分析认为,哈达阳镁铁-超镁铁质岩具有火山弧型玄武岩特征,形成于板块消减带之上的岛弧及前弧盆地,大约 363 Ma 时嫩江—黑河构造带已经进入了板块俯冲阶段,这为贺根山—扎兰屯构造带东延及大兴安岭北段晚古 生代的古亚洲洋构造域演化提供了新的年代学证据。

关 键 词:镁铁-超镁铁质岩;锆石U-Pb年代学;地球化学;哈达阳;内蒙古;嫩江-黑河构造带
 中图分类号:P587⁺.3;P595;P588.12⁺4~5 文献标志码:A 文章编号:1000-3657(2015)06-1740-14

Zircon U–Pb geochronology and geochemistry of the Hadayang mafic– ultramafic rocks in Inner Mongolia: Constraints on the Late Devonian subduction of Nenjiang–Heihe area, Northeast China

FU Jun-yu, WANG Yan, NA Fu-chao, SUN Wei, YANG Fan, ZHONG Hui, ZHANG Guang-yu, LIU Ying-cai

- 基金项目:中国地质调查局"嫩江一黑河地区晚古生代拼合构造带地质特征研究项目"(12120114019601)和古亚洲构造域东段构造 格局、演化历史研究和1:250万构造图编制项目(12120115070601)联合资助。
- 作者简介:付俊彧,男,1966年生,教授级高工,从事区域地质、矿产研究;E-mail: fyzxy@163.com。
- 通讯作者:汪岩,男,1968年生,教授级高工,从事区域地质、矿产研究;E-mail: wy68413@163.com。

收稿日期:2014-10-16;改回日期:2014-12-24

(Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang 110034, Liaoning, China)

Abstract: The Late Devonian mafic – ultramafic rocks were first discovered in Nenjiang – Heihe area. The rocks outcrop in the Hadayang tectonic mélange in Inner Mongolia. The mafic – ultramafic rocks are allochthonous rock block consisting mainly of amphibole – gabbro and amphibolite. The laser ablation inductively coupled plasma mass spectrometry (LA – ICP – MS) zircon U – Pb geochronology and geochemistry of the rocks were studied. The dating results show that the weighted average ³⁰⁶Pb/³¹⁸U age of the amphibole – gabbro is (363.3 ± 1.2) Ma (*n*= 33), and the age of amphibolite is (362.09 ± 0.55)Ma (*n*=26). The ages belong to Late Devonian. The geochemical characteristics of the amphibole – gabbro show high Ti (TiO₂ = 1.30%–5.04%), high Na (Na₂O = 2.92%–3.14%), relatively high K (K₂O = 0.31%–0.45%) and low Mg (MgO =5.94%–8.25%), the fractionation of HREE and LREE is obvious ((La/Yb)_N =1.90–3.23), with the depletion of Zr, Nb and enrichment of Th and Sr. The geochemical characteristics of amphibolite show low Ti (TiO₂=0.65%–0.97%), low K (K₂O=0.04%–0.12%), high Mg (MgO=20.42%–24.07%), high Fe (FeO^T =11.40%–12.74%), obvious LREE and HREE fractionation ((La/Yb)_N = 2.35–3.97), enrichment of Th, Hf, Ce and Nb, and depletion of Ba, Sr, K and Zr, Zr/Nb = 10.04–17.12. The characteristics of the Hadayang mafic – ultramafic rocks are similar to the features of the volcanic arc basalts. Combined with existing research results, the authors hold that the rocks probably formed in an island arc and fore arc basin above the subduction zone, and the subduction of the Nenjiang–Heihe tectonic belt already began in Late Devonian. This paper provides new evidence for the study of the tectonic evolution of the eastern part of the Hegenshan – Zhalantun tectonic belt and the Late Paleozoic Paleo – Asian Ocean of the northern Da Hinggan Mountains.

Key words: mafic-ultramafic rocks; zircon U-Pb geochronology; geochemistry; Hadayang; Inner Mongolia; Nenjiang-Heihe tectonic belt

About the first author: FU Jun-yu, male, born in 1966, senior engineer, mainly engages in the study of regional geology and mineral resources survey. E-mail: fjyzxy@163.com.

1 引 言

研究区位于嫩江-黑河构造带南西部,地理位 置为内蒙古自治区东部莫力达瓦旗哈达阳镇西。 嫩江一黑河构造带总体呈北东向展布于黑龙省西 北部的嫩江至黑河一带,其北西侧为扎兰屯一多宝 山岛弧岩浆岩带,南东侧为"松嫩一张广才岭地块" (图1-a[●]),长期以来一直受到业内专家的重视。构 造带内构造变形复杂,变质变形强烈,加之研究程 度较低,对构造带性质认识一直存在分歧。有的认 为是贺根山—扎兰屯构造带东延部分,为"松嫩地 块"与"兴安地块"的拼合带";有的认为是早中生代 的拼合构造带^[2],还有的认为是中晚侏罗世伸展构 造带,发育变质核杂岩^[3,4]。依托"嫩江—黑河地区 晚古生代拼合构造带地质特征研究"项目,区域上 将构造带自北西向南东依次划分为早石炭世弧后 盆地—早石炭世复合岛弧—早石炭世俯冲增生楔 一早二叠世裂陷带等几个构造单元(图1-b), 且项 目组于2013年在哈达阳一带早石炭世复合岛弧与俯 冲增生楔结合部位发现一处构造混杂岩(图1-c[®]) (另文发表)。本文报导的镁铁-超镁铁质岩是构造 混杂岩中的岩块。在对构造混杂岩中镁铁-超镁铁 质岩进行了精确的LA-ICP-MS锆石U-Pb定年,限 定其准确侵位时限的同时,对镁铁-超镁铁质岩进行 了详细的岩石地球化学研究,依据区域地质资料和前 人研究成果,对其构造背景进行深入探讨。

2 地质背景及样品描述

2.1 地质背景

研究区出露的古生代地层主要有早石炭世奠 尔根河组(C₁m),少量早泥盆世霍龙门组(D₁hl);侵 入岩有晚泥盆世糜棱岩化正长花岗岩;晚石炭世花 岗闪长岩、二长花岗岩及正长花岗岩;少量早二叠 世碱长花岗岩。早泥盆世霍龙门组(D₁hl)主要为一 套碎屑沉积岩夹少量中性火山岩,与莫尔根河组及 晚石炭世花岗岩均为断层接触,强变形处发育有二

❶付俊彧,杨雅军,等.大兴安岭成矿带北段基础地质综合研究成果报告[R].2013.

❷黑龙江省区域地质调查所.黑龙江省1:25万嫩江县幅、孙吴县幅区调修测地质报告[R].2013.

