第43卷第1期	中 国 地 质	Vol.43, No.1
2016年2月	GEOLOGY IN CHINA	Feb. , 2016

贾元琴, 赵志雄, 许海, 等. 北山风雷山地区白山组流纹岩 LA-ICP-MS 锆石 U-Pb 年龄及构造环境[J]. 中国地质, 2016, 43(1): 91-98. Jia Yuanqin, Zhao Zhixiong, Xu Hai, et al. Zircon LA-ICP-MS U-Pb dating of and tectonic setting of rhyolites from Baishan Formation in Fengleishan area of the Beishan orogenic belt [J]. Geology in China, 2016, 43(1): 91-98(in Chinese with English abstract).

北山风雷山地区白山组流纹岩LA –ICP–MS 锆石U–Pb年龄及构造环境

贾元琴'赵志雄'许海'王新亮'刘强'王金荣'

(1.内蒙古地质矿产勘查院,内蒙古 呼和浩特 010010;2.兰州大学,甘肃 兰州 730000)

提要:北山地区位于华北板块、塔里木板块和哈萨克斯坦板块的交汇部位,总体上为一近东西向展布的构造-岩浆活动带。风雷山白山组岩性主要为紫红色流纹岩,流纹质含角砾岩屑晶屑凝灰岩、英安质、安山质晶屑凝灰岩夹少量灰色英安岩等,依据喷发特征和岩石空间叠置关系将其划分为一段、二段。岩石地球化学特征显示,流纹岩SiO2含量高(77.05%~77.52%); K₂O/Na₂O>1(1.03~1.07); TiO₂(0.06%~0.19%)、CaO(0.38%~1.04%)、MgO(0.09%~0.17%)含量低,岩石的里特曼指数平均为1.74,相对富集大离子亲石元素(LILE)Rb、K、亏损高场强元素(HFSE)Nb、Ta、P、Ti,稀土总量平均为138.47×10⁻⁶,轻稀土总量(ΣLREE平均为127.55×10⁻⁶)明显高于重稀土(ΣHREE平均为10.92×10⁻⁶),轻重稀土分馏明显((La/Yb)%变化于6.37~7.88,平均为7.05;(La/Sm)%变化于4.51~4.61,平均为4.55, Eu 具较为明显的负异常(δEu 平均仅为0.62)。岩石学、地球化学特征表明构造背景为陆缘弧。流纹岩LA-MC-ICP-MS 锆石 U-Pb 年龄为(318.5±1.2)Ma,结合区域地质特征,白山组应形成于晚石炭世。

关 键 词:风雷山;白山组;流纹岩;岩石地球化学;锆石U-Pb年龄;构造环境

中图分类号:P588.14⁺1;P597.3 文献标志码:A 文章编号:1000-3657(2016)01-0091-08

Zircon LA-ICP-MS U-Pb dating of and tectonic setting of rhyolites from Baishan Formation in Fengleishan area of the Beishan orogenic belt

JIA Yuan-qin¹, ZHAO Zhi-xiong¹, XU Hai¹, WANG Xin-liang¹, LIU Qiang¹, WANG Jin-rong²

(1. Geology and Mineral Exploration Institute of Inner Mongolia, Hohhot 010010, Inner Mongolia, China;
 2. Lanzhou University, Lanzhou 730000, Gansu, China)

Abstract: Located at the junction of North China Plate intersection, Tarim plate and Kazakhstan plate, Beishan area is characterized by nearly EW-trending tectonic-magmatic activity. The rocks mainly include rhyolite, rhyolitic breccias-containing debris crystal tuff, dacitic crystal tuff, and esitic crystal tuff and a small amount of dacite. They can be divided into two sections based on features and rock eruption spatial superposition relationship. Geochemistry shows that rhyolites have high SiO₂ content (77.05% ~ 77.52%)

http://geochina.cgs.gov.cn 中国地质, 2016, 43(1)

