doi: 10.12029/gc20160514

郭娜欣, 陈毓川, 吕晓强, 等. 南岭科学钻探—孔中岩浆岩的矿物特征及其对成岩、成矿作用的指示意义[J]. 中国地质, 2016, 43(5): 1645-1665. Guo Naxin, Chen Yuchuan, Lv Xiaoqiang, et al. Mineralogical characteristics of the granitoid exposed in the Nanling Scientific Drill Hole and implications for magmatism and mineralization in the Yinkeng orefield, Southern Jiangxi Province[J]. Geology in China, 2016, 43(5):1645-1665 (in Chinese with English abstract).

南岭科学钻探一孔中岩浆岩的矿物特征及其对成岩、 成矿作用的指示意义

郭娜欣!陈毓川2吕晓强3陈郑辉!赵正!

(1. 中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京100037;2. 中国地质科学院,北京100037;3. 北京矿产地质研究院,北京100012)

提要:南岭科学钻探一孔(SP-NLSD-1)位于南岭成矿带与武夷山成矿带的交汇部位——赣南银坑矿田,该钻孔总进尺 2967.83 m,钻遇了流纹岩、花岗闪长斑岩、花岗斑岩、辉长闪长玢岩等4种岩浆岩。各岩浆岩矿物组成简单,主要为石英、斜长石、钾长石、黑云母、角闪石及副矿物磷灰石、榍石等,岩石多发生绿泥石化、碳酸盐化、白云母化等蚀变。钾长石均以正长石为主。花岗闪长斑岩中的斜长石以中长石为主,少数为钠长石、更长石、拉长石;花岗斑岩中的斜长石以钠长石为主,少数为更长石。黑云母为富镁黑云母和镁铁黑云母。白云母均由黑云母蚀变而来,花岗闪长斑岩中的白云母具有低的 Al^m、Fe/(Fe+Mg)值,花岗斑岩中的白云母具有高的 Al^m、Fe/(Fe+Mg)值。磷灰石普遍含F、Cl,且F含量显著高于Cl含量。石榴石属钙铝榴石。绿泥石主要为蠕绿泥石(铁绿泥石)-密绿泥石。黑云母矿物化学特征指示花岗闪长斑岩为壳幔混源花岗岩,具有较高的氧逸度,在演化过程中发生了岩浆混合作用。根据锆石饱和温度计计算出花岗闪长斑岩、花岗斑岩、辉长闪长玢岩的结晶温度分别为810~922℃、764~819℃、742~747℃,成岩后岩浆岩经历了中高温—中低温热液蚀变作用。岩浆岩成岩时代、岩石学和岩相学所反映的岩浆演化过程、成岩物理化学条件、矿物化学特征等方面的综合信息显示,南岭科学钻探—孔中钻遇的花岗闪长斑岩与南岭地区成Cu(-Mo)-Pb-Zn-Au-Ag 矿的花岗岩十分相似,应为钻孔中揭露的银金铅锌铜矿化以及牛形坝—柳木坑银金铅锌铜矿的成矿岩浆岩,而钨铋铀矿化与岩浆岩的关系还有待于进一步研究。

关 键 词:矿物学;岩浆源区;岩浆混合作用;燕山期;成矿作用;南岭科学钻探一孔 中图分类号:P518;P634 文献标志码:A 文章编号:1000-3657(2016)05-1645-21

Mineralogical characteristics of the granitoid exposed in the Nanling Scientific Drill Hole and implications for magmatism and mineralization in the Yinkeng orefield, Southern Jiangxi Province

GUO Na-xin¹, CHEN Yu-chuan², LV Xiao-qiang³, CHEN Zheng-hui¹, ZHAO Zheng¹

收稿日期:2016-06-21;改回日期:2016-07-11

基金项目:深部探测实验研究"南岭于都一赣县矿集区立体探测与深部成矿预测示范"(SinoProbe-03-03)、国家自然科学基金项目 "南岭东段银坑地区W-Au-Ag-Pb-Zn(Cu)复合成矿机理研究"(41372092)联合资助。

作者简介:郭娜欣,女,1987,博士,助理研究员,矿物学、岩石学、矿床学专业,从事岩浆活动与成矿作用研究;E-mail:guo.naxin@163.com。

MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China;
 Chinese Academy of Geological Sciences, Beijing 100037, China; 3. Beijing Institute of Geology for Mineral Resources, Beijing 100012, China)

Abstract: The Nanling Scientific Drilling–1 (SP–NLSD–1), a subproject of the SinoProbe Program called "Deep Exploration Technology and Experimentation", is situated at the Yinkeng orefield in the junction of Nanling and Wuyi Mountain metallogenic belts. The drilling project, with footage of 2967.83 meters, revealed rhyolite, granodiorite porphyry, granite porphyry and pyroxene diorite porphyry. The magmatic rocks are mainly composed of quartz, plagioclase, potassium feldspar, biotite, amphibole and some accessory minerals, with chloritization, carbonatization and muscovitization. Potassium feldspar is dominated by orthose. Plagioclases are different in granodiorite and granite porphyry. Andesines and albites are dominant in granodiorite porphyry and granite porphyry, respectively. Most of the biotites are eastonites. Derived from biotites, muscovites in granodiorite porphyry have low Al^{VI} and Fe/(Fe+Mg) values, while muscovites in granite porphyry have high values. Apatites are rich in F and Cl, and garnet belongs to grossularite. Chlorites are prochlorites and pycnochlorites. The chemical composition of biotite suggests that granodiorite porphyry was formed by magma derived from mixture of crust and mantle with relatively high oxygen fugacity, and had undergone magma mixing during the evolution. Granodiorite porphyry, granite porphyry, and pyroxene diorite porphyry crystallized at temperatures of $810-922^{\circ}$ C, $764-819^{\circ}$ C, $742-747^{\circ}$ C, respectively. Comprehensive study suggests that granodiorite porphyry exposed in the Nanling Scientific Drill Hole is similar to granites related to Cu(-Mo)–Pb–Zn–Au–Ag deposits in Nanling region. The granodiorite porphyry is the ore-forming magmatite of Ag–Au–Pb–Zn–Cu mineralization and Niuxingba–Liumukeng deposit. The relationship between W–Bi–U mineralization and magmatism needs further research.

Key words: mineral; magmatic source; magma mixing; Yanshanian Period; metallogeny; Nanling Scientific Drilling-1

About the first author: GUO Na-xin, female, born in 1987, assistant researcher, doctor, majors in mineralogy, petrology and metallogeny, engages in the study of magmatism and related metallogeny; E-mail: guo.naxin@163.com.

Fund support: Supported by Deep Exploration in China "Deep Probing on 3D Structure, Geodynamic Process and Metallogenic Prediction of Yudu– Ganxian Ore-Concentrated Area in Nanling Range" (No. SinoProbe– 03– 03); National Natural Science Foundation of China "Research on W– Au– Ag– Pb– Zn (Cu) Composite Mineralization Mechanism in Yinkeng area, Eastern Nanling Range" (No. 41372092).

花岗质岩浆活动与成矿作用的问题一直是华 南多金属成矿省的研究热点。自新元古代以来,华 南地区形成了目前6个主要成矿带:长江中下游成 矿带、江南隆起成矿带、赣东北成矿带(钦杭带东 (火山岩)成矿带[1-2]。陈毓川等根据不同时代和构 造地质环境将南岭地区与花岗岩有关的矿床划分 为5个矿床成矿系列:南岭成矿区与燕山期中浅成 酸性花岗岩类有关的稀土、稀有、有色及铀金属矿 床成矿系列,赣东北成矿带与燕山期浅成-超浅成 中酸性花岗岩类有关的铜、铅、锌、钨、钼、铌、银、 金、铀矿床成矿系列,东南沿海成矿带与燕山期中 酸性火山-侵入岩有关的钨、锡、铌钽、钼、铜、铅锌 (银、金)、非金属矿床成矿系列,武夷—云开成矿带 与海西—印支期为主的深变质带混合花岗岩及燕 山期花岗岩有关的铌钽、金、锡矿床成矿系列,桂北 地区与前寒武纪花岗岩有关的锡、铜、铅、锌矿床成 矿系列间。以揭露南岭、武夷山成矿带结合部位地 壳结构、深部控岩控矿构造,探索成矿带结合部位 深部岩浆活动与成矿作用的动力学机制为科学目 标,通过在银坑矿田开展系统的地质实测剖面、地 球化学测量、矿田构造、岩浆活动、典型矿床和综合 地球物理探测研究,选址于地球物理工作探测到的 柳木坑隐伏岩体顶部,同时也是牛形坝—柳木坑矿 区地表与浅部破碎蚀变岩型银金铅锌铜矿化发育、 花岗闪长斑岩脉大量分布的矿化中心实施中国深 部探测南岭科学钻探一孔,代号SP-NLSD-1,孔口 坐标: X2901453.78、Y20364294.34(图1)⁴⁴。在钻孔 选址前期的矿田成岩成矿规律研究过程中发现,银 坑矿田内的钨多金属与金银铅锌铜贵多金属成矿、 花岗质与花岗闪长质岩浆活动均发生在燕山期吗。 南岭科学钻探一孔钻遇了流纹岩(381.0 Ma)、花岗

图1 银坑矿田大地构造位置图(a,底图据文献[12])与地质矿产图(b) Fig.1 Tectonic location of the Yinkeng orefield (a base map after reference [12]) and map of geology and mineral resources of

Yinkeng region (b)

闪长斑岩(160.3 Ma)、花岗斑岩(151.7 Ma)、辉长闪 长玢岩(161.0 Ma、101.3 Ma)等4种岩浆岩^[5],本文 对与成矿关系密切的燕山期岩浆岩脉的矿物学特 征进行了报道,并初步讨论了矿物学对岩浆岩脉成 因和矿田成矿作用的指示意义。

1 区域地质背景

银坑矿田位于南岭东段于都一赣县矿集区内, 是赣南地区钨、金银铅锌锰铜多金属成矿潜力较好 的矿田之一,大地构造上位于东西向南岭成矿带与 北东向武夷山成矿带的交汇部位。在地层上,除奥 陶系、志留系和三叠系之外,从青白口系到第四系 均有出露,其中,青白口系-寒武系构成褶皱基底, 泥盆系一二叠系构成褶皱盖层,侏罗系一白垩系为 断陷盆地沉积。矿田内的断裂以NNE向为主,其次 为NE—NEE向、NW—NWW向,其中,NE—NNE向 逆冲推覆构造控制了本区基本的构造格架⁶⁶。区内 岩浆活动频繁,除新元古代火山喷发形成海底火 山-沉积建造外,多为酸性-中酸性浅成-超浅成侵 入体,如加里东期长潭花岗岩岩体、印支期清溪花 岗岩岩体、燕山期江背花岗岩岩体和高山角花岗闪 长岩岩瘤。矿田内矿床类型众多,从空间分布和矿 化机制角度可以分为2类:一类是与花岗岩有关的 钨多金属矿,如画眉坳钨-铍矿、岩前钨-滑石-透 闪石矿、狮吼山硫铁-钨矿,主要分布在江背花岗岩体边缘^[7-9];一类是与花岗闪长岩有关的铜铅锌金银多金属矿,如牛形坝—柳木坑银金铅锌铜矿、老虎头—桥子坑铅锌(银金)矿,矿体多与NEE向、NWW向、近E-W向花岗闪长斑岩脉平行或相互穿插共生^[4-5,10-11]。

南岭科学钻探—孔于2011年6月开孔,2013年7 月终孔,总进尺2967.83 m,揭露了丰富的地层、构造、 岩浆岩和矿化信息——孔深1373.71 m处揭露了区 域上控岩控矿的推覆构造F₁,其上为新元古代青白口 系火山碎屑岩地层,其下为二叠系海陆交互相地层; 揭露了各类岩浆岩共计37处,均呈岩脉状产出;揭露 了浅部细脉-网脉-浸染状铅锌金银铜矿化和深部细 脉-浸染状钨铋铀矿化。钻孔柱状图见图2。

2 样品和分析方法

本次工作主要选取南岭科学钻探一孔中燕山 期岩浆岩的主要矿物作为研究对象,对其进行了电 子探针分析。测试工作在中国地质科学院矿产资 源研究所国土资源部成矿作用与资源评价重点实 验室完成,仪器型号为JXA-8230,加速电压15 kV, 电流20 nA,束斑直径5 μm。

3 岩相学和矿物化学特征

南岭科学钻探一孔揭露的岩浆岩均呈岩脉状

图 2 南岭科学钻探一孔简易柱状图 Fig.2 Simplified columnar section of the Nanling Scientific Drill Hole