图1哈达阳一带地质构造略图

a一东北地区地质构造格架图; b一嫩江一黑河一带地质构造单元图(据文献[5]; c一哈达阳一带地质构造略图

1—中新生界;2—早石炭世莫尔根河组;3—早泥盆世霍龙门组;4—早侏罗世闪长岩;5—早二叠世碱长花岗岩;6—晚石炭世正长花岗岩; 7—晚石炭世二长花岗岩;8—晚石炭世花岗闪长岩;9—晚泥盆世正长花岗岩;10—构造混杂岩;11—蓝片岩;12—断裂构造

Fig. 1 Geological tectonic map of Hadayang area

a-Geological tectonic map of Northeast China; b-Geological tectonic units of Nenjiang-Heihe area (after reference [5]); c-Geological tectonic map of Hadayang area; 1-Mesozoic-Cenozoic; 2-Early Carboniferous Moergenhe Formation; 3-Early Devonian Huolongmen Formation;
 4-Early Jurassic diorite; 5-Early Permian alkali feldspar granite; 6-Late Carboniferous syenogranite; 7-Late Carboniferous adamellite;
 8-Late Carboniferous granodiorite; 9-Late Devonian syenogranite; 10-Tectonic melange; 11-Blue schist; 12-Fracture structure

云母构造片岩。莫尔根河组(C₁m)岩性组合主要为 一套弱变质的中酸-酸性火山岩,岩石普遍发育片 理化或糜棱岩化,被晚石炭世花岗岩侵入或断层接 触。中生代火山岩及新生代碎屑沉积岩发育,强烈 覆盖古生代地质体。新发现的构造混杂岩位于哈 达阳镇西,与其西侧出露的晚泥盆世正长花岗岩及 南东侧出露的晚石炭世二长花岗岩均为断层接触, 北东侧被早白垩世基性火山岩不整合覆盖(图1c),与东昆仑都兰可可沙地区镁铁一超镁铁质杂岩 地质特征¹⁰较相似。构造混杂岩中基质为灰绿色、 深灰色绿帘绿泥黑云构造片岩及绿帘黑云绿泥构 造片岩;原地岩块主要有浅黄褐色砾岩、绿帘绿泥 黑云构造片岩及绿帘黑云绿泥构造片岩;异地岩块 主要有镁铁-超镁铁质岩类(角闪石岩和角闪辉长 岩,为本文论述的主体岩石)、二长花岗岩、花岗斑 岩、变质酸性火山岩类、绿帘二云构造片岩、含绿帘 黑云斜长片岩、肉红色绿帘白云片岩等。混杂岩内 各岩块均为构造接触,岩块原生构造被后期构造改 造或置换,发育透入性构造面理,产状均较陡倾,成 为堆叠在一起的构造杂岩体。

2.2 样品描述

由于镁铁-超镁铁质岩石发生了强烈的绿泥石 化、纤闪石化和蛇纹石化等蚀变,本次仅对弱蚀变 的角闪辉长岩和角闪石岩进行取样分析。野外共 采集样品7件,包括角闪辉长岩样品3件和角闪石 岩样品4件。这些样品均采自基岩露头,样品较新 鲜,采集位置避开了混杂岩的接触带、强蚀变带和 断裂破碎带等。用于LA-ICP-MS 锆石U-Pb定年 的样品编号为 NH13029B23(角闪辉长岩)、 NH13029B28(角闪石岩),样品位置地理座标:北纬 49°18′13″;东经125°09′46″。

角闪石岩表面风化色为黄褐色,新鲜面为浅绿 色,交代残余、交代假像结构,块状构造,局部见斑 杂状构造。岩石主要由原生矿物角闪石等(45%~ 65%)和次生矿物绿泥石、纤闪石、阳起石等(35%~60%)组成。矿物粒径为0.2~3.6 mm,以原生矿物角闪石等相对粗大为特征(图2-a、b)。

角闪辉长岩表面风化色为黑褐色,新鲜面为灰 黑色,交代残留结构,聚晶结构,富榍结构,斑杂状 构造和块状构造。岩石主要由角闪石(45%~65%) 和斜长石(35%~55%)组成,部分岩石绿泥石化、绿 帘石化蚀变,蚀变矿物可达20%左右,其中见有2% 左右的榍石。矿物粒径一般为0.2~3.6 mm,局部角 闪石被斜长石交代呈斑块状残留,最大粒径可达 1.2 cm(图2-c、d)。

3 分析方法

主量元素、微量元素均在国土资源部东北矿产 资源监督检测中心分析完成。主量元素用X射线 荧光光谱(XRF)方法完成完成(其中FeO分析采用

图 2 哈达阳镁铁-超镁铁质岩野外照片及正交偏光显微照片 角闪石岩野外照片(a)和正交偏光显微照片(b);角闪辉长岩野外照片(c)和正交偏光显微照片(d) Am-闪石;Chl-绿泥石;Tcl-滑石;Pl-斜长石 Fig.2 Field photographs and crossed nicols microphotographs of Hadayang mafic ultramafic rocks Field photographs (a) and crossed nicols micrographs (b) of homblendite; Field photographs (c) and crossed nicols micrographs (d) of homblende gabbro Am-Amphibole; Chl-Chlorite;Tcl-Talc;Pl-Plagioclase

质

中

的是重铬酸钾容量法),精度为1%~5%;微量元素用ICP质谱方法分析完成,精度一般优于10%。

激光烧蚀多接收器等离子体质谱法(LA-ICP-MS)定年在国土资源部华北资源监督检测中心完成。首先野外采集角闪辉长岩(NH13029B23)和角闪石岩(NH13029B28)样品各1件,样品重量各约30kg,原岩样品在河北省廊坊市区域地质调查所实验室进行锆石分选。首先用水将样品表面清洗并晾干、粉碎至80目,然后用水粗淘、强磁分选、电磁分选和用酒精细淘之后,在双目镜下根据锆石颜色、自形程度、形态和透明度等特征初步分类,挑选出具有代表性的锆石(每个样品所挑选锆石数量300~500粒),用环氧树脂固定,待其充分固化后抛光至露出锆石核部,进行CL图像分析。样品靶在北京锆年领航科技有限公司制备,锆石U-Pb同位素测定在国土资源部华北资源监督检测中心完成。详细步骤及数据处理方法参见文献^[7]。

4 分析结果

4.1 锆石U-Pb年代学

构造混杂岩中角闪辉长岩样品(NH13029B23) 和角闪石岩样品(NH13029B28)的锆石颗粒形态较 相似,大多数表现短柱状,少量长柱状和不规则粒 状。粒径一般在 50~150 µm,个别长柱状可达 200 µm。长短轴比值一般为1:1.5,个别长柱状可达 1:2。锆石 CL 图像显示深灰色,部分灰色,可能与锆 石的REE或Th、U含量较多有关(图3-a、b)。大多数锆石具有较好的晶型,并显示明显的直纹条带,没有被后期改造的痕迹,个别锆石晶体内部岩浆结晶环带发育(图3-a、b)。锆石的Th/U比值范围,角闪石岩为0.35~2.67,平均为1.06;角闪辉长岩一般为0.32~2.13,平均为0.94(表1),且Th、U之间具有良好的正相关关系,表明其为岩浆成因锆石^[8-9]。