收稿日期:2014-11-27;改回日期:2014-12-18

基金项目:中国地质调查局"风雷山、额默勒乌拉、锥西口、平台山幅区域地质矿产调查"项目(1212011220462)资助。

作者简介:贾元琴,女,1986年生,工程师,硕士,主要从事区域地质矿产调查;E-mail:344154791@qq.com。

通讯作者:赵志雄,男,1984年生,工程师,硕士,从事区域地质矿产调查;E-mail:443844234@qq.com。

and low TiO₂ (0.06%–0.19%), CaO (0.38%–1.04%), MgO (0.09%–0.17%) content with K_2O / Na_2O higher than 1. They are relatively enriched in large ion lithophile elements (LILE) Rb and K, while depleted in high field strength elements (HFSE) Nb, Ta, P and Ti. The total amount of light rare earth elements ($\Sigma LREE$ average value being 127.55×10^{-6}) is significantly higher than that of the heavy rare earth elements ($\Sigma HREE$ average value being 10.92×10^{-6}), and LREE fractionation obviously ((La/Yb)_N varies from 6.37 to 7.88, with an average of 7.05, whereas (La/Sm)_N varies from 4.51 to 4.61, with an average of 4.55. Eu has obvious negative anomaly (δ Eu average value being only 0.62). Petrological and geochemical characteristics indicate that the tectonic setting was a continental– margin– arc. Zircon U– Pb age is 318.5 ± 1.2Ma for rhyolite by LA– IC– MS method. Combined with regional geological features, the authors believe that Baishan Formation in Fengleishan formed in the Late Carboniferous.

Key words: Fengleishan; Baishan Formation; rhyolite; geochemistry; zircon U-Pb dating; tectonic setting

About the first author: JIA Yuan-qin, female, born in 1986, engineer, master, mainly engages in regional geological and mineral survey; E-mail:344154791@qq.com.

About the corresponding author: ZHAO Zhi-xiong, male, born in 1984, engineer, master, major in regional geological and mineral survey; E-mail:443844234@qq.com.

Fund Support: Supported by China Geological Survey Program (No. 1212011220462).

北山地区位于华北板块、塔里木板块和哈萨克 斯坦板块的交汇部位,总体上为一近东西向展布的 构造-岩浆活动带,从区域地层建造及岩浆岩组合 特征来看,可划分出北、中、南三个构造带。北带指 明水南一石板井一线以北,南带指方山口一月牙山 一线以南地区,南、北两带之间为中带[1-5]。鉴于该 区构造位置特殊,近年来一直成为研究的热点。对 于区内白山组的时代归属问题长期以来存在争议, 1:100万区调●、1:20万区调●将其划归早石炭世; 《内蒙古自治区岩石地层》认为白山组与绿条山组 为连续沉积,空间上两者常呈交错状接触,而绿条 山组中含有腕足类 Syringothyris sp.、珊瑚 Caninia sp., Caninophyllum sp.等早石炭世海相动物化石^[6], 据此将其时代定于早石炭世;黄增保等四认为白山组 为早石炭世晚期红石山洋向塔里木板块俯冲形成的; 卢进才等四在红石山白山组安山质角砾晶屑凝灰熔 岩中获得LA-MC-ICP-MS 锆石 U-Pb 年龄为 (314.9±3.3)Ma,属于晚石炭世早期。本文通过对北 山地区风雷山一带分布的白山组流纹岩的产出状态、 岩石学、地球化学、锆石U-Pb年代学等方面的研究, 厘定白山组的地层时代,明确其形成的构造环境。

1 地质概况及岩石学特征

研究区位于内蒙古额济纳旗西部地区,大地构

造位置处于南部明水一石板井一小黄山蛇绿岩带与 北部红石山一蓬勃山蛇绿岩带之间(图1-a)。区内 出露地层主要为古元古界北山岩群和石炭系白山组, 北山岩群1:20万区调时划归下石炭统白山组⁹,依据 岩石地层清理结果,将其从白山组分解出来,岩性 以中高级变质岩为主,将其归并为北山岩群;白山 组由中酸性、酸性火山熔岩、火山碎屑岩组成,顶被 二叠世的双堡塘组不整合覆盖⁶⁰,上述地层被中新 生代地层覆盖。