表1 南岭科学钻探一孔揭露的岩浆岩	
Table 1 Magmatic dykes in the Nanling Scientific Dr	ill Hole

		gillatic uykes ill til	e Naming Scientifie I	Jim non	
孔深/m	视厚度/m	岩性	孔深/m	视厚度/m	岩性
2.9~20.68	17.78	花岗闪长斑岩	1548.42~1549.23	0.81	花岗闪长斑岩
20.68~27.00	6.32	流纹岩	1628.47~1634.06	5.59	花岗斑岩
56.90~60.87	3.97	流纹岩	1657.63~1667.32	9.69	花岗斑岩
80.19~84.83	4.64	流纹岩	1667.68~1670.07	2.39	花岗闪长斑岩
98.39~101.59	3.20	流纹岩	1672.04~1672.92	0.88	花岗斑岩
101.59~104.79	3.20	流纹岩	1705.63~1705.84	0.21	花岗斑岩
105.59~106.19	0.60	流纹岩	1713.46~1723.57	10.11	花岗斑岩
1043.22~1043.97	0.75	花岗闪长斑岩	1892.16~1896.33	4.17	花岗闪长斑岩
1045.42~1052.01	6.59	花岗闪长斑岩	1948.84~1952.06	3.22	花岗闪长斑岩
1052.54~1059.89	7.35	花岗闪长斑岩	1952.95~1961.10	8.15	花岗闪长斑岩
1096.08~1096.38	0.30	花岗闪长斑岩	2011.93~2012.43	0.50	花岗闪长斑岩
1103.94~1105.97	2.03	花岗闪长斑岩	2013.05~2017.50	4.45	花岗闪长斑岩
1334.26~1337.77	3.51	辉长闪长玢岩	2258.48~2264.75	6.27	花岗闪长斑岩
1373.71~1375.37	1.66	辉长闪长玢岩	2365.96~2369.09	3.13	花岗闪长斑岩
1381.49~1399.18	17.69	花岗斑岩	2371.63~2373.56	1.93	花岗闪长斑岩
$1418.06 \sim 1429.71$	11.65	花岗斑岩	2522.93~2527.85	4.92	花岗闪长斑岩
1438.03~1439.91	1.88	花岗闪长斑岩	2528.92~2529.77	0.85	花岗闪长斑岩
$1454.08 \sim 1455.85$	1.77	花岗闪长斑岩	2867.58~2875.92	8.34	花岗闪长斑岩
1502.24~1510.38	8.14	花岗闪长斑岩			

产出,视厚度0.21~17.78 m(图2、表1)。各岩浆岩矿 物组成简单,主要为石英、斜长石、钾长石、黑云母、 角闪石及副矿物磷灰石、榍石等,岩石多发生绿泥 石化、碳酸盐化、白云母化等蚀变^[5]。

3.1 长石

长石在花岗闪长斑岩、花岗斑岩中以斑晶形式

存在。其中,钾长石呈自形-半自形板状,多数发生 高岭土化,边部常被熔蚀,内部有时被蠕虫状石英 交代。花岗闪长斑岩中的钾长石内部有时包含黑 云母或角闪石等暗色矿物。斜长石多呈自形-半自 形板状,边部有熔蚀现象。花岗闪长斑岩中的斜长 石发育卡式双晶、聚片双晶、环带结构,花岗斑岩中

图3南岭科学钻探一孔所揭露燕山期岩浆岩的岩相学特征

a一钾长石斑晶被石英交代,孔深1380.52m花岗斑岩,正交偏光;b一长石斑晶高岭土化、绢云母化,孔深1715.02m花岗斑岩,单偏光; c一斜长石斑晶发育环带结构,孔深1892.61m花岗闪长斑岩,正交偏光;d-e一包体(d)与寄主岩(e)的矿物蚀变程度差异显著,孔深2013.80m 花岗闪长斑岩,单偏光;f一黑云母边部蚀变为白云母,核部蚀变为方解石和菱铁矿,孔深1380.52m花岗斑岩,单偏光;g一黑云母发生绿泥石 化、析出针状金红石,内部包含磷灰石,孔深1502.06m花岗闪长斑岩,单偏光;h一未蚀变黑云母,孔深2017.29m花岗闪长斑岩中暗色包体,单 偏光;i一石英斑晶中包含大量磷灰石,孔深1052.54m花岗闪长斑岩,单偏光;j一磷灰石与方解石共生,孔深2371.72m花岗闪长斑岩,单偏光; k—石榴石发育震荡环带,孔深2258.45m花岗闪长斑岩,背散射;l—白云石化、黄铁矿化,孔深1373.84m辉长闪长玢岩,单偏光; Ap—磷灰石;Bt—黑云母;Cal—方解石;Chl—绿泥石;Dol—白云石;Grt—石榴石;Kfs—钾长石;Ms—白云母;Pl—斜长石; Py—黄铁矿;Qtz—石英;Sd—菱铁矿

Fig. 3 Microphysiography of the magmatic dykes exposed in the Nanling Scientific Drill Hole

a-Metasomatic texture in orthoclase phenocryst, granite porphyry at the depth of 1380.52 m, crossed nicols; b-Orthoclase phenocryst with kaolinization and sericitization, granite porphyry at the depth of 1715.02 m, plainlight; c-Plagioclase phenocryst with zoned texture, granodiorite porphyry at the depth of 1892.61 m, crossed nicols; d~e-Different alteration intensitiesy between enclave (d) and host rock (e), Granodiorite porphyry at the depth of 2013.80m, plainlight; f-Biotite turned into muscovite at the edge, and carbonate minerals at the core, granite porphyry at the depth of 1380.52 m, plainlight; g-Chloritized biotite with rutile and apatite inside, granodiorite porphyry at the depth of 1502.06m, plainlight;
h-Biotite without alteration in dark enclave in granodiorite porphyry at the depth of 2017.29 m, plainlight; i-Quartz phenocryst with many apatites, granodiorite porphyry at the depth of 1052.54 m, plainlight; j-Associated apatite and calcite, granodiorite porphyry at the depth of 2371.72 m, plainlight; k-Garnet with zonal texture, granodiorite porphyry at the depth of 2258.45 m, BSE image; l-Dolomitization and Pyritization, pyroxene diorite porphyry at the depth of 1373.84 m, plainlight; Ap-Apatite; Bt-Biotite; Cal-Calcite; Chl-Chlorite; Dol-Dolomite; Grt-Garnet; Kfs-Potassium feldspar; Ms-Muscovite; Pl-Plagioclase; Py-Pyrite; Qtz-Quartz; Sd-Siderite

http://geochina.cgs.gov.cn 中国地质, 2016, 43(5)

	Table 2	EPMA	analysis i	esuits or	housen	d converse and		D			D							
岩柱	采样深度/ m	分点 桁数	SiO_2	TiO_2	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	Ч	CI	Total	An	Ab	ç
	17.48	2	50.56	0.00	32.43	3.12	0.02	1.00	0.06	0.07	8.10	0.00	0.04	0.00	95.38	-		98
	1043.60	5	56.13	0.09	27.97	1.56	0.01	0.83	0.28	2.22	9.50	0.01	0.03	0.01	98.63	7	20	78
	1052.54	2	56.93	0.00	24.45	1.73	0.02	0.87	0.01	0.26	13.85	0.00	0.18	0.01	98.31	0	с	76
	1053.78	2	64.30	0.00	18.54	0.06	0.01	0.00	0.04	1.28	14.99	0.04	0.00	0.02	99.27	0	12	88
	1104.07	1	55.09	0.03	27.65	0.94	0.00	0.70	0.20	2.96	6.80	0.01	0.09	0.01	94.50	1	39	59
	1508.04	2	51.76	0.08	32.17	2.16	0.02	1.05	0.01	0.12	10.22	0.01	0.03	0.01	97.62	0	2	98
	1667.75	1	51.99	0.06	38.27	1.06	0.00	1.01	0.00	0.18	7.27	0.00	0.15	0.00	100.00	0	4	96
井道宮て廃止	1894.37	1	48.02	0.23	34.93	3.49	0.05	0.88	0.04	0.62	96.6	0.13	0.01	0.01	98.37	0	6	91
化因内下斑石	2011.94	3	52.52	0.00	30.55	1.45	0.01	3.17	0.13	0.08	9.13	0.01	0.14	0.01	97.20	1	1	97
	2013.80	4	51.48	0.03	30.71	1.09	0.00	2.32	0.06	0.14	9.71	0.02	0.61	0.03	96.20	0	7	97
	2017.29	2	51.96	0.03	28.82	1.00	0.02	3.69	0.09	0.11	9.35	0.00	0.66	0.01	95.74	1	2	76
	2258.45	1	65.27	0.05	18.63	0.03	0.00	0.00	0.13	1.91	13.26	0.00	0.00	0.00	99.26	1	18	82
	2365.76	1	51.03	0.00	30.80	1.27	0.02	4.40	0.28	0.05	4.39	0.00	0.13	0.01	92.37	5	7	93
	2372.60	S	50.20	0.02	32.14	1.29	0.02	2.51	0.13	0.13	9.47	0.01	0.07	0.01	96.00	1	7	76
	2527.48	2	64.73	0.01	18.17	0.02	0.01	0.00	0.03	0.52	16.26	0.00	0.00	0.07	99.83	0	5	95
	2527.48	1	66.72	0.00	19.96	0.09	0.01	0.24	0.58	7.87	3.25	0.02	0.05	0.78	99.57	б	76	21
	1380.52	1	66.94	0.01	25.15	0.32	0.02	0.08	0.08	4.77	3.01	0.02	0.00	0.00	100.40	1	70	29
	1380.52	1	64.06	0.05	19.78	0.00	0.01	0.00	0.01	0.24	16.15	0.00	0.10	0.00	100.41	0	7	86
	1429.73	1	73.35	0.00	20.74	0.02	0.00	0.00	0.00	0.14	8.41	0.00	0.00	0.02	102.68	0	7	86
花岗斑岩	1632.95	2	64.64	0.01	17.90	0.04	0.06	0.00	0.00	0.27	17.26	0.01	0.00	0.01	100.18	0	7	86
	1663.23	2	57.58	0.00	26.86	0.95	0.04	0.04	0.02	0.17	11.72	0.01	0.13	0.01	97.53	0	7	98
	1705.36	2	52.49	0.03	34.85	0.52	0.00	0.42	0.25	0.27	7.81	0.00	0.00	0.01	96.66	2	5	93
	1715.02	2	64.41	0.00	18.12	0.06	0.03	0.00	0.01	0.29	17.05	0.00	0.01	0.00	96.66	0	ю	76
辉长闪长玢岩	1337.12	1	52.23	0.10	30.00	2.23	00.0	2.15	0.05	0.09	10.32	0.01	0.08	0.01	97.26	0	1	98

http://geochina.cgs.gov.cn 中国地质, 2016, 43(5)

钾长石电子探针分析结果(平均值)(%)

表2

					表3	斜长石	5电子扮	深针分析	斤结果(平均值)(%)							
Tal	ble 3 EPMA	A analy	ysis res	ults of	plagioc	lases o	of magn	natic ro	ocks in	the Nar	nling S	cientifi	ic Dril	l Hole	(mean v	alu	e)(%)
岩性	采样深度/m	分析 点数	SiO_2	TiO ₂	$\mathrm{Al}_2\mathrm{O}_3$	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	F	C1	Total	An	Ab	Or
	20.50	1	68.86	0.00	18.30	0.19	0.00	0.00	0.05	11.81	0.04	0.00	0.00	0.01	99.26	0	100	0
	1045.42	3	57.46	0.02	27.09	0.14	0.01	0.01	8.76	6.30	0.38	0.01	0.01	0.00	100.20	43	55	2
	1045.42	1	65.26	0.02	22.02	0.05	0.00	0.01	2.52	10.24	0.20	0.00	0.02	0.00	100.33	12	87	1
	1104.07	1	65.58	0.02	22.01	0.22	0.00	0.19	0.14	10.34	1.23	0.01	0.00	0.00	99.74	1	92	7
	1455.13	1	58.10	0.00	26.43	0.12	0.02	0.00	9.02	6.10	0.37	0.02	0.00	0.04	100.21	44	54	2
花岗	1894.37	2	54.86	0.01	29.31	0.15	0.01	0.04	10.91	4.98	0.28	0.00	0.00	0.01	100.55	54	45	2
闪长	1894.37	14	59.40	0.01	25.74	0.10	0.01	0.01	6.96	7.24	0.57	0.01	0.02	0.00	100.08	34	63	3
斑岩	1894.37	1	62.54	0.00	23.36	0.00	0.01	0.00	4.84	8.54	0.05	0.01	0.02	0.01	99.36	24	76	0
	1949.41	2	56.93	0.00	27.39	0.11	0.00	0.01	9.01	6.05	0.36	0.01	0.08	0.00	99.96	44	54	2
	1949.41	2	54.19	0.01	29.27	0.27	0.01	0.08	10.72	4.89	0.43	0.00	0.06	0.01	99.94	53	44	3
	1949.41	2	60.98	0.04	24.34	0.44	0.01	0.00	5.23	8.27	0.46	0.01	0.05	0.00	99.84	25	72	3
	1953.18	2	67.54	0.00	20.74	0.04	0.01	0.04	0.34	10.92	0.18	0.01	0.03	0.00	99.84	2	97	1
	2258.45	5	60.92	0.02	25.11	0.12	0.02	0.03	6.53	6.79	0.69	0.04	0.01	0.00	100.27	33	63	4
	1429.73	1	66.34	0.00	20.64	0.10	0.00	0.04	3.93	7.40	0.41	0.00	0.21	0.01	99.10	22	75	3
	1429.73	1	72.34	0.00	21.61	0.36	0.00	0.49	0.16	6.98	0.08	0.03	0.00	0.00	102.04	1	98	1
龙岛	1632.95	3	69.82	0.02	20.18	0.22	0.00	0.02	0.41	8.42	0.27	0.01	0.03	0.00	99.39	3	95	2
市山	1663.23	2	70.46	0.01	21.23	0.03	0.01	0.00	0.27	6.35	0.11	0.01	0.01	0.01	98.50	2	97	1
近石	1672.27	2	69.95	0.02	21.34	0.07	0.00	0.00	0.37	6.89	0.38	0.00	0.00	0.01	99.02	3	94	3
	1705.36	1	68.75	0.00	20.08	0.04	0.00	0.02	0.12	8.72	0.08	0.00	0.00	0.02	97.84	1	99	1
	1715.02	3	68 30	0.00	10.03	0.04	0.02	0.00	0.31	10.42	0.12	0.01	0.04	0.03	00.30	2	90	1