由于²³⁵U的衰变比²³⁸U快6.3倍,显生宙以来 ²⁰⁷Pb 牛 成率很低, 造成²⁰⁷Pb 测定的误差较大, 使得 ²⁰⁷Pb/²⁰⁶Pb和²⁰⁷Pb/²³⁵U比值可信度降低。因此,对于 显生宙锆石,一般采用²⁰⁶Pb/²³⁸U年龄^[10]。角闪辉长 岩锆石微区有效数据分析点共33个,206Pb/238U年龄 范围在352~370 Ma,单颗粒锆石年龄最大误差均 小于4 Ma,所有33个数据点集中分布在谐和曲线 附近,其²⁰⁶Pb/²³⁸U年龄的加权平均值为(363.3±1.2) Ma, MSWD=1.00(95%置信度)(图4-a)。角闪石岩 锆石微区有效数据分析点共31个,206Pb/238U年龄范 围在359~381 Ma,其中有3个数据点(15、19、28号 点)²⁰⁷Pb/²³⁵U与²⁰⁶Pb/²³⁸U年龄值差偏大,没有参加本 次计算:2个数据点(16、17号点)位于谐和曲线上方, 没有参加加权平均计算;其他26个数据点集中分布 在谐和曲线附近,单颗粒锆石年龄最大误差也都小于 4 Ma, 其²⁰⁶Pb/²³⁸U年龄的加权平均值为(362.09± 0.55)Ma,MSWD=4.5(95%置信度)(图4-b)。

4.2 主量元素

构造混杂岩中角闪石岩和角闪辉长岩岩石化

图 3 哈达阳镁铁-超镁质岩锆石 CL 图像 a—NH13029B23角闪辉长岩;b—NH13029B28角闪石岩 Fig.3 CL images of zircons from the Hadayang mafic ultramafic rocks a-NH13029B23 hornblendite gabbro;b-NH13029B28 hornblendite

		含量/10 ⁻	9					同位素	素比值						表面年龄/	Ma		
原芍	Pb	²³² Th	²³⁸ U	U/qL	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	lσ
NH13029B28-01	36	247	589	0.42	0.0530	0.0004	0.4230	0.0034	0.0579	0.0001	0.0218	0.0005	328	19	358	6	363	-
NH13029B28-02	40	1071	401	2.67	0.0532	0.0007	0.4240	0.0058	0.0578	0.0001	0.0220	0.0005	345	30	359	4	362	1
NH13029B28-03	18	224	258	0.87	0.0571	0.0010	0.4520	0.0081	0.0574	0.0001	0.0211	0.0004	494	39	379	9	360	1
NH13029B28-04	49	535	743	0.72	0.0543	0.0004	0.4346	0.0030	0.0580	0.0001	0.0216	0.0004	383	15	366	0	364	1
NH13029B28-05	33	346	509	0.68	0.0544	0.0005	0.4342	0.0041	0.0579	0.0001	0.0218	0.0004	387	20	366	б	363	1
NH13029B28-06	37	581	528	1.10	0.0596	0.0008	0.4740	0.0066	0.0577	0.0001	0.0207	0.0004	591	30	394	5	361	-
NH13029B28-07	25	314	378	0.83	0.0546	0.0007	0.4344	0.0059	0.0576	0.0001	0.0204	0.0004	398	32	366	4	361	1
NH13029B28-08	Π	64	183	0.35	0.0580	0.0014	0.4602	0.0114	0.0576	0.0001	0.0211	0.0005	528	53	384	8	361	1
NH13029B28-09	13	114	208	0.55	0.0589	0.0024	0.4669	0.0196	0.0574	0.0002	0.0195	0.0006	561	92	389	14	360	1
NH13029B28-10	8	164	116	1.41	0.0602	0.0019	0.4760	0.0154	0.0573	0.0001	0.0177	0.0003	609	69	395	Ξ	359	-
NH13029B28-11	17	203	248	0.82	0.0511	0.0008	0.4047	0.0066	0.0574	0.0001	0.0184	0.0003	256	37	345	5	360	1
NH13029B28-12	46	347	708	0.49	0.0548	0.0004	0.4365	0.0040	0.0577	0.0001	0.0223	0.0008	406	23	368	3	362	1
NH13029B28-13	24	301	386	0.78	0.0579	0.0007	0.4630	0.0054	0.0579	0.0001	0.0185	0.0003	528	26	386	4	363	0
NH13029B28-14	61	1450	784	1.85	0.0563	0.0000	0.4519	0.0069	0.0583	0.0001	0.0169	0.0003	461	35	379	5	365	1
NH13029B28-15	10	121	146	0.83	0.0716	0.0018	0.5978	0.0153	0.0605	0.0002	0.0233	0.0006	976	51	476	10	378	1
NH13029B28-16	31	607	440	1.38	0.0545	0.0010	0.4493	0.0084	0.0597	0.0001	0.0164	0.0004	394	43	377	9	374	1
NH13029B28-17	26	692	455	1.52	0.0542	0.0009	0.4430	0.0072	0.0593	0.0001	0.0159	0.0004	376	35	372	5	371	1
NH13029B28-18	20	290	308	0.94	0.0536	0.0008	0.4284	0.0066	0.0579	0.0001	0.0179	0.0005	354	35	362	5	363	0
NH13029B28-19	17	168	262	0.64	0.0740	0.0017	0.6209	0.0149	0.0608	0.0001	0.0208	0.0004	1043	53	490	6	381	1
NH13029B28-20	15	586	274	2.14	0.0568	0.0008	0.4502	0.0066	0.0575	0.0001	0.0165	0.0003	483	33	377	5	360	1
NH13029B28-21	20	203	328	0.62	0.0531	0.0007	0.4233	0.0055	0.0579	0.0001	0.0169	0.0003	332	30	358	4	363	-
NH13029B28-22	8	142	113	1.26	0.0537	0.0038	0.4256	0.0304	0.0574	0.0003	0.0196	0.0005	361	166	360	22	360	7
NH13029B28-23	26	741	305	2.43	0.0581	0.0025	0.4618	0.0196	0.0577	0.0001	0.0174	0.0004	532	66	386	14	361	1
NH13029B28-24	55	806	848	0.95	0.0556	0.0004	0.4440	0.0031	0.0580	0.0001	0.0161	0.0003	435	15	373	7	363	1
NH13029B28-25	18	147	301	0.49	0.0524	0.0010	0.4174	0.0082	0.0578	0.0001	0.0164	0.0004	302	44	354	9	362	1
NH13029B28-26	15	66	254	0.39	0.0538	0.0010	0.4279	0.0079	0.0577	0.0001	0.0170	0.0005	365	73	362	9	361	1
NH13029B28-27	38	759	527	1.44	0.0541	0.0006	0.4328	0.0044	0.0580	0.0001	0.0164	0.0003	376	22	365	б	364	1
NH13029B28-28	22	249	346	0.72	0.0404	0000.0	0.3223	0.0073	0.0579	0.0001	0.0177	0.0003	387	387	284	9	363	1
NH13029B28-29	51	733	756	0.97	0.0541	0.0004	0.4322	0.0032	0.0579	0.0001	0.0185	0.0003	376	12	365	7	363	1
NH13029B28-30	39	606	561	1.08	0.0529	0.0004	0.4225	0.0034	0.0579	0.0001	0.0188	0.0004	324	17	358	7	363	1
NH13029B28-31	58	1173	762	1.54	0.0570	0.0005	0.4551	0.0034	0.0580	0.0001	0.0199	0.0004	500	19	381	0	363	1