经野外实地调查,白山组岩性主要为紫红色流 纹岩、流纹质含角砾岩屑晶屑凝灰岩、英安质、安山 质晶屑凝灰岩夹少量灰色英安岩等,被晚石炭世石 英闪长岩、花岗闪长岩、二长花岗岩等侵入(图1b)。该套岩层层面平缓,2个主要岩性单元空间顺 序可以确定,即底部为红色酸性熔岩,上部为中酸 性火山碎屑岩。依据喷发特征和岩石空间叠置关 系将其划分为白山组一段、二段。一段岩性主要为 紫红色流纹岩;二段岩性主要为流纹质、英安质岩 屑晶屑凝灰岩,大部分都含角砾。浅褐红色流纹 岩:岩石风化面呈紫红色,新鲜面呈浅褐红色,斑状 结构,基质隐晶状-微晶状结构,块状构造。斑晶: 斜长石为0.5~2.5 mm半自形板状,约占15%;石英 为0.5~3 mm熔蚀浑圆状或熔蚀半自形晶,约占5%~ 8%;钾长石少量。基质由0.01~0.1 mm隐晶状长英

❶甘肃玉门幅K-471:100万地质图说明书.地质部地质研究所,1964.

❷吕桂德,徐宜昌,原秉昌,等.甘肃路井幅K-47-22区域地质调查报告(比例尺1:20000).甘肃省地质局地质力学区测队,1977.

图1 风雷山地区所处大地构造位置(a)(据文献[8]修改)及地质图、采样位置图(b) Fig.1 Schematic geological map of sampling location (b) and tectonic sketch map (a) (after reference [8]) of Fengleishan area

质(30%~40%)、霏细状长英质(30%~40%)以及少量 球粒状长英质(5%~10%)构成。

2 分析测试方法

岩石薄片经显微镜下鉴定后,选择新鲜样品进 行地球化学分析。首先将岩石样品在破碎机上进 行粗碎,然后在玛瑙钵体和柱头的研磨机上研磨至 200 目以下,样品加工过程均在无污染设备中进 行。样品主量元素和微量元素分析由河北省区域 地质矿产研究所实验室完成。主量元素用X射线 荧光光谱仪(Axiosmax)分析;微量元素用等离子体 质谱仪(X-serise2)分析,分析精度优于5%。

用于锆石U-Pb年代学测定的样品,在河北省 区域地质矿产研究所实验室对锆石进行分选。将 完整的典型锆石置于DEVCON环氧树脂中,待固结 后抛磨,使锆石内部充分暴露,然后进行锆石的显 微照相(反射光和透射光)和锆石的阴极发光(CL) 照相,锆石的透射光、反射光和阴极发光照相在北 京锆年领航科技有限公司完成。锆石U-Pb同位素 分析在天津地质矿产研究所同位素实验室完成,使 用仪器为Neptune多接收电感耦合等离子体质谱仪和193 nm激光取样系统(LA-MC-ICP-MS)。激光剥蚀的斑束为35 μm,能量密度为13~14 J/cm²,频率为8~10 Hz,激光剥蚀物质以He为载气送入Neptune(MC-ICP-MS)。锆石标样采用TEMORA标准锆石。数据处理采用中国地质大学Liu等编写的ICPMSDataCal程序^[9]和Ludwing等编写的Isoplot程序^[10]进行作图,采用²⁰⁸Pb对普通铅进行校正,利用NIST作为外标计算锆石样品的Pb、Th、U含量。

3 年代学测定结果

流纹岩样品采自额济纳旗西红石门。地理坐标:东经99°15′24″,北纬41°57′23″。样品(TW6151)中的锆石多呈无色,短柱状一长柱状,长宽比多介于1:2~1:3,个别为1:1,阴极发光CL图像(图2)显示出多数锆石内部具典型的明暗相间的环带结构,表明其属于岩浆结晶的产物^[11],少量锆石的中心存在浑圆状老核。锆石U-Pb测年结果见表1,25个点的测试结果显示锆石的Th/U比值介于0.42~1.06,也说明了锆石属于典型岩浆成因锆石^[12-13]。在锆石