的斜长石发育卡式双晶(图3-a~c)。

第43卷第5期

电子探针分析结果(表 2~3)显示,钾长石的 SiO₂含量为48.02%~73.35%,Al₂O₃含量为17.90%~ 38.27%,K₂O含量为3.01%~17.26%,Na₂O含量为 0.05%~7.87%;Or值为21~98,Ab值为76~1,An值为 0~5。不同岩浆岩中钾长石的成分相似,多为正长 石,个别为歪长石。

花岗闪长斑岩与花岗斑岩中斜长石的成分不 同。花岗闪长斑岩中的斜长石以中长石为主(Ab6-54An33-44),少量为钠长石(Ab100-92An0-2)、更长石(Ab87-72An12~24)、拉长石(Ab44~45An53~54),SiO2含量为54.19%~ 68.86%, Al₂O₃含量为18.30%~29.31%, K₂O含量为 0.04%~1.23%, Na2O含量为4.89%~11.81%;花岗斑 岩中的斜长石以钠长石为主(Ab99-94An1-3),个别为 更长石(Ab₇₅An₂₂), SiO₂含量为66.34%~72.34%, Al₂O₃含量为19.93%~21.61%, K₂O含量为0.08%~ 0.41%, Na₂O含量为6.35%~10.42%。从花岗闪长斑 岩到花岗斑岩,斜长石中SiO2含量升高,Al2O3、 CaO、K₂O、Na₂O含量随之降低。且花岗闪长斑岩中 的斜长石在SiO₂-Al₂O₃、SiO₂-CaO、SiO₂-Na₂O图中 显示相关性良好的演化趋势,而花岗斑岩显示截然 不同的特征,说明这两种岩浆岩可能来源于不同的 源区,经历了完全不同的结晶过程。

3.2 云母

南岭科学钻探一孔揭露的岩浆岩中的原生云 母均为黑云母,在花岗斑岩和花岗闪长斑岩中以斑

图 4 南岭科学钻探—孔所揭露岩浆岩的长石 Or-Ab-An 图 Fig. 4 Or-Ab-An triangular diagram of feldspars in magmatic rocks exposed in the Nanling Scientific Drill Hole

晶形式产出。花岗斑岩中黑云母含量低,多已蚀变 为白云母和碳酸盐;花岗闪长斑岩中的黑云母多色 性显著(浅棕色-棕褐色、红棕色-深褐色等),常发 生绿泥石化、碳酸盐化,并有针状金红石或粒状磁 铁矿析出(图3-f~g)。

电子探针分析结果(表4)显示,花岗闪长斑岩 中黑云母的SiO₂含量为31.37%~38.53%,Al₂O₃含量 为15.62%~20.46%,TFeO含量为12.14%~21.17%, MgO含量为8.96%~16.33%,TiO₂含量为1.47%~ 6.60%,K₂O含量为3.45%~10.00%,Na₂O含量为

1651

		Table 4	EPMA	analysis re	esults of l	piotites of	magmatic r	ocks in t	he Nanli	ing Scient	ific Drill	Hole (%	(
岩性								枯岡	可长斑岩							
采样深度/m			104	5.42			1053.78		1894.37				1949	.41		
点号	11-1	2-1	5-1	5-3	9-1	9-2	3-3	10-2	11-1	9-2	11-1	11-2	2-1	2-2	2-3	7-1
SiO_2	36.49	35.89	38.53	36.98	37.35	36.65	35.95	35.23	33.96	35.43	36.66	36.98	36.83	36.84	36.51	36.74
TiO_2	2.48	3.33	2.23	2.35	2.25	2.49	3.83	3.16	3.80	2.57	1.97	3.82	2.14	3.78	3.70	2.47
Al_2O_3	16.21	16.99	15.62	16.40	16.86	15.87	15.68	16.54	19.98	20.46	16.27	16.37	16.45	16.20	16.49	16.28
FeO	19.99	17.54	12.14	19.66	16.57	18.98	19.35	21.05	20.25	20.49	17.86	15.70	17.04	16.86	18.21	15.33
MnO	0.25	0.30	0.08	0.20	0.14	0.19	0.34	0.34	0.58	0.46	0.24	0.35	0.32	0.27	0.44	0.20
MgO	10.33	10.30	16.33	10.41	12.55	11.35	10.77	10.26	9.45	8.96	11.42	13.48	11.59	12.86	10.96	13.79
CaO	0.00	0.02	0.04	0.01	0.02	0.00	0.00	0.03	0.50	0.11	0.01	0.01	0.02	0.00	0.02	0.00
Na_2O	0.22	0.55	0.66	0.25	0.42	0.31	0.30	0.14	0.14	0.09	0.29	0.23	0.39	0.29	0.27	0.30
K_2O	9.65	9.56	8.62	9.39	9.18	10.00	9.29	7.13	3.45	4.34	9.47	8.87	9.23	9.03	9.36	8.93
P_2O_5	0.00	0.00	0.00	0.03	0.01	0.00	0.01	0.00	0.00	0.02	0.01	0.01	0.02	0.00	0.00	0.00
F	0.17	0.09	0.24	0.14	0.13	0.08	0.24	0.12	0.04	0.06	0.21	0.31	0.39	0.26	0.21	0.69
CI	0.09	0.10	0.07	0.09	0.08	0.11	0.16	0.08	0.04	0.05	0.12	0.10	0.14	0.13	0.11	0.10
Total	95.87	94.66	94.55	95.90	95.54	96.02	95.91	94.09	92.17	93.03	94.51	96.23	94.57	96.52	96.28	94.84
							按22个	0 计算								
Si	5.4478	5.3864	5.5899	5.5127	5.4901	5.4174	5.3801	5.4076	5.2130	5.3850	5.4946	5.4193	5.5158	5.4034	5.4173	5.4425
AIIV	2.5522	2.6136	2.4101	2.4873	2.5099	2.5826	2.6199	2.5924	2.7870	2.6150	2.5054	2.5807	2.4842	2.5966	2.5827	2.5575
AI^{VI}	0.3004	0.3918	0.2608	0.3941	0.4098	0.1831	0.1460	0.4006	0.8270	1.0503	0.3684	0.2465	0.4193	0.2034	0.3007	0.2854
Ti	0.2787	0.3757	0.2432	0.2635	0.2485	0.2764	0.4314	0.3650	0.4389	0.2934	0.2218	0.4208	0.2414	0.4173	0.4127	0.2753
Mg	2.2981	2.3047	3.5305	2.3125	2.7490	2.5014	2.4017	2.3484	2.1619	2.0303	2.5507	2.9440	2.5879	2.8113	2.4247	3.0452
Fe^{2+}	1.5105	1.3506	0.6370	1.6364	1.2007	1.1350	1.5577	2.4102	2.5986	2.6042	1.2594	1.3155	1.2837	1.3473	1.5616	1.0116
$\mathrm{Fe}^{\mathrm{3+}}$	0.9853	0.8508	0.8359	0.8140	0.8352	1.2115	0.8635	0.2917	0.0000	0.0000	0.9787	0.6077	0.8508	0.7204	0.6978	0.8868
Mn	0.0315	0.0381	0.0096	0.0253	0.0172	0.0234	0.0431	0.0443	0.0751	0.0587	0.0302	0.0437	0.0408	0.0338	0.0547	0.0256
Ca	0.0005	0.0035	0.0058	0.0021	0.0035	0.0000	0.0000	0.0054	0.0817	0.0178	0.0010	0.0022	0.0032	0.0002	0.0024	0.0006
K	1.8369	1.8304	1.5954	1.7854	1.7212	1.8857	1.7727	1.3969	0.6746	0.8421	1.8098	1.6580	1.7631	1.6887	1.7721	1.6876
Na	0.0625	0.1586	0.1861	0.0711	0.1194	0.0877	0.0882	0.0417	0.0414	0.0265	0.0842	0.0659	0.1141	0.0819	0.0776	0.0861
MF_{μ}	0.4763	0.5072	0.7043	0.4830	0.5725	0.5135	0.4936	0.4610	0.4471	0.4326	0.5293	0.5995	0.5433	0.5722	0.5117	0.6128
Mg^{*}	0.4794	0.5115	0.7056	0.4855	0.5745	0.5160	0.4980	0.4650	0.4541	0.4381	0.5326	0.6049	0.5480	0.5762	0.5176	0.6160
$Fe^{3+}/(Fe^{3+}+Fe^{2+})$	0.3948	0.3865	0.5675	0.3322	0.4102	0.5163	0.3566	0.1080	0.0000	0.0000	0.4373	0.3160	0.3986	0.3484	0.3088	0.4671
F/CI	2.0000	0.9010	3.5606	1.5862	1.7600	0.6972	1.5283	1.4699	1.1429	1.0943	1.7395	3.2062	2.7552	2.0233	1.9537	6.8800

中

玉

地

质

1652

表4 黑云母电子探针分析结果(%)