		☆ 畳 /10 ⁶						同位素	比值						表面年龄	eM/		
点号	Pb	²³² Th	²³⁸ U	- Th/U -	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁸ Pb/ ²³² Th	10	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	lα	²⁰⁶ Pb/ ²³⁸ U	10
NH13029B23-01	60	910	809	1.13	0.0538	0.0007	0.4283	0.0060	0.0577	0.0005	0.0222	0.0666	363	28	362	5	362	3
NH13029B23-02	40	753	493	1.53	0.0545	0.0007	0.4339	0.0065	0.0577	0.0005	0.0218	0.0005	392	31	366	9	362	ŝ
NH13029B23-03	9	58	82	0.71	0.0537	0.0029	0.4377	0.0245	0.0591	0.0006	0.0215	0.0006	360	122	369	21	370	4
NH13029B23-04	41	771	490	1.57	0.0538	0.0008	0.4313	0.0070	0.0581	0.0006	0.0220	0.0004	365	34	364	9	364	3
NH13029B23-05	5	6	88	0.11	0.0535	0.0055	0.4221	0.0434	0.0572	0.0006	0.0261	0.0032	352	231	358	37	358	4
NH13029B23-06	39	554	548	1.01	0.0542	0.0007	0.4339	0.0062	0.0581	0.0006	0.0210	0.0004	379	29	366	5	364	ю
NH13029B23-07	22	265	322	0.82	0.0537	0.0009	0.4341	0.0075	0.0586	0.0006	0.0209	0.0004	360	36	366	9	367	4
NH13029B23-08	32	519	403	1.29	0.0537	0.0009	0.4348	0.0077	0.0587	0.0006	0.0219	0.0005	360	38	367	7	368	4
NH13029B23-09	15	132	234	0.57	0.0537	0.0015	0.4313	0.0121	0.0582	0.0006	0.0228	0.0005	360	62	364	10	365	4
NH13029B23-10	17	94	284	0.33	0.0545	0.0010	0.4267	0.0084	0.0568	0.0006	0.0218	0.0005	390	42	361	7	356	ŝ
NH13029B23-11	53	393	859	0.46	0.0540	0.0007	0.4335	0.0059	0.0582	0.0006	0.0216	0.0004	372	27	366	5	365	4
NH13029B23-12	13	148	202	0.73	0.0539	0.0013	0.4362	0.0111	0.0587	0.0006	0.0186	0.0003	366	55	368	6	368	4
NH13029B23-13	24	418	314	1.33	0.0539	0.0008	0.4340	0.0074	0.0584	0.0006	0.0196	0.0004	367	35	366	9	366	4
NH13029B23-14	46	901	565	1.59	0.0545	0.0007	0.4400	0.0063	0.0585	0.0006	0.0197	0.0004	392	29	370	5	367	4
NH13029B23-15	7	122	86	1.41	0.0540	0.0025	0.4330	0.0203	0.0581	0.0006	0.0189	0.0004	372	103	365	17	364	4
NH13029B23-16	39	632	524	1.21	0.0544	0.0010	0.4386	0.0120	0.0585	0.0006	0.0191	0.0005	386	40	369	10	367	4
NH13029B23-17	19	103	325	0.32	0.0545	0.0009	0.4348	0.0075	0.0578	0.0006	0.0169	0.0004	394	36	367	9	362	Э
NH13029B23-18	37	603	523	1.15	0.0540	0.0007	0.4293	0.0062	0.0577	0.0005	0.0176	0.0004	370	29	363	5	362	3
NH13029B23-19	29	333	462	0.72	0.0538	0.0008	0.4276	0.0066	0.0576	0.0006	0.0174	0.0003	364	32	361	9	361	б
NH13029B23-20	15	18	282	0.06	0.0542	0.0012	0.4329	0.0102	0.0579	0.0006	0.0175	0.0004	381	50	365	6	363	Э
NH13029B23-21	23	314	343	0.92	0.0540	0.0009	0.4274	0.0077	0.0574	0.0005	0.0168	0.0003	372	38	361	7	360	3
NH13029B23-22	7	79	105	0.75	0.0540	0.0021	0.4183	0.0163	0.0562	0.0006	0.0175	0.0004	371	86	355	14	352	3
NH13029B23-23	15	216	218	0.99	0.0541	0.0014	0.4289	0.0118	0.0575	0.0005	0.0177	0.0004	375	60	362	10	360	ŝ
NH13029B23-24	25	391	362	1.08	0.0542	0.0009	0.4296	0.0076	0.0575	0.0006	0.0183	0.0004	380	37	363	9	360	3
NH13029B23-25	30	461	426	1.08	0.0535	0.0008	0.4257	0.0071	0.0577	0.0006	0.0179	0.0004	351	35	360	9	361	3
NH13029B23-26	21	390	271	1.44	0.0544	0.0013	0.4361	0.0107	0.0581	0.0006	0.0185	0.0004	388	52	368	6	364	4
NH13029B23-27	17	314	233	1.35	0.0543	0.0014	0.4330	0.0115	0.0578	0.0006	0.0181	0.0004	384	57	365	10	362	3
NH13029B23-28	19	320	254	1.26	0.0543	0.0012	0.4356	0.0101	0.0582	0.0006	0.0181	0.0003	384	50	367	6	365	ŝ
NH13029B23-29	36	893	420	2.13	0.0541	0.0009	0.4374	0.0075	0.0586	0.0006	0.0176	0.0003	377	37	368	9	367	4
NH13029B23-30	~	59	136	0.43	0.0541	0.0021	0.4320	0.0171	0.0579	0.0006	0.0216	0.0005	377	87	365	14	363	4
NH13029B23-31	18	120	293	0.41	0.0538	0.0010	0.4298	0.0082	0.0579	0.0005	0.0203	0.0004	364	40	363	7	363	ŝ
NH13029B23-32	64	499	1037	0.48	0.0536	0.0007	0.4335	0.0059	0.0586	0.0006	0.0198	0.0004	355	28	366	5	367	4
NH13029B23-33	15	174	232	0.75	0.0541	0.0012	0.4362	0.0101	0.0585	0.0006	0.0201	0.0005	376	50	368	6	366	4

图4 哈达阳角闪辉长岩(NH13029B23)和角闪石岩(NH13029B28)锆石年龄谐和曲线图 Fig.4 U-Pb concordia plots of zircons for hornblendite gabbro (NH13029B23) and hornblendite (NH13029BN28)

学分析结果及有关参数列于表2。从表2可以看出, 角闪石岩的SiO₂含量变化较小,在41.37%~43.11%, 以富MgO(20.42%~24.07%)、TFeO(10.25%~ 11.46%)和贫TiO₂(0.65%~0.97%)、P₂O₅(0.12%~ 0.16%)、K₂O(0.04%~0.12%)、Na₂O(0.11%~0.50%), Na₂O > K₂O(Na₂O/K₂O=2.61~6.70)为特征;Al₂O₃含 量较低,变化在9.22%~10.05%;CaO含量中等 (4.68%~7.59%)。Mg[#]值变化在62~69,接近于幔源 玄武质原生岩浆(Mg[#]=68~75)^[11],反映岩浆经历了 较弱程度的结晶分异作用;m/f值变化在3.24~3.79, 反映铁质超基性岩特点。在TAS分类图解(图5-a) 上^[12],所有样品均落在亚碱性系列苦橄玄武岩区,这 与在抗蚀变元素图解Nb/Y-Zr/TiO₂中投图结果一 致(图5-b)^[13]。在AFM图解(图6)上^[14],显示为拉 斑玄武岩系列特征。