2016年

图2 风雷山白山组流纹岩(TW6151)代表性锆石的CL图像及分析点和年龄

Fig.2 CL images of the representative zircons for rhyolites (TW6151) from Baishan Formation in Fengleishan area showing the analyzed spots and their ages

图 3 风雷山白山组流纹岩LA-MC-ICP-MS 锆石 U-Pb 年龄谐和图 Fig.3 LA-ICP-MS zircon U-Pb concordia diagram for rhyolites from Baishan Formation in Fengleishan

U-Pb年龄²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U谐和图中(图3),所有 分析数据点均分布在谐和线上及其附近,²⁰⁶Pb/²³⁸U 加权平均年龄为(318.5±1.2)Ma(n=25),MSWD= 0.95(1 σ)。

4 地球化学特征

4.1 主量元素

从表2中可以看出,流纹岩SiO₂含量高(77.05% ~77.52%);Al₂O₃含量中等(11.96%~12.32%);全碱 (K₂O+Na₂O)含量为7.50%~7.83%,其中K₂O为 3.80%~4.06%,K₂O/Na₂O>1(1.03~1.07),但未出现 Ne、Lc、Ac等过碱性矿物;TiO₂(0.06%~0.19%)、 CaO(0.38%~1.04%)、MgO(0.09%~0.17%)含量低。 岩石化学计算结果表明,岩石的里特曼指数*o*(*o*= ((K₂O + Na₂O)²/SiO₂-43)) < 1.8,在1.65~1.78变化, 平均为1.74,为钙性系列,TAS火山岩分类图解中3 个样品投影点均落于流纹岩区内(图4)。

4.2 微量元素

在原始地幔标准化的微量元素配分图(图5-a) 中,可以看出流纹岩相对富集了易溶于水的、来自 于富集型交代地幔楔的大离子亲石元素(LILE)Rb、 K,而亏损较难溶于水的高场强元素(HFSE)Nb、Ta、 P、Ti,反映了俯冲带岩浆岩的特征^[15]。样品稀土总 量变化于125.22×10⁻⁶~143.02×10⁻⁶,平均为138.47× 第43卷第1期

	Table 1 LA-ICP-MS U-Pb data for zircons of rhyolites from Baishan Formation in Fengleishan															
占是		含量/1()-6	- Th/U			U-Pb 同位	素比值	ī.				表面年龄	/Ma		
黑马	Pb	Th	U	- 11/0	206Pb/238U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	$1\sigma^{20}$	⁰⁷ Pb/ ²⁰⁶ Pb	1σ
1	8	94	143	0.66	0.0501	0.0005	0.375	0.008	0.0543	0.0010	315	3	323	7	382	43
2	5	67	84	0.79	0.0506	0.0005	0.400	0.012	0.0574	0.0016	318	3	342	10	506	63
3	5	67	85	0.79	0.0497	0.0005	0.370	0.015	0.0540	0.0022	313	3	320	13	372	92
4	13	148	237	0.62	0.0500	0.0004	0.381	0.005	0.0552	0.0006	315	3	328	4	419	25
5	17	239	295	0.81	0.0508	0.0005	0.380	0.005	0.0543	0.0005	319	3	327	4	381	21
6	7	110	122	0.90	0.0510	0.0005	0.359	0.009	0.0511	0.0012	321	3	312	8	244	56
7	6	66	102	0.64	0.0502	0.0006	0.361	0.012	0.0522	0.0017	316	4	313	11	294	76
8	9	109	156	0.70	0.0506	0.0005	0.377	0.007	0.0541	0.0009	318	3	325	6	376	39
9	14	155	254	0.61	0.0499	0.0006	0.368	0.006	0.0535	0.0008	314	4	318	5	351	32
10	13	162	229	0.70	0.0516	0.0007	0.375	0.006	0.0527	0.0007	324	5	323	5	315	31
11	13	201	216	0.93	0.0510	0.0005	0.383	0.005	0.0546	0.0006	320	3	330	4	394	23
12	23	276	411	0.67	0.0506	0.0005	0.377	0.004	0.0541	0.0003	318	3	325	3	374	14
13	21	341	355	0.96	0.0507	0.0003	0.397	0.005	0.0569	0.0006	319	2	340	4	486	24
14	16	160	303	0.53	0.0507	0.0005	0.361	0.005	0.0516	0.0005	319	3	313	4	268	20
15	13	170	223	0.76	0.0499	0.0005	0.371	0.011	0.0540	0.0015	314	3	321	10	371	65
16	6	107	101	1.06	0.0507	0.0005	0.383	0.011	0.0549	0.0015	319	3	329	10	407	62
17	14	176	256	0.69	0.0510	0.0005	0.386	0.005	0.0548	0.0006	321	3	331	5	404	25
18	17	263	270	0.97	0.0520	0.0005	0.382	0.005	0.0532	0.0005	327	3	328	4	337	21
19	9	84	161	0.52	0.0508	0.0004	0.366	0.015	0.0523	0.0019	320	3	317	13	296	82
20	14	171	238	0.72	0.0511	0.0005	0.387	0.005	0.0549	0.0005	321	3	332	4	410	22
21	17	230	288	0.80	0.0507	0.0005	0.385	0.005	0.0551	0.0006	319	3	331	5	418	22
22	11	123	188	0.65	0.0506	0.0005	0.365	0.007	0.0523	0.0008	318	3	316	6	299	37
23	21	225	365	0.62	0.0513	0.0006	0.387	0.004	0.0548	0.0004	322	4	332	4	402	16
24	15	146	266	0.55	0.0509	0.0005	0.403	0.005	0.0573	0.0006	320	3	344	5	504	23
25	22	173	412	0.42	0.0503	0.0005	0.383	0.004	0.0551	0.0004	317	3	329	4	417	16