2016年

		6-4	36.85	2.38	16.52	17.80	0.20	11.11	0.04	0.39	9.50	0.00	1.49	0.19	96.47		5.4956	2.5044	0.3993	0.2663	2.4683	1.3361	0.8835	0.0253	0.0059	1.8066	0.1130	0.5237	0.5265	0.3980	1.8220
	.29	6-3	36.72	2.05	16.79	19.42	0.28	10.23	0.01	0.34	9.54	0.00	1.21	0.11	96.69		5.4767	2.5233	0.4285	0.2304	2.2740	1.4833	0.9389	0.0349	0.0010	1.8149	0.0986	0.4807	0.4842	0.3876	10.6991
	2017	6-2	37.37	3.61	16.37	15.78	0.35	12.83	0.03	0.55	9.54	0.02	1.95	0.19	98.58		5.4339	2.5661	0.2387	0.3946	2.7815	1.0654	0.8531	0.0432	0.0041	1.7686	0.1550	0.5864	0.5918	0.4447	10.1852
〕体		4-1	36.95	3.66	16.40	18.63	0.39	10.24	0.00	0.39	9.53	0.00	1.10	0.16	97.44		5.4845	2.5155	0.3536	0.4080	2.2651	1.6581	0.6542	0.0487	0.0000	1.8037	0.1131	0.4896	0.4948	0.2829	6/08.9
暗色(9-3	36.77	3.58	15.99	16.25	0.44	12.80	0.02	0.39	9.46	0.02	1.49	0.14	97.35		5.4014	2.5986	0.1695	0.3953	2.8032	1.0827	0.9128	0.0546	0.0030	1.7717	0.1113	0.5776	0.5842	0.4574	10.3405
	3.80	9-2	37.10	2.35	15.83	17.90	0.34	11.49	0.01	0.42	10.10	0.00	2.07	0.13	97.74		5.4798	2.5202	0.2350	0.2608	2.5301	1.0312	1.1792	0.0427	0.0011	1.9029	0.1214	0.5290	0.5337	0.5335	15.3639
	2013	8-1	37.15	3.61	16.37	15.37	0.46	12.72	0.00	0.44	9.32	0.00	1.41	0.09	96.94		5.4623	2.5377	0.2982	0.3991	2.7875	1.1853	0.7048	0.0572	0.0000	1.7480	0.1242	0.5887	0.5959	0.3729	15.5261
		7-2	36.70	2.23	15.82	17.84	0.31	10.94	0.00	0.21	9.53	0.00	0.37	0.12	94.06		5.5577	2.4423	0.3818	0.2535	2.4681	1.4100	0.8484	0.0391	0.0000	1.8413	0.0622	0.5179	0.5222	0.3757	3.1568
	2527.48	6-2	35.10	6.60	16.71	17.31	0.48	11.10	0.14	0.19	7.12	0.00	0.19	0.10	95.03	计算	5.2906	2.7094	0.2583	0.7477	2.4936	2.1819	0.0000	0.0617	0.0226	1.3696	0.0543	0.5264	0.5333	0.0000	1.9691
	2.60	5-4	32.12	3.87	18.25	18.98	0.33	14.02	0.07	0.19	4.17	0.03	0.09	0.10	92.20	 	4.9485	3.0515	0.2618	0.4486	3.2188	2.2862	0.1589	0.0433	0.0116	0.8199	0.0552	0.5640	0.5683	0.0650	0.8462
	237.	2-2	31.37	1.86	19.20	20.95	0.45	13.13	0.01	0.07	3.51	0.03	0.10	0.03	90.71		4.9239	3.0761	0.4760	0.2195	3.0727	2.4719	0.2777	0.0594	0.0020	0.7035	0.0216	0.5224	0.5277	0.1010	3.4335
铝	55.76	6-2	36.90	1.47	18.76	17.27	0.24	9.60	0.06	0.07	6.56	0.00	0.23	0.10	91.25		5.6988	2.3012	1.1133	0.1712	2.2096	2.2310	0.0000	0.0317	0.0098	1.2928	0.0195	0.4941	0.4976	0.0000	2.5814
艺岗闪长翊	23(4-1	34.51	2.64	18.62	19.17	0.40	11.40	0.01	0.10	5.80	0.01	0.18	0.06	92.89		5.3066	2.6934	0.6807	0.3047	2.6135	2.4654	0.0000	0.0516	0.0020	1.1380	0.0295	0.5094	0.5146	0.0000	5.1818
4	2258.45	1-2	36.61	3.34	16.29	19.55	0.42	10.51	0.01	0.25	9.20	0.00	0.11	0.15	96.43		5.4436	2.5564	0.2979	0.3732	2.3293	1.7111	0.7204	0.0534	0.0021	1.7446	0.0723	0.4838	0.4893	0.2963	0.7619
		6-1	32.47	3.51	18.21	21.17	0.61	12.57	0.05	0.13	3.63	0.00	0.09	0.07	92.51		5.0356	2.9644	0.3643	0.4093	2.9043	2.7448	0.0000	0.0803	0.0086	0.7187	0.0394	0.5069	0.5141	0.0000	1.2850
	1953.18	5-2	36.34	3.33	17.15	19.16	0.50	11.77	0.02	0.28	7.41	0.00	0.25	0.08	96.29		5.3954	2.6046	0.3972	0.3713	2.6059	2.0388	0.3403	0.0630	0.0037	1.4027	0.0814	0.5162	0.5228	0.1430	5.2558
		1-1	34.52	2.59	19.82	17.84	0.53	12.72	0.15	0.28	7.98	0.00	0.33	0.04	96.78		5.0304	2.9696	0.4341	0.2836	2.7628	1.2542	0.9200	0.0657	0.0236	1.4827	0.0777	0.5523	0.5596	0.4231	1.0814
岩性	采样深度/m	点号	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Ъ	G	Total		Si	$\mathbf{M}_{\mathbf{I}}^{\mathbf{N}}$	${\rm Al}^{\rm M}$	Ti	Mg	Fe^{2^+}	Fe^{3^+}	Mn	Са	K	Na	MF_{μ}	Mg"	$Fe^{5+}/(Fe^{5+}+Fe^{2+})$	F/CI

http://geochina.cgs.gov.cn 中国地质, 2016, 43(5)

1653

第43卷第5期

图 5 南岭科学钻探—孔所揭露岩浆岩中斜长石的 SiO₂-Al₂O₃(a)、SiO₂-CaO(b)、SiO₂-Na₂O(c)图(图例同图 4) Fig. 5 SiO₂-Al₂O₃(a), SiO₂-CaO (b) and SiO₂-Na₂O (c) diagrams of plagioclases in magmatic rocks exposed in the Nanling Scientific Drill Hole (symbols as for Fig. 4)

references [13-15])

0.07%~0.66%, Mg[#](Mg/(Mg+Fe²⁺+Fe³⁺))为0.44~ 0.71, Fe³⁺/(Fe²⁺+Fe³⁺)值为0~0.57,并含有少量的F、 Cl。孔深2013.05~2017.50m钻遇的花岗闪长斑岩 中含暗色包体,与花岗闪长斑岩中的黑云母相比, 包体中的黑云母具有较高的K₂O、Na₂O、Cl含量(分 别为9.32%~10.10%、0.21%~0.55%、0.09%~0.19%) 和Fe³⁺/(Fe²⁺+Fe³⁺)值(0.28~0.53),以及显著高的F含 量(0.37%~2.07%)。在黑云母分类图(图6)中,少数 黑云母落在镁铁黑云母区域,大部分黑云母落在富 镁黑云母区域。

花岗斑岩和花岗闪长斑岩中的白云母均由黑 云母蚀变而来,二者相比,花岗斑岩中的白云母具 有高铝、低镁钾的特点(表5)。在Al^{vi}-Mg图和 $Al^{v_I}-Fe/(Fe+Mg)图(图7)中,两种次生白云母可以$ 分为截然不同的两类:花岗斑岩中的白云母具有高 $的<math>Al^{v_I}$ 值(3.30~4.15)、Fe/(Fe+Mg)值(0.72~0.89)和 低的Mg原子数,花岗闪长斑岩中的白云母则具有 低的 Al^{v_I} 值(2.55~3.47)、Fe/(Fe+Mg)值(0.14~0.59) 和高的Mg原子数。

3.3 磷灰石

磷灰石主要见于花岗闪长斑岩中,呈自形粒状、柱状,粒径0.1~0.5 mm,个别可达1.5~3 mm,主 要赋存于基质中,部分包裹于石英、长石或黑云母斑晶中(图3-g、i~j)。电子探针分析结果(表6)表明,磷灰石中CaO含量为53.95%~55.81%,P₂O₅含量为39.62%~44.54%,SO₃含量为0.01%~0.11%,F含量为0.47%~2.96%,Cl含量为0.01%~0.52%。磷灰石中F含量显著高于Cl含量, $X_{\rm f}/(X_{\rm Cl}+X_{\rm F})$ 值为0.74~1.00。与铜厂花岗闪长斑岩中的磷灰石¹¹⁶相比,南岭科学钻探一孔中的磷灰石具有较低的P₂O₅、F、Cl含量和稍高的 $X_{\rm F}/(X_{\rm cl}+X_{\rm F})$ 值。

3.4 石榴石

石榴石仅见于孔深2258.45~2264.75 m的花岗 闪长斑岩中,发育环带结构(图3-k),属于钙铝榴 石,其Pyr(镁铝榴石)分子含量为0.26%~0.51%,Spe (锰铝榴石)分子含量为0.91%~1.93%,Gro(钙铝榴 石)分子含量为51.59%~62.49%,Alm(铁铝榴石)分 子含量为22.35%~29.36%,其他端元分子含量为 7.72%~24.18%(表7)。从核部到边部,石榴石的X_{ca} 值(Ca/(Ca+Fe+Mn+Mg))与X_{Fe}值(Fe/(Ca+Fe+Mn+ 表5 白云母电子探针分析结果(平均值)(%)

Table 5 EP	MA ana	alysis re	esults of	muscov	vites of	magma	tic rock	s in the	e Nanlin	g Scient	tific Dri	ll Hole (n	iean valu	1e) (%)
岩性					花岗闪	长斑岩							花岗斑岩	
采样深度/m	17.48	20.5	1045.42	1052.54	1502.06	1508.04	2011.94	2014.3	2017.29	2365.76	2870	1380.52	1429.73	1663.23
分析点数	2	2	1	1	1	2	1	2	2	1	1	3	2	1
SiO_2	50.52	50.84	48.53	49.29	50.55	50.09	48.41	53.15	50.50	55.59	51.55	51.54	52.68	50.86
TiO ₂	0.41	0.21	0.59	0.32	0.61	0.59	0.07	0.20	0.24	0.13	0.22	0.13	0.10	0.02
Al_2O_3	30.27	31.38	29.79	28.38	30.30	28.82	34.81	30.47	29.91	29.14	29.84	32.01	35.44	35.58
FeO	4.34	3.29	3.94	4.10	3.73	5.37	1.10	0.98	1.18	2.89	2.20	4.98	3.45	1.26
MnO	0.02	0.00	0.00	0.04	0.04	0.03	0.04	0.02	0.00	0.06	0.00	0.59	0.03	0.04
MgO	1.82	1.47	2.35	2.54	1.85	3.07	0.42	2.47	2.66	3.89	2.62	0.55	0.64	0.15
CaO	0.02	0.02	0.10	0.00	0.02	0.00	0.03	0.01	0.00	0.15	0.07	0.04	0.01	0.15
Na ₂ O	0.05	0.03	0.14	0.12	0.15	0.16	0.13	0.05	0.14	0.03	0.09	0.14	0.11	0.09
K ₂ O	7.73	7.94	10.91	11.15	10.01	10.98	10.77	10.85	10.82	4.77	10.79	7.33	6.95	7.54
P_2O_5	0.01	0.02	0.00	0.00	0.00	0.02	0.03	0.00	0.01	0.00	0.00	0.02	0.00	0.01
F	0.25	0.13	0.06	0.30	0.01	0.02	0.04	0.12	0.85	0.18	0.08	0.54	0.30	0.00
C1	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.03	0.02	0.00	0.01	0.01	0.00
Total	95.43	95.33	96.42	96.25	97.27	99.14	95.85	98.33	96.34	96.84	97.46	97.89	99.70	95.70
Si	6.4398	6.4811	6.1865	6.2831	6.4432	6.3844	6.1707	6.7754	6.4369	7.0862	6.5714	6.5701	6.7153	6.4835
Al	4.5482	4.7146	4.4760	4.2646	4.5523	4.3305	5.2298	4.5784	4.4947	4.3789	4.4838	4.8100	5.3241	5.3461
Al^{IV}	1.5602	1.5189	1.8135	1.7169	1.5568	1.6156	1.8293	1.2246	1.5631	0.9138	1.4286	1.4299	1.2847	1.5165
Al^{VI}	2.9879	3.1957	2.6624	2.5477	2.9955	2.7150	3.4004	3.3538	2.9316	3.4651	3.0552	3.3801	4.0394	3.8295
Ti	0.0388	0.0204	0.0566	0.0304	0.0585	0.0562	0.0063	0.0193	0.0228	0.0121	0.0212	0.0127	0.0094	0.0015
Fe	0.4623	0.3512	0.4199	0.4372	0.3974	0.5720	0.1172	0.1048	0.1263	0.3083	0.2344	0.5309	0.3681	0.1346
Mn	0.0020	0.0000	0.0000	0.0041	0.0038	0.0033	0.0045	0.0026	0.0000	0.0060	0.0000	0.0638	0.0027	0.0039
Mg	0.3464	0.2785	0.4458	0.4834	0.3521	0.5835	0.0802	0.4688	0.5059	0.7390	0.4971	0.1041	0.1208	0.0277
Ca	0.0027	0.0022	0.0137	0.0000	0.0026	0.0000	0.0044	0.0007	0.0003	0.0202	0.0089	0.0056	0.0008	0.0205
Na	0.0135	0.0074	0.0351	0.0294	0.0371	0.0395	0.0311	0.0129	0.0334	0.0064	0.0232	0.0349	0.0279	0.0225
Κ	1.2571	1.2911	1.7750	1.8142	1.6276	1.7854	1.7520	1.7646	1.7603	0.7764	1.7555	1.1924	1.1300	1.2262
Fe/(Fe+Mg)	0.57	0.56	0.49	0.47	0.53	0.50	0.59	0.18	0.20	0.29	0.32	0.84	0.75	0.83

Mg))发生反向震荡性变化,Xc。值总体稍呈降低趋势,Xr。值总体稍呈升高趋势(图8)。具有较高钙铝榴石组分的石榴石的产出,说明岩石的成岩温度高,且岩浆的同化能力强^[17]。

3.5 绿泥石

绿泥石在花岗闪长斑岩中广泛存在,主要是在 热液蚀变过程中由黑云母、角闪石蚀变而来(图3e、g、i),大部分属于蠕绿泥石(铁绿泥石)-密绿泥石

http://geochina.cgs.gov.cn 中国地质, 2016, 43(5)

1655

图9 南岭科学钻探一孔所揭露岩浆岩中绿泥石分类图解(底
图据文献[18])(图例同图4)
Fig. 9 The classification diagram of chlorites in magmatic rocks
exposed in the Nanling Scientific Drill Hole (after
reference [18]) (symbols as for Fig. 4)

图 8 石榴石从核部到边部的*X*_{Fe}值与*X*_{Ca}值变化特征 Fig. 8 The variation of *X*_{Fe}and *X*_{Ca} value from core to edge in garnet