角闪辉长岩与角闪石岩相比具有相似的岩石 化学特征,富TFeO、MgO、和贫K₂O,Na₂O>K₂O, SiO₂、TiO₂、Al₂O₃、Na₂O、K₂O、CaO含量相对较高 (SiO₂=44.59%~47.31%,TiO₂=1.30%~5.04%,Al₂O₃= 12.58%~18.16%,Na₂O=2.92%~3.14%,K₂O=0.31%~ 0.45%,CaO=10.03%~12.08%),MgO含量相对较低 (MgO=5.94%~8.25%),与南阿尔金山清水泉镁铁-超镁铁质岩体的岩石化学特征^[15]较相似。Mg^{*}值与 角闪石岩相比较低(Mg^{*}=37~49),反映了原始岩浆 经历了一定程度的分异作用;m/f值变化在0.76~ 1.58,表现铁质基性岩特点。在TAS分类图解(图 5-a)上^[12],样品2个落在亚碱性系列玄武岩区,1个 进入碱玄岩靠近玄武岩区附近;在抗蚀变元素图解 Nb/Y-Zr/TiO₂中(图5-b)¹¹³,2个样品点落在亚碱性 玄武岩区,1个样品点落在安山玄武岩区(可能与该岩 石样品绿泥石化、绿帘石化蚀变有关),二者投图结果 基本一致。在AFM图解(图6)上¹¹⁴,与角闪石岩一起 呈线性分布,也显示为拉斑玄武岩系列特征。

4.3 微量元素

角闪石岩的稀土元素含量中等,∑REE=41.80× 10⁻⁶~61.10×10⁻⁶;轻稀土较为富集,LREE/HREE= 3.75~4.56;Ce稍有负异常(Ce/Ce*=0.84~0.91);Eu 弱正异常(Eu/Eu*=0.89~1.18),表明可能存在斜长 石的堆晶作用。在球粒陨石标准化(据 Boynton, 1984)¹¹⁶曲线图(图7-a)上,轻稀土(LREE)富集,重 稀土(HREE)相对略亏损且平坦,轻重稀土分馏较 为明显((La/Yb)_N=2.35~3.97)。各个样品 REE 配 分模式相互平行,只有位置的高低,显示稀土分异 程度相当,具有同源岩浆演化特征。角闪辉长岩与 角闪石岩具有相似的REE 配分模式,但前者REE 总 量相对较高(∑REE=78.41×10⁻⁶~169.59×10⁻⁶;Eu 也存在弱正异常(Eu/Eu*=1.03~1.19),表明斜长石 的堆晶作用明显。在球粒陨石标准化(据Boynton, 1984)^[16]曲线图(图7-a)上,曲线整体位置要高出角 闪石岩。

在原始地幔标准化(据McDonough et al., 1992)^[17]微量元素蛛网图上(图7-b),角闪石岩亲石 元素(LILE)Rb、Th相对富集,K、Ba、Sr相对亏损;高 场强元素(HFSE)Nb、Hf、Ti相对弱富集,Zr相对弱

表2 镁铁-超镁铁质岩主量(%)及微量元素(10°)分析结果及相关参数

Table 2 Major (%), trace elements and REE (10⁻⁶) values for hornblendite and amphibole gabbro from the Hadayang mafic ultramafic rocks and relevant parameters

样号	NH13029B8	NH13029B31	NH13029B28	NH13029B10	NH13029B16	NH13029B20	NH13029B23
些 石友我	纤闪石体	k绿泥石化	绿泥石化纤闪石	蛇纹石化阳起石	绿泥石化绿帘石	鱼门粽长鸟	鱼口辉长鸟
石口石协	橄榄辉石	F角闪石岩	化角闪石岩	化角闪石岩	化角闪辉长岩	用闪焊长石	用闪冲队石
SiO ₂	42.67	42.64	43.11	41.37	44.59	47.31	46.96
TiO ₂	0.97	0.65	0.95	0.76	5.04	1.30	1.56
Al_2O_3	10.05	9.75	10.03	9.22	12.58	18.16	15.55
TFe_2O_3	12.12	11.40	12.22	12.74	15.05	9.55	11.64
FeO	9.61	8.13	9.07	8.09	8.13	6.36	6.78
MnO	0.22	0.20	0.22	0.18	0.25	0.15	0.21
MgO	20.70	22.31	20.42	24.07	5.94	7.88	8.25
CaO	7.41	6.81	7.59	4.68	12.08	10.03	11.04
Na ₂ O	0.50	0.31	0.49	0.11	3.14	3.03	2.92
K_2O	0.12	0.12	0.073	0.04	0.31	0.45	0.45
P_2O_5	0.16	0.13	0.16	0.12	0.26	0.17	0.23
烧失量	4.63	5.29	4.36	6.28	0.53	1.81	1.00
Σ	99.83	99.95	99.97	100.09	100.53	100.18	100.34
Na ₂ O/K ₂ O	4.33	2.61	6.70	2.66	10.17	6.75	6.52
TFeO	10.91	10.25	11.00	11.46	13.55	8.59	10.48
$Mg^{\#}$	62	69	63	66	37	49	48
m/f	3.31	3.79	3.24	3.45	0.76	1.58	1.37
Rb	5.21	4.3	3.94	3.74	5.31	11.0	9.79
Sr	44.3	83.3	50.6	82.2	1100	617	486
Ba	18.8	30.8	16.0	19.0	115	147	149
Ga	11.2	9.64	10.6	9.39	20.0	18.1	18.0
Ce	14.4	12.0	13.4	10.6	35.8	19.2	21.4
Nb	5.62	5.01	5.80	4.40	7.58	4.79	5.68
Та	0.35	0.64	0.48	0.56	0.81	0.42	0.34
Zr	96.2	55.3	96.7	58.2	194	86.8	123
Hf	2.50	2.79	3.03	2.49	5.71	3.11	3.63
Th	5.20	3.39	1.97	5.23	4.83	2.76	2.46
V	162	115	161	137	686	198	251
Cr	2000	1800	1500	1800	36.8	247	645
Co	79.0	86.7	80.3	94.1	47.4	37.1	40.0
Ni	984	0.1	936	907	78.4	105	81.8
Li	27.2	24.4	27.6	14.9	7.92	25.0	16.6
Sc	22.9	17.1	22.3	20.0	48.8	27.7	44.6
U	0.21	0.47	0.22	0.25	0.38	0.15	0.19
Ce/Nb	2.56	2.40	2.31	2.41	4.72	4.01	3.77
Zr/Nb	17.12	10.04	16.67	13.23	25.59	18.12	21.65
Hf/Ta	7.14	4.36	6.31	4.45	7.05	7.40	10.68
La	6.41	5.09	5.68	5.38	14.6	9.50	9.01
Ce	14.4	12.0	13.4	10.6	35.8	19.2	21.4
Pr	2.23	1.68	2.05	1.57	6.19	3.00	3.55
Nd	10.8	7.8	10.0	7.4	30.4	13.8	17.4
Sm	2.63	1.81	2.48	1.63	8.36	3.30	4.52
Eu	0.87	0.66	0.67	0.53	2.60	1.19	1.49
Gd	2.19	1.56	2.08	1.43	6.74	2.75	3.66
Tb	0.41	0.27	0.39	0.24	1.34	0.50	0.72
Dy	2.80	2.00	2.70	1.85	8.37	3.36	4.67
Но	0.56	0.38	0.53	0.36	1.65	0.65	0.91
Er	1.43	0.92	1.38	0.84	4.55	1.72	2.51
Tm	0.25	0.18	0.24	0.17	0.65	0.28	0.39
Yb	1.64	1.01	1.59	0.89	5.07	1.93	2.81
Lu	0.22	0.15	0.21	0.14	0.58	0.25	0.35
Y	14.3	9.82	13.6	8.83	42.6	17.0	23.8
Σ REE	61.10	45.40	56.98	41.80	169.59	78.41	97.07
LREE/HREE	3.93	4.49	3.75	4.56	3.39	4.36	3.58
Eu/Eu*	1.08	1.18	0.89	1.04	1.03	1.19	1.09
Ce/Ce*	0.88	0.95	0.91	0.84	0.87	0.83	0.88
(La/Yb) _N	2.58	3.32	2.35	3.97	1.9	3.23	2.11