图4 火山岩TAS分类命名图(据文献[14]修改) Fig.4 The classification and nonmenclature diagram for rhyolites from Baishan Formation in Fengleishan (modified after reference [14])

10⁻⁶,轻稀土总量(ΣLREE平均为127.55×10⁻⁶)明显 高于重稀土(ΣHREE平均为10.92×10⁻⁶),轻重稀土 分馏明显((La/Yb)^N变化于6.37~7.88,平均为7.05; (La/Sm)^N变化于4.51~4.61,平均为4.55),Eu具较为 明显的负异常(δ Eu平均仅为0.62),与图中(图5-b) 显示特征相符。相对亏损Sr,且Eu具较为明显的 负异常,说明可能发生了斜长石的分离结晶作用。

5 讨 论

研究区位于旱山陆块,大地构造单元划分属于 明水岩浆弧(Ⅲ级)^[18],龚全胜等认为早石炭世红石 山大洋向南俯冲于明水一旱山陆块之下,在其大陆 边缘形成陆缘岩浆弧^[19]。流纹岩地球化学特征显示 样品的里特曼指数(σ)均小于1.8,属钙性系列,而 钙碱性系列岩石与大洋板块的俯冲作用是密切相 关的,是俯冲消减带特有的产物^[20-21]。岩石样品具

质

Table 2 Major(%), trace element(10°)values of rhyolitesfrom Baishan Formation in Fengleishan

样品编号	GS6108	GS6150	GS6151
SiO ₂	77.16	77.52	77.05
TiO ₂	0.18	0.18	0.18
Al_2O_3	11.96	12.32	12.06
Fe_2O_3	0.7	0.81	0.74
FeO	0.191	0.126	0.055
MnO	0.04	0.01	0.02
MgO	0.17	0.09	0.12
CaO	0.73	0.38	1.04
Na ₂ O	3.78	3.78	3.7
K ₂ O	4.024	4.058	3.8
P ₂ O ₅	0.02	0.03	0.03
H_2O^+	0.51	0.48	0.45
悠生量	0.92	0.57	1 11
元八里 Total	100.4	100.36	100.25
	1.07	1.07	1 02
$\kappa_2 O/1 \kappa a_2 O$	1.07	1.07	1.05
C c	1./0	1.70	2.14
CS Dh	2.55	2.54	2.14
KU D-	149.1	130.3	142.0
Ba	767.8	679.2	771.7
Th	16.91	17	17.68
U	3.61	1.96	2.42
K	3.34	3.37	3.15
Nb	10.53	10.88	11.15
Та	0.89	0.81	0.88
Sr	96.4	88.2	104.9
Р	107	121	120
Zr	97.5	110	109.3
Hf	3.86	4.08	4.16
Ti	1071	1108	1069
Y	24.93	22.39	21.12
La	31.2	33.88	27.38
Ce	59.14	58.5	51.33
Pr	6.93	7.45	6.24
Nd	24.42	26.7	22.17
Sm	4.33	4.62	3.82
Eu	0.88	0.87	0.79
Gd	4.05	4.33	3.61
Tb	0.65	0.61	0.55
Dy	3.81	3.48	3.17
Ho	0.79	0.71	0.64
Er	2.53	2.23	2.03
Tm	0.46	0.41	0.35
Vh	33	29	2.67
In	0.54	0.48	0.46
Lu (Lo/Vb)	6.27	7 00	6.0
$(La/YD)_N$	0.37	1.88	0.9
ZKEE	143.02	147.10	125.22
0Eu	0.64	0.59	0.65