表6花岗闪长斑岩中磷灰石电子探针分析结果(平均值)(%)

Table 6	EPMA	analysi	is resul	ts of ap	atites o	f grano	diorite	porphy	yry in tl	he Nan	ling Scie	entific	Drill H	lole (m	ean va	lue) (%)
样品	分析	SiO	TiO	A1.O.	FeO	MnO	MaO	CaO	Na•O	K.O	P.O.	F	Cl	SO	Total	

深度/m	分析 点数	SiO_2	TiO_2	$\mathrm{Al}_2\mathrm{O}_3$	FeO	MnO	MgO	CaO	Na ₂ O	$\mathrm{K}_{2}\mathrm{O}$	$\mathrm{P}_{2}\mathrm{O}_{5}$	F	C1	SO_3	Total	$X_{\rm F}/(X_{\rm F}+X_{\rm Cl})$
17.48	1	0.11	0.05	0.00	0.13	0.23	0.04	55.01	0.06	0.00	41.18	2.02	0.28		99.11	0.93
1043.6	1	0.25	0.03	0.01	0.28	0.18	0.07	54.48	0.29	0.04	39.62	0.66	0.43		96.33	0.74
1045.42	1	0.02	0.02	0.00	0.12	0.19	0.04	54.26	0.08	0.00	40.95	0.70	0.21		96.59	0.86
1052.54	1	0.26	0.00	0.02	0.25	0.19	0.07	54.63	0.26	0.02	39.78	2.71	0.46		98.64	0.92
1053.78	1	0.04	0.02	0.00	0.21	0.22	0.04	54.29	0.13	0.00	41.25	1.67	0.52	0.08	98.45	0.86
1104.07	2	0.09	0.00	0.00	0.13	0.30	0.05	54.21	0.13	0.00	41.23	1.78	0.32	0.08	98.31	0.91
1438.79	2	0.05	0.02	0.03	0.15	0.17	0.18	54.62	0.14	0.01	40.46	2.25	0.17		98.26	0.96
1455.13	3	0.10	0.02	0.02	0.20	0.28	0.02	54.28	0.07	0.01	42.16	1.04	0.22		98.42	0.90
1502.06	1	0.09	0.02	0.00	0.37	0.29	0.02	55.13	0.05	0.01	40.44	1.03	0.38		97.82	0.83
1667.75	1	0.12	0.00	0.07	0.23	0.23	0.06	54.14	0.16	0.03	41.69	2.18	0.16		99.07	0.96
1894.37	1	0.01	0.03	0.01	0.06	0.12	0.00	55.21	0.13	0.00	40.47	0.75	0.15		96.93	0.90
1949.41	3	0.31	0.00	0.02	0.25	0.22	0.06	54.44	0.16	0.01	40.71	1.83	0.33		98.35	0.91
1953.18	2	0.07	0.00	0.01	0.12	0.18	0.02	54.49	0.05	0.00	41.49	2.12	0.21	0.03	98.78	0.94
2011.94	3	0.10	0.00	0.02	0.20	0.21	0.03	55.05	0.06	0.02	40.87	1.06	0.29		97.89	0.87
2013.8	1	0.02	0.00	0.00	0.16	0.39	0.05	54.38	0.12	0.00	40.56	2.32	0.28		98.30	0.94
2014.3	1	0.15	0.00	0.02	0.21	0.37	0.03	54.05	0.17	0.02	41.15	1.68	0.20		98.04	0.94
2017.29	3	0.10	0.00	0.01	0.15	0.14	0.04	54.37	0.11	0.01	41.00	2.79	0.09		98.81	0.98
2372.6	3	0.06	0.01	0.00	0.19	0.17	0.04	54.72	0.13	0.01	40.65	0.58	0.27		96.83	0.79

注:XF/(XF+Xcl)为原子数之比。

1657

表7花岗闪长斑岩中石榴石电子探针分析结果(%) Table 7 EPMA analysis results of garnet of granodiorite porphyry in the Nanling Scientific Drill Hole (%)

分祈 点号	SiO_2	TiO_2	$\mathrm{Al}_2\mathrm{O}_3$	FeO	MnO	MgO	CaO	Na ₂ O	$\mathrm{K}_{2}\mathrm{O}$	$\mathrm{P}_{2}\mathrm{O}_{5}$	F	Cl	Total	Pyr	Spe	Gro	Alm	Other	X_{Mg}	$X_{\rm Fc}$	X_{Mn}	X_{Ca}
1	37.59	0.26	20.58	9.72	0.62	0.11	17.52	0.18	0.06	0.03	0.11	0.02	86.78	0.43	1.45	51.59	22.35	24.18	0.0057	0.2947	0.0191	0.6805
2	36.75	0.04	20.66	12.76	0.39	0.10	21.04	0.00	0.00	0.07	0.00	0.00	91.81	0.41	0.91	61.72	29.23	7.72	0.0045	0.3167	0.0099	0.6689
3	37.06	0.17	21.72	11.50	0.56	0.07	20.47	0.01	0.00	0.00	0.05	0.01	91.61	0.26	1.24	57.12	25.04	16.33	0.0032	0.2993	0.0149	0.6827
4	36.21	0.21	20.47	11.90	0.68	0.12	19.06	0.00	0.00	0.05	0.01	0.01	88.71	0.51	1.59	56.43	27.49	13.98	0.0059	0.3195	0.0185	0.6560
5	37.58	0.08	21.27	13.14	0.42	0.07	21.61	0.00	0.02	0.06	0.04	0.00	94.29	0.27	0.93	61.56	29.23	8.01	0.0029	0.3177	0.0102	0.6692
6	36.80	0.09	20.53	12.07	0.41	0.10	21.17	0.05	0.04	0.03	0.00	0.01	91.30	0.42	0.95	62.49	27.82	8.31	0.0046	0.3034	0.0104	0.6816
7	34.45	0.00	19.24	11.94	0.77	0.08	17.52	0.00	0.01	0.05	0.00	0.00	84.07	0.36	1.93	55.19	29.36	13.17	0.0041	0.3381	0.0222	0.6356

 $\textcircled{\texttt{i}}: X_{\texttt{Mg}} = \texttt{Mg}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca}); X_{\texttt{Fe}} = \texttt{Fe}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca}); X_{\texttt{Mn}} = \texttt{Mn}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca}); X_{\texttt{Ca}} = \texttt{Ca}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca}); X_{\texttt{Ca}} = \texttt{Ca}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca}); X_{\texttt{Ca}} = \texttt{Mn}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Fe}+\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ} = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Ca})_{\circ}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Mn}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Mn}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Mn}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mg}+\texttt{Mn}) = \texttt{Mn}/(\texttt{Mn}+\texttt{Mn}) = \texttt{Mn}/(\texttt{Mn$

表8绿泥石电子探针分析结果(平均值)(%)

Table 8 EPMA analysis results of chlorites of magmatic rocks in the Nanling Scientific Drill Hole (mean value) (%)

米样深度 /m	1043.60	1045.42	1104.07	1455.13	1502.06	1508.04	1667.75	1667.75	1894.37	2011.94	2258.45	2365.76	2372.60	2527.48	2870.00
分析点数	5	1	3	4	1	1	3	2	6	2	2	4	4	1	1
SiO_2	27.42	27.38	27.08	27.43	26.54	27.46	26.06	25.33	27.33	27.62	28.41	26.51	29.40	26.61	28.08
TiO_2	1.73	0.04	1.93	0.10	0.06	0.15	0.06	0.04	0.84	0.13	0.13	0.04	0.14	0.80	0.06
Al_2O_3	20.61	21.83	20.38	21.47	20.39	20.99	22.70	20.56	19.48	19.19	19.00	20.25	21.47	20.01	20.16
FeO	20.54	19.77	22.26	22.28	26.83	22.61	22.77	40.44	25.02	22.97	25.34	25.46	21.38	24.69	21.29
MnO	0.18	0.69	0.28	0.46	0.46	0.58	0.35	0.12	0.54	0.13	0.61	0.56	0.24	0.72	0.62
MgO	16.33	18.35	15.78	15.73	14.80	16.29	15.66	2.39	13.20	16.62	14.17	14.56	15.40	14.22	17.28
CaO	0.03	0.01	0.04	0.03	0.03	0.39	0.01	0.05	0.49	0.02	0.04	0.02	0.06	0.00	0.02
Na ₂ O	0.05	0.03	0.02	0.06	0.03	0.07	0.11	0.54	0.04	0.01	0.02	0.04	0.06	0.02	0.02
K_2O	0.66	0.01	0.19	0.20	0.00	0.13	0.01	0.59	0.25	0.01	0.27	0.02	0.56	0.08	0.06
P_2O_5	0.01	0.00	0.01	0.01	0.02	0.05	0.02	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.00
F	0.04	0.05	0.02	0.06	0.00	0.10	0.04	0.00	0.05	0.06	0.05	0.06	0.06	0.02	0.01
Cl	0.01	0.01	0.01	0.01	0.00	0.01	0.03	0.12	0.01	0.01	0.01	0.01	0.01	0.00	0.00
Total	87.60	88.16	87.99	87.83	89.15	88.82	87.82	90.19	87.24	86.78	88.04	87.54	88.79	87.17	87.61
							按 28	个O计第	拿						
Si	5.6335	5.5541	5.5877	5.6581	5.5370	5.6210	5.3933	5.6417	5.7849	5.7842	5.9467	5.5991	5.9313	5.6294	5.7765
$\mathrm{Al}^{\mathrm{IV}}$	2.3665	2.4459	2.4123	2.3419	2.4630	2.3790	2.6067	2.3583	2.2151	2.2158	2.0533	2.4009	2.0687	2.3706	2.2235
$\mathrm{Al}^{\mathrm{VI}}$	2.6301	2.7755	2.5458	2.8756	2.5519	2.6874	2.9305	3.0259	2.6505	2.5265	2.6350	2.6415	3.0436	2.6179	2.6666
Ti	0.2707	0.0064	0.2991	0.0148	0.0093	0.0228	0.0089	0.0066	0.1318	0.0208	0.0203	0.0066	0.0216	0.1279	0.0088
Fe	3.5341	3.3538	3.8430	3.8439	4.6819	3.8718	3.9422	7.5729	4.4346	4.0338	4.4368	4.4986	3.6241	4.3685	3.6628
Mn	0.0310	0.1177	0.0482	0.0808	0.0818	0.1002	0.0613	0.0232	0.0974	0.0230	0.1085	0.0992	0.0408	0.1283	0.1088
Mg	5.0110	5.5500	4.8485	4.8344	4.6033	4.9702	4.8327	0.7932	4.1695	5.1856	4.4238	4.5840	4.6421	4.4832	5.3009
Ca	0.0056	0.0017	0.0091	0.0062	0.0056	0.0845	0.0017	0.0121	0.1092	0.0045	0.0078	0.0055	0.0136	0.0000	0.0046
Na	0.0217	0.0114	0.0096	0.0239	0.0109	0.0282	0.0452	0.2404	0.0145	0.0043	0.0083	0.0173	0.0249	0.0086	0.0092
K	0.1700	0.0018	0.0510	0.0516	0.0000	0.0350	0.0019	0.1645	0.0657	0.0015	0.0714	0.0067	0.1413	0.0208	0.0160
Fe/(Fe+Mg)	0.41	0.38	0.44	0.44	0.5042	0.44	0.45	0.90	0.52	0.44	0.50	0.50	0.44	0.49	0.41
<i>T</i> /°С−а	319	332	326	315	335	321	358	318	295	295	269	325	271	320	296
<i>T</i> /°C−b	322	333	330	319	340	324	361	336	301	298	274	330	275	325	299

注:T/℃-a根据文献[35]计算:T=321.98AI¹/2-61.92;T/℃-b根据文献[36]计算:T=319[AI¹/2+0.1Fe/(Fe+Mg)]-69。

(图9),其SiO₂含量为24.56%~31.74%,平均值27.42%;TiO₂含量为0~4.78%,平均值0.59%;Al₂O₃含量为18.15%~23.03%,平均值20.57%;FeO含量为18.92%~26.83%,平均值23.06%;MgO含量为11.69%~18.35%,平均值15.27%,Fe/(Fe+Mg)值为0.38~0.56(表8)。1667.75m出现富铁的鲕绿泥石、铁镁绿泥石,其FeO含量为38.64%~42.25%,MgO含量为2.14%~2.65%,Fe/(Fe+Mg)值为0.89~0.92。

4 讨 论

4.1 岩浆岩成因类型和岩浆源区特征

岩石的矿物组合和矿物成分是岩浆成分的直接反映,岩浆岩中的长石、云母等造岩矿物中蕴含 大量成因信息,对岩浆岩成因类型和岩浆源区等方 面具有重要的指示意义。徐克勤等提出同熔型花 岗岩中的黑云母具有较高的 Mg/(Mg+Fe²⁺+Fe³⁺)和