图 5 哈达阳镁铁-超镁铁质岩中角闪石岩和角闪辉长岩 TAS 图和 Nb/Y-Zr/TiO2图 Fig.5 TAS and Nb/Y-Zr/TiO2 diagram for hornblendite and amphibole gabbro from the Hadaya mafic ultramafic rocks

图 6 哈达阳镁铁-超镁铁质岩的 AFM 成分系列判别图解 Fig. 6 Diagram for AFM of Hadayang mafic ultramafic rocks

亏损;在角闪辉长岩中,亲石元素(LILE)Rb、Th、Sr 相对富集,K、Ba亏损不明显;高场强元素(HFSE) Hf、Ti相对弱富集,Nb、Zr、P相对弱亏损。尤其角 闪石岩中Ba、K亏损明显;Sr在角闪石岩中呈现负 异常,而在角闪辉长岩中呈现明显的正异常,反映 二者经历了不同的岩浆演化过程。

5 讨 论

5.1 形成时代

前已述,本次测年样品的锆石晶形较好,环带发

育,但普遍环带封闭性较差,有的为直纹带状,与中酸 性岩浆锆石的良好封闭环带不同,表现为基性岩浆 锆石特征;锆石的Th/U比值介于0.32~2.67,进一步 说明测年锆石为原生岩浆锆石。因此,本次在角闪 石岩和角闪辉长岩中分别获得的(362.09±0.55)Ma 和(363.3±1.2)Ma(LA-ICP-MS 锆石 U-Pb)年龄 值,应代表岩石成岩年龄,即角闪石岩及角闪辉长 岩均形成于晚泥盆世,为迄今发现的构造带中最老 的镁铁质-超镁铁质岩的年龄。

嫩江一黑河构造带经历了多期次强烈变形,本 文报道的镁铁质-超镁铁质岩石为该构造带内新近 发现的构造混杂岩中的岩块,岩块年龄的获得限定 了构造混杂岩形成的时代下限。构造带中镁铁-超 镁铁质岩石不发育,前人^①在构造带北东段新华村、 大岭林场一带见有超镁铁质岩出露,分别为蛇纹石 化纤闪石化橄长岩、蛇纹石化角闪辉石岩,并分别 获得(299.2±1.7)Ma、(224.8±3.6)Ma(LA-ICP-MS 锆石U-Pb)年龄,时代分别相当于晚石炭世及中三 叠世。这说明本构造带至少存在三期超镁铁质岩 浆事件。

构造混杂岩中的基质岩石为黑云绿泥斜长片 岩等,其岩石特征与构造带内的"科洛杂岩"类似。 苗来成等研究了"科洛杂岩"的年代学,在黑云斜长 片麻岩中获得(337±7)Ma年龄^[2],其时代相当于早 石炭世末;研究区西南红山梁一柳屯一带出露的中

❶黑龙江省区域地质调查所.黑龙江省1:25万嫩江县幅、孙吴县幅区调修测地质报告[R].2013.

图7 球粒陨石标准化的稀土元素配分模式(a)和原始地幔标准化的多元素蛛网图(b) Fig.7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized multi-elements spider diagram (b)

图8哈达阳镁铁-超镁铁质岩构造环境判别图解

a—Hf/3-Th-Ta 图解:A—正常型洋脊拉斑玄武岩;B—异常型拉斑玄武岩;C—板内碱性玄武岩;D—火山弧玄武岩; b—Hf/3-Th-Nb/16图解:A—洋中脊玄武岩;B—富集型洋中脊玄武岩;C—板内玄武岩;D—钙碱性玄武岩 Fig. 8 Tectonic setting discrimination diagram for the Hadayang mafic ultramafic rocks a -Hf/3-Th-Ta:A-N-MORB;B-E-MORBE;C-Alkalic intraplate basalt, D-Volcanic arc basalt; b-Hf/3-Th-Nb/16:A-N-MORB; B-E-MORB,C-Intraplate basalt;D-Calc-alkali basalt

酸性火山岩为岛弧型火山建造[●],其年龄为(353.8± 2.4)Ma^[18],时代相当于早石炭世早期,应与板块消减 作用有关;结合区域上大面积出露反映挤压构造背 景的晚石炭世花岗闪长岩-二长花岗岩-正长花岗 岩组合,以及早一中二叠世发育大面积反映伸展构 造背景的碱长花岗岩-碱性花岗岩组合¹¹⁹,认为构

❶黑龙江省区域地质调查所.黑龙江省1:25万嫩江县幅、孙吴县幅区调修测地质报告[R].2013.

http://geochina.cgs.gov.cn 中国地质, 2015, 42(6)

造混杂岩的形成时代应在早石炭世末。另外,本次 工作还在构造混杂岩带北西侧正长花岗质碎裂岩 中获得(381±2)Ma(LA-ICP-MS 锆石 U-Pb)年龄, 在构造带南东侧白云母构造片岩(原岩为中基性火 山岩)获得(413.9±2.7)Ma(LA-ICP-MS 锆石 U-Pb)年龄^[5],这至少说明,构造带在晚泥盆世即开始 存在洋壳俯冲,而在早石炭世末洋壳闭合。