有富 SiO₂、高 K₂O、低 TiO₂的特征, 富集 K、Rb、Th, 亏 损 Nb、Ta、Ti等高场强元素, 轻稀土富集, Ta/Yb 平均 值为 0.24, 具有钙碱性火山弧的一般特征^[22]。白山 组流纹岩中富集大离子亲石元素 Rb、Th、U, 明显亏 损高场强元素 Nb、Ta等, 并具有显著的 Sr 负异常 (图 5-a), 这与成熟岛弧环境形成的火山岩具有相似 的曲线分布形式^[23]。一般岛弧火山岩以玄武岩、安山岩为主,酸性火山岩少见,钾含量低,且Ta/Yb值大多小于0.1^[24]。研究区白山组以流纹岩为主,且大量产出爆发形成的火山碎屑岩,与岛弧火山岩明显不同,而与陆缘弧火山岩岩石组合相似^[25],在log(Ta/Yb)-log(Th/Yb)图解中(图6)中样品均落入陆缘弧火山岩区内。综上所述,风雷山白山组流纹岩构造环境为陆缘弧。这与《内蒙古自治区岩石地层》所述白山组形成于岛弧环境^[6]不一致,但与黄增保等红石山地区白山组研究结果相一致^[7]。

风雷山白山组流纹岩LA-ICP-MS 锆石 U-Pb 年龄为(318.5±1.2)Ma,与部分学者获得的白山组火 山岩年龄分布范围(297.6±1.3)Ma~(318.5±4.8)Ma^[1] 相吻合,属于晚石炭世。此外,牛亚卓等在黑鹰山 采集白山组英安斑岩获得LA-ICP-MS 锆石 U-Pb 年龄为(308.6±1.0)Ma,哈珠南采集英安一安山质角 砾熔岩岩屑晶屑凝灰岩获得LA-ICP-MS锆石U-Pb年龄为(299.1±2.4)Ma^[26],也属于晚石炭世。但这 与《内蒙古自治区岩石地层》中白山组形成时代为 早石炭世间不完全一致。前人认为白山组与绿条山 组为连续沉积,应为同一时代形成的,绿条山组中 含有腕足类 Syringothyris sp.、珊瑚 Caninia sp., Caninophyllum sp.等早石炭世海相动物化石¹⁰,其时 代应为早石炭世,但从变质程度来看,绿条山组岩 石多经历了低绿片岩相变质,以变质(粉)砂岩、板 岩、千枚岩为主,而白山组岩石未发生变质,二者应 不是同期形成的,白山组形成时代明显晚于绿条山 组,结合年代学结果,笔者认为白山组形成于晚石 炭世。

6 结 论

(1)风雷山白山组流纹岩具有富 SiO₂、高 K₂O、 低 TiO₂的特征,富集 K、Rb、Th,亏损 Nb、Ta、Ti等高 场强元素,轻稀土富集,Ta/Yb平均值为0.24,σ小于 1.8,揭示出其构造环境为火山弧,岩石组合以流纹 岩和火山碎屑岩为主,与陆缘弧火山岩岩石组合相 似,故风雷山白山组火山岩构造环境为陆缘弧。