质

中

Fe³⁺/(Fe²⁺+Fe³⁺)比值,改造型花岗岩中黑云母的上述 两比值较低^[19]。在 Mg/(Mg+Fe²⁺+Fe³⁺)-Fe³⁺/(Fe²⁺+ Fe³⁺)图解(图10-a)中,南岭科学钻探一孔花岗闪长 斑岩中的黑云母分为2组,一组落在同熔型花岗岩 范围,一组落在改造型花岗岩范围,而落在改造型 花岗岩范围的9个黑云母所属的花岗闪长斑岩分别 产于孔深1892.16~1896.33 m、1952.95~1961.10 m、 2365.96~2527.77 m,其围岩为含炭质泥岩、含炭质 粉砂岩、泥灰岩夹含炭质泥岩,还原性围岩可能是 导致其Fe³⁺/(Fe²⁺+Fe³⁺)值偏低的主要原因。在Mg-(Al^{v1}+Fe³⁺+Ti)-(Fe²⁺+Mn)图(图6)中,花岗闪长斑岩 中的黑云母大部分也落在华南同熔型花岗岩范围 内。Abdel-Rahman提出I型花岗岩中的黑云母相 对富镁,S型花岗岩中的黑云母相对富铝,A型花岗 岩中的黑云母相对富铁[20],南岭科学钻探一孔中花 岗闪长斑岩中的黑云母为富镁黑云母-镁铁黑云 母,指示花岗闪长斑岩具有I型花岗岩特征。在Si-Mg/(Mg+Mn+Fe²⁺+Fe³⁺)图(图10-b)中,黑云母落在 华南同熔型花岗岩区域。在黑云母的MgO-TFeO/ (TFeO+MgO)图解(图10-c)中,本文所研究黑云母 一个落在壳源区,一个落在幔源区,其余均落于壳 幔混源区域。黑云母矿物化学特征指示南岭科学 钻探一孔中花岗闪长斑岩的源区同时有地壳和地 幔物质的参与,这与其锆石Hf同位素所反映的岩石 成因信息一致^[5]。

4.2 暗色包体对岩浆演化的指示信息

南岭科学钻探一孔 2011.93~2017.50 m 孔段花 岗闪长斑岩中含暗色包体,包体呈灰黑色水滴状、 不规则状,大小4~10 cm,与寄主岩界线清晰截然

(图 11-a~c),寄主岩一侧发育宽 1~2 mm 的褪色 边。不规则包体中见寄主岩呈细脉状穿入,形成反 向脉。上述现象指示了岩浆混合作用的存在[23]。在 包体与寄主岩的边界上,可以观察到球状石英斑晶 跨越边界(图11-e);暗色矿物呈细长片状,且长轴 方向与边界一致(图11-d);寄主岩中石英斑晶发育 变形纹(图11-g),包体中黑云母斑晶显示塑性变形 特征(图11-f),说明包体与寄主岩经历了液态共存 阶段[24]。寄主岩斑晶为石英、长石、黑云母,岩石蚀 变强烈,并发育稠密浸染状黄铁矿化;包体中斑晶主 要为长石和黑云母,且蚀变微弱,发育稀疏浸染状黄 铁矿化(图3-e~f、图11-e);二者的黑云母成分存在 差异,以上特征说明参与混合作用的两种岩浆成分不 同,相较于寄主岩,包体岩浆更贫硅、富碱,高F/Cl值 则指示包体岩浆分异程度更高[25]。包体与寄主岩矿 物粒度相似,可能说明二者温度差异较小。

此外,矿物不平衡现象十分普遍:斜长石斑晶 被熔蚀呈卵状,内部发育针状磷灰石(图11-i)。花 岗闪长斑岩中观察到反环带斜长石,被熔蚀圆滑的 斜长石颗粒外部生长自形环边(图11-j),电子探针 结果显示,边部较核部更偏基性,在核部为更长石 (孔 深 1045.42~1052.01 m, Ab₈₇An₁₂)或中长石 (1949.41 m, Ab₅₇An₄₀)时,边部分别为中长石 (Ab₅₂An₄₇)、拉长石(Ab₄₃An₅₆);石英斑晶边部被拉长 石熔蚀交代(图11-1),这些现象指示花岗闪长质岩 浆可能与更基性的岩浆发生了混合作用^[26-27]。石英 斑晶内部包含细粒的长石、云母、钛铁矿物集合体 (图11-k),这是一种更小尺度的包体。综合以上信 息发现,花岗闪长斑岩在形成过程中普遍存在岩浆

图 10 黑云母判别岩石成因类型图解(a底图据文献[19];b底图据文献[21];c底图据文献[22])(图例同图 6) Fig. 10 Discrimination diagrams of biotite for granite genetic types (diagram a after reference [19], b after reference [21], and c after reference [22]) (symbols as for Fig. 6)

http://geochina.cgs.gov.cn 中国地质, 2016, 43(5)

图 11 南岭科学钻探一孔中岩浆混合作用的岩石学、岩相学特征

a~c—2011.93~2017.50 m花岗闪长斑岩中暗色包体;d—包体与寄主岩的界线清晰截然,单偏光;e—熔蚀的石英斑晶横跨包体和寄主岩,包体和寄主岩中黄铁矿含量显著不同,反射光;f—包体中黑云母发生塑性变形,单偏光;g—寄主岩中石英斑晶发育变形纹,并发生破裂,正交偏光;h~i—斜长石斑晶被熔蚀呈卵形,内部含针状磷灰石,孔深1949.41 m花岗闪长斑岩,单偏光;j—更长石斑晶被熔蚀后外部生长中长石环边,1045.42 m花岗闪长斑岩,单偏光;k—石英斑晶内部包含小颗粒斜长石、云母、钛铁氧化物,1892.61 m花岗闪长斑岩,正交偏光;l—石英斑晶边部被拉长石熔蚀交代,内部含针状磷灰石,1892.61 m花岗闪长斑岩,正交偏光;Ap—磷灰石;Bt—黑云母;Pl—斜长石;Py—黄铁矿;Qtz—石英Fig. 11 Petrology and petrography suggesting magma mixing in the Nanling Scientific Drill Hole

a~c-Dark enclaves in granodiorite porphyry at the depth of 2011.93~2017.50 m; d-Distinct boundary between enclave and host rock, plainlight;
 e-Corroded quartz phenocryst steps over the boundary between enclave and host rock. Pyrite content in enclave and host rock is markedly different. Reflected light; f-Biotite in enclave was plastic deformed, plainlight; g-Quartz phenocryst in host rock displays deformation lamellae, crossed nicols; h~i-Egg-shaped plagioclase phenocryst, with needle-like apatite inside, granodiorite porphyry at the depth of 1949.41m, plainlight; j-Corroded oligoclase phenocryst with andesine rim, granodiorite porphyry at the depth of 1045.42m; k- Quartz phenocryst wraps aggregation of fine-grain plagioclase, mica and oxide, granodiorite porphyry at the depth of 1892.61 m, crossed nicols; l-Rim of quartz phenocryst replaced by labradorite, with needle-like apatite inside, granodiorite porphyry at the depth of 1892.61m, crossed nicols

Ap-Apatite; Bt-Biotite; Pl-Plagioclase; Py-Pyrite; Qtz-Quartz

质

中

混合作用,与之相对的是,花岗斑岩中未见岩浆混 合现象。从早侏罗世开始,在古太平洋板块向东亚 板块东缘低角度俯冲的背景下,武夷山西侧赣南地 区处于弧后伸展环境,发育大规模断裂构造和岩浆 活动,切入岩石圈地幔的线型带状深大断裂引起地 幔物质减压熔融生成玄武质岩浆并底侵于下地壳, 壳幔物质共同参与花岗闪长质岩浆的形成;切至硅 铝质地壳的区域性网格状断裂引起区域性减压,壳 源岩石重熔形成花岗质岩浆^[5]。源区深度以及源区 物质组成的差异可能是造成花岗闪长斑岩中存在 岩浆混合作用而花岗斑岩中没有发生岩浆混合作 用的主要原因。

4.3 成岩物理化学条件

花岗岩中的铁镁硅酸盐矿物对岩浆形成过程 中的物理化学条件,如压力、温度、氧逸度等有很好 的指示作用^[28-29]。

(1)温度

南岭科学钻探一孔中的岩浆岩均挑出了大量 锆石,岩相学研究也观察到锆石颗粒,且包含较多 继承锆石,尤其是花岗闪长斑岩和辉长闪长玢岩中 继承锆石的比例相当大^[5],据此可以认为岩浆源区 中的锆达到了饱和,锆石饱和温度代表了岩浆温度 的上限^[30],可以近似代表花岗质岩石近液相线温度, 根据 Watson et al.提出的锆石饱和温度计^[31],计算出 花岗闪长斑岩、花岗斑岩、辉长闪长玢岩的结晶温 度分别为810~922℃、764~819℃、742~747℃(表9)。

(2)氧化还原环境

花岗闪长斑岩中黑云母的Fe³⁺/(Fe²⁺+Fe³⁺)值为 0~0.57,平均值0.26;暗色包体中黑云母的Fe³⁺/ (Fe²⁺+Fe³⁺)值为0.28~0.53,平均值0.41。在Fe³⁺-Fe²⁺-Mg图解(图12)中,除前述1892.16~1896.33 m、1952.95~1961.10m、2365.96~2527.77m孔段可 能受到还原性地层影响的黑云母外,其余大部分黑 云母均落在Fe₂O₃-Fe₃O₄氧缓冲线上,与赣东北永平

Table 9 Zircon saturation temperatures calculated according to major and trace element values								
岩性	采样深度/m	SiO ₂ /%	Al ₂ O ₃ /%	CaO/%	Na ₂ O/%	K ₂ O/%	$Zr/10^{-6}$	锆石饱和温度/℃
花岗闪长斑岩	13.55	62.58	13.75	4.4	0.08	4.34	137	810
	17.48	63.53	15.11	3.51	0.92	4.38	145	823
	17.8	63.46	15.24	3.52	1.62	4.08	169	834
	20.48	65.32	15.35	2.73	2.1	3.59	150	831
	20.5	65.69	15.25	2.87	2.43	3.5	142	822
	1043.6	59.86	14.77	4.87	2.27	3.55	209	832
	1048.72	65.08	14.84	2.94	2.63	4.38	200	845
	1052.78	65.26	15.01	3.01	0.07	4.87	190	860
	1056.84	57.98	14.75	4.84	1.75	5.15	194	817
	1104.07	60.8	15.2	3.06	2.59	3.86	200	844
	1373.14	70.7	14.3	0.99	0.47	3.95	224	899
	1438.79	58.8	15.2	2.44	0.14	4.29	179	857
	1455.13	63.6	14.9	1.79	0.27	4.02	170	862
	1506.21	65.8	15.1	3	2.75	3.21	196	850
	1508.04	67.4	15.1	3.07	3.36	3.39	176	835
	1667.75	62.2	15.1	0.82	0.48	3.11	188	885
	1894.37	65.66	17.01	2.81	3.67	2.08	239	878
	1950.66	62.08	15.52	5.58	4.15	1.03	248	847
	1952.54	69.19	15.29	1.95	2.9	3.27	195	862
	2012.07	57.84	16.31	1.2	0.4	3.3	276	922
	2015.63	64.9	14.62	3.56	0.22	5.11	199	854
	2261.55	64.16	15.29	3.03	1.89	3.75	210	860
	2367.53	67.41	14.91	2.68	0.45	3.61	175	860
	2372.6	61.23	15.46	3.19	0.41	3.54	244	886
	2527.48	63.04	14.45	2.53	2.41	2.74	197	855
	2867.83	62.85	15.49	3.72	0.1	3.8	202	865
	2872.54	67.74	13.61	4.47	0.07	3.64	141	821
	1389.97	75.9	13	1.1	3.29	4.45	82	776
花岗斑岩	1424.03	76.4	13.1	0.55	2.8	4.66	67	767
	1631.5	75.7	13.1	0.96	2.95	4.26	85.7	785
	1663.23	76	13.3	1.22	3.82	3.18	68.6	764
	1672.22	71.9	16.9	0.47	0.86	4.16	93.9	819
	1705.6	78.7	12.9	0.15	1.31	2.42	83.9	812
	1715.02	76.8	13	0.85	3.66	3.86	79.9	777
辉长闪长玢岩	1336.3	47.8	13.3	8.53	1.04	2.56	144	742
	1374.58	47.3	13.8	7.47	1.12	3.08	133	747

表9 锆石饱和温度计算结果

a a a law last a dia a a a a dia dia dia

http://geochina.cgs.gov.cn 中国地质, 2016, 43(5)

图 12 南岭科学钻探一孔中花岗闪长斑岩的黑云母Fe^{3*}-Fe^{2*}-Mg图解(底图据文献[33]) HM—Fe₂O₃-Fe₃O₄的氧缓冲线;NNO—Ni-NiO的氧缓冲线;