5.2 构造环境

构造混杂岩带发育于板块结合带,与板块俯冲 消减作用相关[20.21]。哈达阳镁铁质--超镁铁质岩为 哈达阳构造混杂岩中的异地岩块,岩石类型为角闪 石岩和角闪辉长岩,兼具有钙碱性、拉斑玄武岩系 列特征(图5~图6),主量、微量元素和MgO之间存 在相关性,说明在岩浆演化过程中存在结晶分异作 用^[22]。其中角闪石岩具有低K(K₂O=0.04%~ 0.12%)、低 Na(Na₂O=0.11% ~ 0.50%)、低 P (P₂O₅= 0.12%~0.16%)特征,与洋脊拉斑玄武岩类似,但其 Ti含量却较低(TiO₂=0.65%~0.97%<1%),与岛弧 环境的拉斑玄武岩[23]相近;Th、Ce的富集是岛弧钙 碱性火山岩的特征^[24],Ba的亏损却与洋脊拉斑玄武 岩相似,而不同于富含Ba的岛弧拉斑玄武岩[25];Ce/ Nb(介于2.31~2.56)、Zr/Nb(介于10~17)、Hf/Ta(介于 4.36~7.14) 与洋脊拉斑玄岩相应比值[22] (2.39、19.57、 8.41) 接近;在Hf/3-Th-Ta和Hf/3-Th-Nb/16构造 环境判别图解(图8-a、b)中^[26],所有样品落入火山 弧玄武岩区:在Ti-Zr构造环境判别图解(图9) 中四,样品落入岛弧玄武岩与洋中脊玄武岩重叠区 附近:在Ti/100-Zr-Sr/2图解(图10)中^[28].样品落入 洋脊拉斑玄武岩区及其附近。上述资料信息表明, 角闪石岩总体形成于类似于大洋中脊构造环境,部 分表现出的岛弧火山岩特征,应与消减作用引起的 陆壳物质混染有关:或形成于消减带之上的前弧 区。角闪辉长岩中 K₂O=0.31%~0.45%、P₂O= 0.17%~0.26%均与岛弧钙碱性玄武岩相近,而TiO2 含量却较高(TiO₂=1.30%~1.56%),与洋脊拉斑玄 武岩相近;微量元素蛛网图上强烈富集Th、Sr,Hf弱 正异常,并具有Zr、Nb的亏损。Zr、Nb的亏损(图 7-b),被认为是岛弧火山岩的重要特征[24],Th、Sr,Hf 的富集表明岩浆源区受到地壳物质的混染。微量 元素比值, Ce/Nb(介于 3.77~4.72)、Zr/Nb(介于 18.12~25.59)、Hf/Ta(介于7.15~10.68)与岛弧拉斑玄

图 9 Ti-Zr 构造判别图解 MORB-洋中脊玄武岩;IAB-岛弧玄武岩;WPB-板内玄武岩 Fig. 9 Tectonic setting discrimination for Ti-Zr MORB-Mid-ocean ridge basalt; IAB-Island arc basalt; WPB-Intraplate basalt

图 10 Ti/100-Zr-Sr/2 图解 A—岛弧拉斑玄武岩;B—岛弧钙碱性玄武岩;C—洋脊拉斑玄武岩 Fig. 10 Diagram for Ti/100-Zr-Sr/2 A- Island arc tholeiite; B-Island arc calc-alkaline basalt; C-Mid-ocean ridge basalt

岩相应比值^[24](4.08、23.53、11.71)接近;在Hf/3-Th-Ta和Hf/3-Th-Nb/16构造环境判别图解(图 8-a、 b)中^[26],所有样品落入钙碱性火山弧玄武岩区;在 Ti-Zr构造环境判别图解(图 9)中^[27],2个样品落入 岛弧玄武岩与洋中脊玄武岩重叠区,1个样品点落 入板内玄武岩区(可能与岩石蚀变有关);在Ti/100Zr-Sr/2图解(图10)中^[28],2个样品点落入岛弧钙碱 性玄武岩区。由此可见,哈达阳构造混杂岩中角闪 辉长岩应该形成于岛弧构造背景;其稀土元素配分 型式与角闪石岩的基本一致,只是丰度较高,表现 出岩浆源的亲缘性;二者的形成均与板块俯冲-消 减作用有关,形成于消减带上岛弧至前弧盆地。

6 结 论

(1)内蒙古哈达阳地区发现一套前人未见报道的镁铁-超镁铁质杂岩,岩石类型为角闪石岩和角闪辉长岩,为异地岩块产出。其LA-ICP-MS 锆石年龄为(362.09±0.55)Ma和(363.3±1.2)Ma,表明杂岩形成时代下限为晚泥盆世。

(2)哈达阳镁铁-超镁铁质岩为拉斑玄武岩系 列,其中角闪石岩具有低 $K_2O(0.04\% \sim 0.12\%)$ 、P₂O₅ (0.12%~0.16%);高 MgO(20.42%~24.07%)、Fe (TFeO=10.25%~11.46%)特征,出现Rb、Th、Hf正异 常,Ba、Sr强烈亏损,可能形成于板块消减带之上的 前弧盆地。角闪辉长岩相对于角闪石岩,TiO₂ (1.30%~5.04%)、K₂O(0.31%~0.45%)、P₂O₅(0.17%~ 0.26%)较高,而MgO(5.94%~8.25%)及Mg[#](37~49) 较低;强烈富集 Th、Sr,Hf弱正异常,并具有 Zr、Nb 的亏损,可能形成于与俯冲-消减作用有关的岛弧 环境。

(3)综合镁铁-超镁铁质岩年代学和地球化学特征,说明晚泥盆世嫩江-黑河构造带已经进入了 (洋壳)板块的俯冲阶段,这为贺根山-扎兰屯构造 带东延及大兴安岭北段晚古生代的古亚洲洋构造 域演化提供了新的年代学和地球化学证据。

致谢:野外工作得到中国地质科学院地质研究 所李锦轶研究员的精心指导和帮助,审稿专家提出 许多中恳的意见,在此一并表示感谢。

参考文献(References):

[1] 孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山—贺根山—扎赉特碰撞拼合带东延的关系[J]. 科学通报,2000,45(20),2217-2222.

Sun Deyou, Wu Fuyuan, Li Huimin, et al. The era of A– type granite and the relationship with the collision orogenic belt of Suolunshan–Heganshan–Zalaid Banner extend for the eastward[J]. Science Bulletin of China, 2000, 45(20): 2217–2222(in Chinese).

[2] 苗来成, 范蔚茗、张福勤, 等. 小兴安岭西北部新开岭—科洛杂岩 锆石 SHRIMP 年代学研究及其意义[J].科学通报, 2003, 48(22), 2315-2323.

地

质

Miao Laicheng, Fan Weiming, Zhang Fuqin, et al. Xinkailing— Kolo Complex zircon SHRIMP geochronology research and its significance in northwest Xiaoxinanling[J]. Science Bulletin of China, 2003, 48(22): 2315–2323(in Chinese).