(2)风雷山白山组流纹岩LA-ICP-MS锆石U-Pb年龄为(318.5±1.2)Ma,结合区域地质特征,认为 其形成时代为晚石炭世。

致谢:项目组成员陈海东、高勇、郝增元、邱锦

图 5 风雷山白山组流纹岩原始地幔标准化微量元素配分图(a)(标准化值来源于文献[16])和球粒陨石标准化稀土配分图(b) (标准化值来源于文献[17])

Fig.5 Primitive mantle-normalized trace element spider diagrams(a)(normalized value after reference [16])and chondritenormalized REE patterns(b)(normalized value after reference [17])of rhyolites from Baishan Formation in Fengleishan

雄、鲁宁、王建斌等3年来在野外工作中提供了帮助; 天津地质矿产研究所周红英教授在LA-MC-ICP-MS 锆石 U-Pb年龄测试中给予了技术帮助;天津地 质调查中心辛后田教授级高级工程师、广东省地震局 郭良田教授级高级工程师对野外地质问题的认识方 面给予了指导;匿名审稿人审阅了全文,并提出了宝 贵的意见。在此一并致以诚挚谢意。

参考文献(References):

[1] 卢进才, 牛亚卓, 魏仙样, 等. 北山红石山地区晚古生代火山岩 LA-ICP-MS 锆石 U-Pb 年龄及构造意义[J]. 岩石学报, 2013, 29 (8): 2685-2693. Lu Jincai, Niu Yazhuo, Wei Xianyang, et al. LA–ICP–MS zircon U– Pb dating of the Late Paleozoic volcanic rocks from the Hongshishan area of the Beishan orogenic belt and its tectonic significance[J]. Acta Petroligica Sinica, 2013, 29(8): 2685–2693(in Chinese with English abstract).

[2] 左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学 出版社, 1990.

Zuo Guochao, He Guoqi. Tectonic and Metallogenic Regularity of the Beishan[M]. Beijing: Peking University Press, 1990(in Chinese).

- [3] 聂凤军, 江思宏, 白大明, 等. 北山地区金属矿床成矿规律及找矿 方向[M]. 北京: 地质出版社, 2002.
 Nie Fengjun, Jiang Sihong, Bai Daming, et al. Mineral Deposits and Exploration Direction of the Beishan Orogenic Belt[M]. Beijing: Geological Publishing House, 2002(in Chinese).
- [4] 龚全胜,刘明强,梁明宏,等.北山造山带大地构造相及构造演化[J].西北地质,2003,36(1):11-17.

Gong Quansheng, Liu Mingqiang, Liang Minghong, et al. The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 2003, 36(1): 11–17(in Chinese with English abstract).

[5] 徐学义,何世平,王洪亮,等.中国西北部地质概论——秦岭、祁 连、天山地区[M].北京:科学出版社,2008.

Xu Xueyi, He Shiping, Wang Hongliang, et al. Geological Survey of the Northwest China——Qinling, Qilian and Tianshan Region[M]. Beijing: Science Press, 2008(in Chinese).

[6] 内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996.

Geology and Mineral Resources in Inner Mongolia. Inner Mongolia Rock Formations[M]. Wuhan: China University of Geosciences Press, 1996(in Chinese).

[7] 黄增保, 金霞. 甘肃红石山地区白山组火山岩地质特征及构造背

质

景[J]. 甘肃地质, 2006, 15(1):19-24.

Huang Zengbao, Jin Xia. Geological characteristics and its setting for volcanic rocks of Baishan Formation in Hongshishan area of Gansu Province[J]. Gansu Geology, 2006, 15(1): 19–24(in Chinese with English abstract).

[8] 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS 锆石 U-Pb 测年及其地质意义[J]. 地质通报, 2012, 31 (12): 2025-2031.