FMQ—Fe₂SiO₄-SiO₂-Fe₃O₄的氧缓冲线

Fig. 12 Diagram of Fe³⁺-Fe²⁺-Mg for biotites in granodiorite porphyry exposed in the Nanling Scientific Drill Hole (after reference [33])

HM–Oxygen buffer line of Fe₂O₃–Fe₃O₄; NNO–Oxygen buffer line of Ni–NiO; FMQ–Oxygen buffer line of Fe₂SiO₄–SiO₂–Fe₃O₄

铜矿区花岗岩中的黑云母^[32]相似,说明花岗闪长斑 岩,连同其中的暗色包体在成岩时岩浆的氧逸度均 较高。

4.4 热液蚀变信息

南岭科学钻探一孔中的岩浆岩均遭受了不同 程度的热液蚀变作用,导致花岗斑岩发生白云母化/ 绢云母化、碳酸盐化(方解石、菱铁矿),花岗闪长斑 岩发生硅化、绿泥石化、白云母化/绢云母化、碳酸盐 化(方解石、白云石),辉长闪长玢岩发生碳酸盐化 (方解石、白云石)。在岩石蚀变过程中,产生绿泥 石的方式有两种:由铁、镁硅酸盐矿物直接分解,在 这种情况下,铁、镁组分没有从热液中带入;由热液 中带入铁、镁组分^[34]。本文所研究绿泥石的Fe/(Fe+ Mg)值为0.38~0.56,黑云母的Fe/(Fe+Mg)值为0.29~ 0.56,二者十分相近,且随着钻孔深度变化,二者同步 变化(图13-a),说明绿泥石成分主要受岩石原始成 分控制,热液流体对其成分影响有限。根据 Cathelineau与Jowett提出的绿泥石温度计[35-36]计算 出绿泥石的形成温度分别为226~395℃、230~396℃, 且随着钻孔深度增大,绿泥石的形成温度整体呈现略 微降低的逆向变化趋势(图13-b)。蚀变矿物组合与 蚀变矿物形成温度表明南岭科学钻探一孔中的岩浆

图 13 绿泥石与黑云母 Fe/(Fe+Mg)值随钻孔深度变化图(a) 与绿泥石形成温度随钻孔深度变化图(b) Fig. 13 Fe/(Fe+Mg) value of chlorites and biotites (a) and formation temperature of chlorites (b) varying with depth of the Nanling Scientific Drill Hole

岩受到了中高温-中低温热液流体影响。

4.5 对成矿的指示

华南地区中生代铜铅锌金银成矿作用集中在 179~160 Ma,成矿岩浆岩主要为花岗闪长岩,如德 兴、七宝山、宝山、水口山等^[37];大规模钨锡成矿作用 集中在165~150 Ma,成矿岩浆岩主要为黑云母花岗 岩,如西华山、淘锡坑、盘古山等^[3,38-40],上述二者分 属两种矿床成矿系列^[3]。南岭科学钻探一孔位于银 坑矿田牛形坝一柳木坑矿区内,既揭露了银金铅锌 铜矿化和钨铋铀矿化^[41],同时揭露了花岗闪长斑岩 和花岗斑岩,且花岗闪长斑岩和花岗斑岩的成岩时 代((160.3±0.8) Ma、(151.7±1.1) Ma)^[5]分别与上述华 南地区中生代两次成矿岩浆活动时间相对应。

在南岭科学钻探一孔的花岗闪长斑岩中识别 出岩浆混合作用,而岩浆混合作用与多种金属成矿 作用有着密切的成因关系,尤其是斑岩(-砂卡岩) 型铜-钼-金矿床,如西藏甲玛铜多金属矿^[42]、铜陵 地区的铜-铁-金矿^[43]、新疆北部的包古图铜钼金 矿^[44]等矿区,均报道存在岩浆混合作用。与长英质 岩浆相比,幔源岩浆中亲铜元素和硫的浓度更 中

高[45]。岩浆混合作用不仅使富含亲铜元素和硫的幔 源岩浆不断补充到长英质岩浆中,还由于不同端元 岩浆组分差异造成岩浆房内温度、压力、化学成分 不均匀,使岩浆发生对流循环,利于挥发性组分和 成矿物质上升、聚集、成矿146。中生代时期,武夷山 西侧赣南地区处于弧后伸展环境,发育大规模的断 裂构造与岩浆活动,武夷山构造-成矿带西缘的 NNE向鹰潭一定南深大断裂即穿过银坑地区,在牛 形坝-柳木坑矿区内表现为推覆构造F₁,南岭科学 钻探一孔即位于该推覆构造的上盘。在该断裂影 响下,地幔橄榄岩减压熔融,生成玄武质岩浆,并底 侵于下地壳,引起壳源岩石重熔,在此过程中有幔 源物质的加入。同时,前已述及,花岗闪长质岩浆 及暗色包体具有较高的氧逸度,而高氧逸度有利于 源区硫化物中的Cu、Au等成矿元素随硫化物的氧 化富集到岩浆熔体中,其后随岩浆演化和上侵从熔 体中释放发生大规模成矿作用[47-48]。

前人通过研究,认为华南地区与不同矿种(组 合)有关成矿岩浆岩在岩石类型、矿物组合、矿物化 学、岩石地球化学、同位素地球化学等方面均存在 显著差异,即岩浆岩的成矿专属性,如芮宗瑶等认 为与斑岩型矿床及玢岩型铁(铜)矿床有关岩体中 的黑云母主要是镁质黑云母,在岩浆-热液演化过 程中向富镁方向演化[49]。郭娜欣等通过统计南岭地 区中生代与钨锡钼铋和铜(钼)铅锌金银成矿有关 两类花岗岩类的岩石学和矿物学特征,提出与钨锡 钼铋成矿有关花岗岩类以黑云母花岗岩为主,其次 为白云母花岗岩、二云母花岗岩、花岗闪长岩,岩石 中的斜长石 An 值较低,平均为8;黑云母多属富铁 黑云母-铁叶云母-铝铁叶云母, MF 值为 0.0001~ 0.5311, Fe³⁺/(Fe³⁺+Fe²⁺)值为0.0625~0.8778; 白云母 常见:角闪石体积含量一般 < 3%, Mg[#]值为 0.21~ 0.53。与铜(钼)铅锌金银成矿有关花岗岩类以花岗 闪长岩为主,其次为花岗岩、石英闪长岩,斜长石An 值较高,平均为22;黑云母以富镁黑云母为主,MF 值为 0.5120~0.7216, Fe³⁺/(Fe³⁺+Fe²⁺) 值为 0.1085~ 0.3378; 白云母不常见; 角闪石一般 > 5%, Mg[#]值为 0.48~1^[15]。南岭科学钻探一孔中花岗斑岩的斜长石 主要为钠长石,An值多数为1~3;由黑云母蚀变而 成的白云母具有高铝、高Fe/(Fe+Mg)值特征,指示 原黑云母富铁。花岗闪长斑岩中的斜长石以中长 石为主, An 值多集中在 33~44;黑云母多为富镁黑 云母, MF 值为 0.43~0.70, Fe³⁺/(Fe³⁺+Fe²⁺)值为 0~ 0.57;黑云母蚀变而成的白云母具有低铝、低 Fe/ (Fe+Mg)值、高镁特征,同样指示黑云母富镁。在黑 云母的 Mg-(Al^{VI}+Fe³⁺+Ti)-(Fe²⁺+Mn)分类图解中, 花岗闪长斑岩中的黑云母与南岭地区成铜(钼)铅 锌金银矿的花岗岩类中黑云母落在相同的区域。

岩石学、岩相学、矿物化学等特征表明,南岭科 学钻探一孔揭露的花岗闪长斑岩与银金铅锌铜矿 化有关,而钨铋铀矿化与岩浆岩的关系还有待于进 一步研究。

5 结 论

质

通过对南岭科学钻探一孔中燕山期岩浆岩进 行矿物学研究,得出以下结论:

(1)南岭科学钻探一孔中揭露的燕山期岩浆岩 主要为花岗闪长斑岩、花岗斑岩、辉长闪长玢岩。 钾长石以正长石为主。斜长石在花岗闪长斑岩和 花岗斑岩中明显不同,花岗闪长斑岩中的斜长石以 中长石为主,花岗斑岩中的斜长石以钠长石为主。 黑云母主要见于花岗闪长斑岩中,为富镁黑云母。 白云母均为次生成因,花岗闪长斑岩中的白云母具 有低 Al^{vi}、Fe/(Fe+Mg)值,花岗斑岩中的白云母具有 高 Al^{vi}、Fe/(Fe+Mg)值。磷灰石普遍含 F、Cl,且F含 量显著高于 Cl含量。石榴石属钙铝榴石。绿泥石 主要为蠕绿泥石(铁绿泥石)-密绿泥石。

(2)黑云母矿物化学特征指示花岗闪长斑岩为 壳幔混源花岗岩,具有较高的氧逸度。岩石学、岩 相学、矿物化学特征指示在花岗闪长质岩浆演化过 程中发生了岩浆混合作用。

(3)花岗闪长斑岩、花岗斑岩、辉长闪长玢岩的结 晶温度分别为810~922℃、764~819℃、742~747℃,成 岩后岩浆岩经历了中高温—中低温热液蚀变。

(4)花岗闪长斑岩与银金铅锌铜矿化有关,钨 铋铀矿化与岩浆岩的关系有待进一步研究。

致谢:本次研究的野外工作得到了赣南地质调 查大队曾载淋总工程师和李江东、杨洲畬、刘珍、曾 路平等工程师的大力支持,在此深表感谢。

参考文献(References):

 [1] 徐志刚, 陈毓川, 王登红, 等. 中国成矿区带划分方案[M]. 北京: 地质出版社, 2008: 1-138. Xu Zhigang, Chen Yuchuan, Wang Denghong, et al. The Scheme of the Classification of the Minerogenetic Units in China[M]. Beijing: Geological Publishing House, 2008: 1–138 (in Chinese).

[2] 陈毓川, 王登红, 徐志刚, 等. 华南区域成矿和中生代岩浆成矿规
 律概要[J]. 大地构造与成矿学, 2014, 38(2): 219-229.
 Chen Yuchuan, Wang Denghong, Xu Zhigang, et al. Outline of

regional metallogeny of ore deposits associated with the Mesozoic magmatism in South China[J]. Geotectonica et Metallogenia, 2014, 38(2): 219–229 (in Chinese with English abstract).

- [3] 陈毓川, 裴荣富, 张宏良, 等. 南岭地区与中生代花岗岩类有关的 有色及稀有金属矿床地质[M]. 北京: 地质出版社, 1989: 1-508. Chen Yuchuan, Pei Rongfu, Zhang Hongliang, et al. The Geology of Non- ferrous and Rare Metal Deposits Related to Mesozoic Granitoids to Nanling Region[M]. Beijing: Geological Publishing House, 1989: 1-508 (in Chinese).
- [4] 陈毓川, 陈郑辉, 曾载淋, 等. 南岭科学钻探第一孔选址研究[J]. 中国地质, 2013, 40(3): 659-670.
 Chen Yuchuan, Chen Zhenghui, Zeng Zailin, et al. Research on the site selection of Nanling Scientific Drilling- 1[J]. Geology in China, 2013, 40(3): 659-670(in Chinese with English abstract).
- [5] 郭娜欣, 陈毓川, 赵正, 等. 南岭科学钻中与两种岩浆岩有关的矿 床成矿系列——年代学、地球化学、Hf同位素证据[J]. 地球学报, 2015, 36(6): 742-754.

Guo Naxin, Chen Yuchuan, Zhao Zheng, et al. Metallogenic Series related to two types of granitoid exposed in the Nanling Scientific Drill Hole: Evidence from geochronology, geochemistry and Hf isotope[J]. Acta Geoscientica Sinica, 2015, 36(6): 742–754 (in Chinese with English abstract).

[6] 王殿良. 赣南银坑铅锌银矿矿田构造解析与成矿预测[D]. 北京: 中国地质大学, 2013.

Wang Dianliang. Orefield Structural Analysis and Prediction of Yinkeng Pb-Zn-Ag Ore-field in the South Jiangxi Region[D]. Beijing: China University of Geosciences (Beijing), 2013 (in Chinese with English abstract).

[7] 赵正,陈毓川,曾载淋,等.南岭东段岩前钨矿床地质特征及成岩成矿时代[J].吉林大学学报(地球科学版),2013,43(6):1828-1839.

Zhao Zheng, Chen Yuchuan, Zeng Zailin, et al. Geological characteristics and petrogenic & metallogenic ages of the Yanqian tungsten deposit in Eastern Nanling region[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1828–1839 (in Chinese with English abstract).

[8] Feng Chengyou, Li Daxin, Zeng Zailin, et al. Mineralization styles and genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn polymetallic orefield, Southern Jiangxi Province, SE China: Evidence from geology, fluid inclusions, isotopes and chronology[J]. Acta Geologica Sinica (English edition), 2014, 88(3): 825–844. [9] Feng Chengyou, Zhao Zheng, Qu Wenjun, et al. Temporal consistency between granite evolution and tungsten mineralization in Huamei' ao, southern Jiangxi Province, China: Evidence from precise zircon U–Pb, molybdenite Re–Os, and muscovite ⁴⁰Ar–³⁹Ar isotope geochronology[J]. Ore Geology Reviews, 2015, 65: 1005– 1020.