- [3] 梁琛岳, 刘永江, 李伟, 等.黑龙江嫩江地区科洛杂岩伸展构造特征[J].地质通报, 2011, 30(2/3): 291-299.
 Liang Shenyao, Liu Yongjiang, Li Wei, et al. Characteristics of extensional structure of Keluo Complex in Nenjiang area, Heilongjiang, China[J]. Geological Bulletin of China, 2011, 30 (2/3): 291-299(in Chinese with English abstract).
- [4] 赵海滨, 莫宣学, 徐受民, 等.黑龙江新开岭变质核杂岩的组成及 其演化[J].地质科学, 2007, 42(1): 176-188.
 Zhao Haibin, Mo Xuanxue, Xu Shoumin, et al. Composition and evolution of the Xinkailing metamorphic core complexes in Heilongjiang Province[J]. Chinese Journal of Geology, 2007, 42(1): 176-188(in Chinese with English abstract).
- [5] 那福超, 付後彧, 汪岩, 等.内蒙古莫力达瓦旗哈达阳绿泥石白云 母构造片岩 LA-ICP-MS 锆石 U-Pb 年龄及其地质意义[J]. 地质 通报, 2014, 33(9)33-39.
 Na Fuchao, Fu Junyu, Wang Yan, et al. LA-ICP-MS Zircon U-Pb age of the chlorite- muscovite tectonic schist in Hadayang, Morin Dawa Banner, Inner Monggolia, and its tectonic significance[J]. Geological Bulletin of China, 2014, 33(9): 33-39
- [6] 冯建赟, 裴先治, 于书伦, 等.东昆仑都兰可可沙地区镁铁--超镁 铁质杂岩的发现及其LA-ICP-MS 锆石 U-Pb 年龄[J].中国地 质, 2010, 37(1):28-38.

(in Chinese with English abstract).

Feng Jianyun, Pei Xianzhi, Yu Shulun, et al. The discovery of the mafic–ultramific melange in Kekesha area of Dulan County, East Kunlun region, and its LA– ICP– MS Zircon U– Pb age[J]. Geology in China, 2010, 37(1): 28– 38(in Chinese with English abstract).

[7] 李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪 (LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学 报, 2009, 29(S1): 600-601.

Li Huaikun, Geng Jianzhen, Hao Shuang, et al. Study on determination of zircon U– Pb isotopic age with Laser ablation multicollector inductively coupled plasma mass spectrometry (LA–MC–ICPMS) [J]. Acta Mineralogica Sinica, 2009, 29(S1): 600–601(in Chinese with English abstract).

- [8] Claesson S, Vetrin V, Bayanova T. U- Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic [J]. Lithos, 2000, 51(1/2): 95-108.
- [9] Fernando C, John M H, Paul W H O, et al. Atlas of zircon textures [J]. Reviews in Mineralogy and Geochemistry, 2003, 53 (1): 469–500.
- [10] Compston W, Williams I S, Kirschvink J L. Zircon U-Pb ages

for the Early Cambrian time-scale [J]. Journal of the Geological Society, 1992, 149(2): 171-184.

- [11] Wilson B M. Igneous Petrogenesis [M]. London: Unwin Hyman, 1989, 1–25.
- [12] Le Bas M J, Le Maitre RW, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali–silica diagram [J]. Journal of Petrology, 1986, 27(3): 745–750.
- [13] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements [J]. Chemical Geology, 1977, 20: 325–343.
- [14] Inine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks [J]. Can. J. Earth Sci. , 1971, (8): 523-548.
- [15] 马中平,李向民,徐学义,等.南阿尔金山清水泉镁铁-超镁铁质 侵入体LA-ICP-MS 锆石 U-Pb 同位素定年及其意义[J].中国 地质, 2011, 38(4):1071-1078.
 Ma Zhongping, Li Xiangmin, Xu Xueyi, et al. Zircon LA-ICP-MS U- Pb isotopic dating for Qingshuiquan layered maficultramafic intrusion southern Altun Orogen, in northwestern China and its Implication[J]. Geology in China, 2011, 38(4): 1071-1078(in Chinese with English abstract).
- [16] Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P.(ed.). Rare Earth Element Geochemistry, Elservier, 1984: 63–114.
- [17] McDonough W F, Sun S S, Ringwood A E, et al. K, Rb and Cs in the earth and moon and the evolution of the earth's mantle [J]. Geochim. Cosmochim. Acta, 1991, Ross Taylor Symposium volume.
- [18] 赵芝, 迟效国, 潘世语.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 岩石学报, 2010, 26(8): 2452-2464.

Zhao Zhi, Chi Xiaoguo, Pan Shiyu. Zircon U–Pb LA–ICP–MS dating of Carboniferous volcanics and its geological significance in the northwestern Lesser Xing' an Range[J]. Acta Petrologica Sinica, 2010, 26(8): 2452–2464(in Chinese with English abstract).

[19] 汪岩, 付後彧, 杨帆, 等.嫩江一黑河构造带的收缩与伸展——源 自晚古生代花岗岩的地球化学证据[J]. 吉林大学学报(地球科 学版), 2015, 45(2):374-388.

Wang Yan, Fu Junyu, Yang Fan, et al. Contraction and extension in Nenjiang– Heihe tectonic belt, from the Late Paleozoic granitoid geochemical evidence[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2):374– 388(in Chinese with English abstract).

- [20] 董芸鹏, 张国伟, 赖绍聪, 等.随州花山蛇绿构造混杂岩的厘定及 其大地构造意义[J].中国科学(D辑), 1999, 29 (3): 222-231.
 Dong Yunpeng, Zhang Guowei, Lai Shaocong, et al.
 Determination and their tectonic significance of Huashan ophiolitic tectonic melange in Suizhou[J]. Science in China(Series D), 1999, 29(3): 222-231(in Chinese with English abstract).
- [21] 吴新国, 吕继东.雅鲁藏布江缝合带内构造岩片划分及形成—— 以仲巴一桑桑段为例[J].大地构造与成矿, 2006, 20(3): 320-325.

Wu Xinguo, Lv Jidong. Hierarchy of tectonic slice and formation of Yaluzangbu Suture Zone——Take Zhongba—Sangsang belt as an example[J]. Geotectonica et Metallogenia, 2006, 20(3): 320– 325(in Chinese with English abstract).

[22] 刘庆, 侯泉林, 周新华, 等.北大别白垩纪镁铁-超镁铁岩的铂族 元素地球化学研究[J].中国地质, 2008, 35(5):859-868.
Liu Qing, Hou Quanlin, Zhou Xinhua, et al. Platinum-Group element geochemistry of Cretaceous mafic-ultramafic rocks in the northern Dabie[J]. Geology in China, 2008, 35(5):859-868 (in Chinese with English abstract).

- [23] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1):251–285.
- [24] 李昌年. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版 社, 1992: 104-114.
 Li Changnian. The Trace Elements in Igneous Petrology[M].

Wuhan: China University of Geosciences Press, 1992: 104–114 (in Chinese with English abstract).

[25] 韩吟文, 马振东, 张宏飞, 等.地球化学[M]. 北京: 地质出版社, 2007: 275-292.
 Han Yinwen, Ma Zhendong, Zhang Hongfei, et al.

Geochemistry[M]. Beijing: Geological Publishing House, 2007: 275–292(in Chinese with English abstract).

- [26] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crystal contamination basaltic lavas of the British Tertiaty Volcanic Province[J]. Earth Planet. Sci. Lett., 1980, 50 (5/6):11-30.
- [27] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rock [J]. Contrib. Mineral Petrol., 1979, 69: 33–47.
- [28] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses [J]. Earth Planet Scilett., 1973, 19: 290–300.