Li Xiangmin, Yu Jiyuan, Wang Guoqiang, et al. Geochronology of Jijitaizi ophiolite of Beishan aea, Gansu Province, and its geological significance[J]. Geological Bulletin of China, 2012, 31 (12) : 2025–2031(in Chinese with English abstract)

- [9] Liu Yongsheng, Hu Zhaochu, Gao Shan et al. In situ analysis of major and trace elements of anhydrous minerals by LA-CIP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43.
- [10] Ludwing K R. Using Isoplot /Ex Version 2, a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronological Centre Special Publications, 1999: 1–47.
- [11] Andersen, T. Correction of common lead in U–Pb analyses that do not report ²⁰⁴Pb[J]. Chemical Geology, 2002, 192(1/2): 59–79.
- [12] Randall R,Parrish,Stephen R,Noble. Zircon U- Th- Pb Geochronology by Isotope Dilution — Thermal Ionization Mass Spectrometry[J]. Mineralogy and Geochemistry, 2003, 53(1) : 183-213.
- [13] Trevor R, Ireland ,Ian S,Williams. Considerations in zircon geochronology by SIMS[J]. Mineralogy and Geochemistry, 2003, 53(1):215–241.
- [14] Cox K G, Bell J D, Pankhurst R J. The Interpretation of Igneous Rocks[M]. London: Allen and Unwin, 1979.
- [15] Kelemen P B, Hangh K, Greenem A R. On e view of the geochemistry of subduction- related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L (ed.). Treatise on Geochemistry, 2003, 3: 593–659.
- [16] McDonough W F, Sun S R, Ringwood A E, et al. K,Rb and Cs in the earth and moon and the evolution of the earth's mantle[J]. Geochim. et Cosmochim. Acta, 1992, 56:1001–1012.
- [17] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Rare Earth Elements Geochemistry.Elservier, 1984.
- [18] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-28.

Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1–28 (in Chinese with English abstract)

- [19] 龚全胜, 刘明强, 梁明宏, 等. 北山造山带大地构造相及构造演 化[J]. 西北地质, 2003, 36(1): 11-17.
 Gong Quansheng, Liu Mingqiang, Liang Minghong, et al. The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 2003, 36(1): 11-17(in Chinese
- with English abstract).[20] Wyllie P J. Plate tectonics and magma genesis[J]. Geologische Rundschau Baud, 1991, 70: 128–150.
- [21] Wyllie P J, Ryabchikov I D. Volatile components, magmas and critical fluids in upwelling mantle[J]. Journal of Petrology, 2000, 41(7): 1195–1206.
- [22] 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学, 2007, 31(1): 92-103.
 Zhao Zhenhua. How to use the trace element diagrams to discriminate tectonic settings[J]. Geotectonica et Metallogenia, 2007, 31(1): 92-103(in Chinese with English abstract).
- [23] 刘伟,李奋其,杨晓勇,等.西藏南木林县罗扎地区早白垩世流 纹岩锆石U-Pb年龄及地球化学特征[J].中国地质,2012,39 (5):1151-1161.

Liu Wei, Li Fenqi, Yang Xiaoyong, et al. Zircon U – Pb age and geochemistry of Early Cretaceous thyolite in Luozha area of Namling County, Tibet[J]. Geology in China, 2012, 39(5): 1151–1161(in Chinese with English abstract).

- [24] Pearce J. A. Trace element Characterieristics of lavas from destructice plate boundaries[C]//Thorpe R S (ed.). Andesits. Chichest Er:Wiley, 1982: 525–548.
- [25] 夏林圻. 造山带火山岩浆作用[J]. 西北地质, 2001, 34(3): 1-8. Xia Linqi. Volcanic magmatism of the Orogen[J]. Northwestern Geology, 2001, 34(3): 1-8(in Chinese with English abstract).
- [26] 牛亚卓,魏建设,史冀忠,等.甘肃北山地区北部上石炭统火山 岩LA-ICP-MS 锆石 U-Pb 年龄及其构造意义[J].地质通报, 2013, 32(11): 1720-1727.

Niu Yazhuo, Wei Jianshe, Shi Jizhong, et al. LA–ICP–MS zircon U– Pb dating of the Upper Carboniferous volcanic rocks from northern Beishan region in Gansu Province and its tectonic significance [J]. Geological Bulletin of China, 2013, 32(11):1720– 1727 (in Chinese with English abstract).