1663

- [10] 全淦. 江西于都银坑银多金属矿田地质特征与找矿远景初步分析[J]. 江西地质, 1995, 9(4): 259-266.
 Quan Gan. An analysis of the geological features and prospect of Yinkeng Ag polymetallic orefield in Yudu County, Jiangxi[J].
 Geology of Jiangxi, 1995, 9(4): 259-266 (in Chinese with English abstract).
- [11] 范世祥,张家菁,邓茂春,等. 江西于都营脑锰银多金属矿区矿 化特征及找矿方向[J]. 福建地质, 2011, (1): 38-45.
 Fan Shixiang, Zhang Jiajing, Deng Maochun, et al. Mineralizing characteristics and ore-finding target of the Yingnao manganesesilver polymetallic deposit in Yudu County, Jiangxi Province[J].
 Geology of Fujian, 2011, (1): 38-45 (in Chinese with English abstract).
- [12] 杨明桂, 梅勇文, 周子英, 等. 罗霄一武夷隆起及郴州—上饶坳 陷成矿规律及预测[M]. 北京: 地质出版社, 1998: 1-115.
 Yang Minggui, Mei Yongwen, Zhou Ziying, et al. Ore- forming Regularities and Ore- searching Prediction of Luoxiao- Wuyi Uplift and Chenzhou- Shangrao Depression[M]. Beijing: Geological publishing House, 1998: 1-115 (in Chinese).
- [13] 刘昌实. 华南不同成因花岗岩黑云母类矿物化学成份对比[J]. 桂林冶金地质学院学报, 1984, (2): 1-14.
 Liu Changshi. Chemical comparison between biotites of different genetic types of granite in Southern China[J]. Journal of Guilin Institute of Metallurgical Geology, 1984, (2): 1-14 (in Chinese).
- [14] 孙世华, 于洁. Mg-Fe 云母化学成分的解释和分类(II)——Mg-Fe 云母的自然分类[J]. 地质科学, 1989, (2): 176-189.
 Sun Shihua, Yu Jie. Interpretation of chemical composition and subdivision of Mg-Fe micas, part B: The natural subdivision of Mg-Fe micas[J]. Scientia Geologica Sinica, 1989, (2): 176-189 (in Chinese with English abstract).
- [15] 郭娜欣, 吕晓强, 赵正, 等. 南岭地区中生代两种成矿花岗质岩的岩石学和矿物学特征探讨[J]. 地质学报, 2014, 88(12): 2423-2436.

Guo Naxin, Lv Xiaoqiang, Zhao Zheng, et al. Petrological and mineralogical characteristics of two types of metallogenic granitoid formed during the Mesozoic Period, Nanling Region[J]. Acta Geologica Sinica, 2014, 88(12): 2423–2436 (in Chinese with English abstract).

[16] 王蝶, 毕献武, 尚林波. 德兴铜矿花岗闪长斑岩成岩过程分异的 初始岩浆流体 HF、HCl浓度特征[J]. 矿物学报, 2010, 30(3): 331-337. Wang Die, Bi Xianwu, Shang Linbo. The concentration characteristics of HF and HCl deriving from early crystal of granodiorite porphyry in Dexing County, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2010, 30(3): 331–337 (in Chinese with English abstract).

- [17] 谭运金. 南岭地区脉状黑钨矿床成矿母岩的石榴子石研究[J]. 矿物学报, 1985, 5(4): 294-300.
 Tan Yunjin. Garnets from host granites of wolframite vein deposits in Nanling Region[J]. Acta Mineralogica Sinica, 1985, 5 (4): 294-300 (in Chinese with English abstract).
- [18] Deer W A, Howie R A, Zussman H J. Rock-forming minerals[J]. The Journal of Geology, 1982, 90(6): 748-749.
- [19] 徐克勤, 孙鼐, 王德滋, 等. 华南两类不同成因花岗岩岩石学特征[J]. 岩矿测试, 1982, 1(2): 1–12.

Xu keqin, Sun Nai, Wang Dezi, et al. Two genetic series of granitic rocks in Southeastern China[J]. Acta Petrologica Mineralogica et Analytica, 1982, 1(2): 1–12 (in Chinese with English abstract).

- [20] Abdel Rahman A F M. Nature of biotites from alkaline, calcalkaline and peraluminous magmas[J]. Journal of Petrology, 1994, 35(2): 525–541.
- [21] 彭花明. 杨溪岩体中黑云母的特征及其地质意义[J]. 岩石矿物 学杂志, 1997, 16(3): 271-281.

Peng Huaming. Geological characteristics of biotite from Yangxi granite body and their geological implications[J]. Acta Petrologica et Mineralogica, 1997, 16(3): 271–281 (in Chinese with English abstract).

[22] 周作使. 湖北丰山洞岩体成因探讨[J]. 岩石学报, 1986, 2(1): 59-70.

Zhou Zuoxia. The origin of intrusive mass in Fengshandong, Hubei Province[J]. Acta Petrologica Sinica, 1986, 2(1): 59–70 (in Chinese with English abstract).

- [23] 王德滋,谢磊. 岩浆混合作用:来自岩石包体的证据[J]. 高校地 质学报, 2008, 14(1): 16-21.
 Wang Dezi, Xie Lei. Magma mingling: Evidence from enclaves[J]. Geological Journal of China Universities, 2008, 14
- (1): 16-21 (in Chinese with English abstract).
 [24] 齐有强, 胡瑞忠, 刘燊, 等. 岩浆混合作用研究综述[J]. 矿物岩石
- 地球化学通报, 2008, 27(4): 409-416. Qi Youqiang, Hu Ruizhong, Liu Shen, et al. Review on magma mixing and mingling[J]. Bulletin of Mineralogy, Petrology and

Geochemistry, 2008, 27(4): 409-416 (in Chinese with English abstract).

- [25] Webster J D. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology, 2004, 210: 33–48.
- [26] Ginibre C, Wörner G, Kronz A. Minor and trace element zoning in plagioclase: IParinacota Volcano, N. Chile[J]. Contributions to

Mineralogy and Petrology, 2002, 143: 300-315

质

[27] 谢磊, 王德滋, 王汝成, 等. 浙江普陀花岗杂岩体中的石英闪长 质包体:斜长石内部复杂环带研究与岩浆混合史记录[J]. 岩石 学报, 2004, 20(6): 96-107.

Xie Lei, Wang Dezi, Wang Rucheng, et al. Complex zoning texture in plagioclase from the quartz diorite enclave in the Putuo granitic complex, Zhejiang province: Record of magma mixing[J]. Acta Petrologica Sinica, 2004, 20(6): 96–107 (in Chinese with English abstract).

- [28] Borodina N S, Fershtater G B, Votyakov S. The oxidation ratio of iron in coexisting biotite and hornblende from granitic and metamorphic rocks: role of P, T, and f(O₂) [J]. The Canadian Mineralogist, 1999, 37: 1423–1429.
- [29] Zhao Kuidong, Jiang Shaoyong, Jiang Yaohui, et al. Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan Province, South China: for the genesis of granite and related tin mineralization[J]. European Journal of Mineralogy, 2005, 17: 635–648.
- [30] Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6): 529–532.
- [31] Watson E B, Harrison T M. Zircon saturation revisited: Constraints and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64: 295–304.
- [32] 朱碧, 蒋少涌, 丁昕, 等. 江西永平铜矿区花岗岩热液蚀变与岩石成因:矿物化学、元素地球化学和Sr-Nd-Hf同位素制约[J]. 岩石学报, 2008, 24(8): 1900-1916.
 Zhu Bi, Jiang Shaoyong, Ding Xin, et al. Hydrothermal alteration and petrogenesis of granites in the Yongping copper deposit, Jiangxi Province: constraints from mineral chemistry, element geochemistry, and Sr-Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2008, 24(8): 1900-1916 (in Chinese with English abstract).
- [33] Wones D P, Eugeter P. Stability of biotite: Experiment, theory, and application[J]. The American Mineralogist, 1965, 50: 1228–1272.
- [34] 徐克勤, 胡受奚, 俞受鋆. 矿床学[M]. 北京: 人民教育出版社, 1964: 1-434.

Xu keqin, Hu Shouxi, Yu Shoujun. Mineral Deposits[M]. Beijing: People's Education Press, 1964: 1–434 (in Chinese).

- [35] Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 1988, 23: 471–485.
- [36] Jowett E C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer[J]. GAC/MAC/SEG Joint annual meeting, Toronto, 1991: 27–29.
- [37] 李晓峰, 胡瑞忠, 华仁民, 等. 华南中生代与同熔型花岗岩有关的铜铅锌多金属矿床时空分布及其岩浆源区特征[J]. 岩石学报, 2013, 29(12): 4037-4050.

Li Xiaofeng, Hu Ruizhong, Hua Renmin, et al. The Mesozoic syntexis type granite-related Cu-Pb-Zn mineralization in South China[J]. Acta Petrologica Sinica, 2013, 29(12): 4037-4050(in Chinese with English abstract).

[38] 毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时 空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4): 510-526.

Mao jingwen, Xie Guiqing, Guo Chunli, et al. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 2008, 14(4): 510-526 (in Chinese with English abstract).

- [39] Guo Chunli, Chen Yuchuan, Zeng Zailin, et al. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in- situ analyses of zircon U- Pb- Hf- O isotopes[J]. Lithos, 2012, 148: 209-227.
- [40] 方贵聪. 赣南盘古山钨矿床岩浆-热液-成矿作用研究[D]. 北京: 中国地质科学院, 2014.
 Fang Guicong. The Magmatism- Hydrothermalism-Mineralization Study of Pangushan Tungsten Deposit in South Jiangxi Province[D]. Beijing: Chinese Academy of Geological Sciences, 2014 (in Chinese with English abstract).
- [41] 赵正, 陈毓川, 郭娜欣, 等. 南岭科学钻探 0~2000 m 地质信息及 初步成果[J]. 岩石学报, 2014, 30(04): 1130-1144.
 Zhao Zheng, Chen Yuchuan, Guo Naxin, et al. The geological information and investigation progresses of Nanling Scientific Drilling in the depth between 0 and 2000 m[J]. Acta Petrologica Sinica, 2014, 30(04): 1130-1144 (in Chinese with English abstract).
- [42] 彭惠娟, 汪雄武, Axel M, 等. 西藏甲玛铜多金属矿区成矿斑岩的岩浆混合作用:石英及长石斑晶新证据[J]. 矿床地质, 2011, 30 (2): 249-265.

Peng Huijuan, Wang Xiongwu, Axel M, et al. Magma mixing in Jiama Cu–polymetalic deposit of Tibet: Evidence from quartz and feldspar phenocrysts[J]. Mineral Deposits, 2011, 30(2): 249–265 (in Chinese with English abstract).

[43] Chen C J, Chen B, Li Z, et al. Important role of magma mixing in

generating the Mesozoic monzodioritic– granodioritic intrusions related to Cu mineralization, Yongling, East China: Evidence from petrological and in situ Sr–Hf isotopic data[J]. Lithos, 2016, 248–251: 80–93.

1665

[44] 魏少妮,朱永峰. 新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J]. 岩石学报, 2015, 31(1): 143-160.

Wei Shaoni, Zhu Yongfeng. Petrology, geochronology and geochemistry of intermediate- acidic intrusions in Baogutu area, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1): 143–160 (in Chinese with English abstract).

- [45] Hattori K H, Keith J D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA[J]. Mineralium Deposita, 2001, 36: 799–806.
- [46] 王玉往, 王京彬, 龙灵利, 等. 岩浆混合作用的类型、标志、机制、 模式及其与成矿的关系——以新疆北部为例[J]. 岩石学报, 2012, 28(8): 2317-2330.
 Wang Yuwang, Wang Jingbin, Long Lingli, et al. Type, indicator,

mechanism, model and relationship with mineralization of magma mixing: A case study in North Xinjiang[J]. Acta Petrologica Sinica, 2012, 28(8): 2317–2330 (in Chinese with English abstract).

- [47] Müller D, Groves D I. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 8(5): 383–406.
- [48] Sun Weidong, Arculus R J, Kamenetsky V S, et al. Release of gold–bearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 2004, 431: 975–978.
- [49] 芮宗瑶,黄崇轲,徐钰,等.西藏玉龙斑岩铜(钼)矿带含矿斑岩与非含矿斑岩的鉴别标志[C]//青藏高原地质文集,1983,2:159-176.
 Rui Zongyao, Huang Chongke, Xu Jue, et al. On some criteria for the discrimination between ore- bearing porphyries and barren porphyries[C]//Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 1983, 2: 159-176 (in Chinese with English abstract).