Vol.47, No.5 Oct., 2020

【发现与进展】

西昆仑大红柳滩伟晶岩型稀有金属矿的形成时代:来 自白云母⁴⁰Ar/³⁹Ar同位素年龄的证据

乔耿彪,伍跃中,刘拓

(西北地质科技创新中心,中国地质调查局西安地质调查中心,陕西西安710054; 中国地质调查局造山带地质研究中心,陕西西安710054)

Formation age of the Dahongliutan pegmatite type rare metal deposit in Western Kunlun Mountains: Evidence from

muscovite ⁴⁰Ar/ ³⁹Ar isotopic dating

QIAO Gengbiao, WU Yuezhong, LIU Tuo

(Northwest China Center for Geoscience Innovation, Xi'an Center of China Geological Survey, Xi'an, 710054, Shaanxi, China; Center for Orogenic Belt Geology, CGS, Xi'an, 710054, Shaanxi, China)

1 研究目的(Objective)

新疆西昆仑地区位于青藏高原西北缘和中央 造山带的最西段,地处塔里木陆块西南缘(图1a), 大地构造位置特殊,成矿条件优越。近年来,沉积 变质型铁矿、热液-交代型铅锌矿和伟晶岩型稀有 金属矿等矿产勘查工作取得了历史性突破,资源潜 力巨大。本区已发现阿克塔斯锂矿(图1b)、红柳滩 锂矿、509道班西锂矿和白龙山锂铷多金属矿等,预 测资源量已达超大型矿床规模。目前对该区域稀 有金属矿床的成矿地质特征研究成果较多,但是矿 床形成时代认识依旧较为笼统,还没有明确的年代 学数据支撑。本研究的目的主要通过对花岗伟晶 岩中普遍存在的白云母矿物开展"Ar/"Ar定年来确 定矿床成矿年龄,为西昆仑—喀喇昆仑构造演化及 其成岩成矿作用关系研究提供新的资料。

2 研究方法(Methods)

白云母氩同位素测年在中国科学院地质与地球 物理研究所⁴⁰Ar/³⁹Ar与(U-Th)/He年代学实验室完 成。样品经处理后置于中国原子能科学研究院49-2 反应堆B4通道内进行快中子活化,持续24h,反应堆 中子瞬时通量2.65×10¹³n/cm²·s,积分通量2.28×10¹⁸ n/cm²。辐照后将带有白云母颗粒的铟片转到无氧铜 样品盘上,然后转移至激光样品仓中密封,随后加热 至140℃并去气4~5d,最后采用激光原位剥蚀法进 行⁴⁰Ar/³⁹Ar年龄测定。激光测试时采用193 nm 准分 子激光器 Analyte G2 圆形束斑 50 μ m 预剥蚀样品表 面 30 s,之后不断调整激光聚焦保证有效剥蚀 3 min; 在剥蚀的同时采用 SAES Zr-Al 泵纯化气体,而后引 入 Noblesse 惰性气体质谱仪进行分析。Ca和K的校 正 参数分别为[³⁶Ar/³⁷Ar]_{Ca}=0.000261,[³⁹Ar/³⁷Ar]_{Ca}= 0.000724,[⁴⁰Ar/³⁹Ar]_K=0.00088;K的衰变常数采用 5.543×10⁻¹⁰a⁻¹;³⁹Ar释放量>50%时可定义为坪年龄, 利用坪年龄通过 York 回归计算反等时线年龄;使用 ArArCALC程序计算坪年龄及反等时线,所有数据 的不确定度为95%置信区间(2 σ)。

3 研究结果(Results)

阿克塔斯锂矿位于大红柳滩喀拉喀什河南岸,出 露地层为三叠纪巴颜喀拉山群,南部分布晚三叠世二 长花岗岩(图1b),岩体外接触带上发育大量花岗伟晶 岩脉,沿北西-南东向顺层贯入围岩之中,稀有金属 矿化与二长花岗岩关系密切。本次研究样品采自该 矿区90-1号含矿岩脉(图1b),含稀有金属伟晶岩脉 为块状构造,伟晶结构(图1c)。岩石的矿物成分由锂 辉石(48%)、斜长石(22%)、石英(18%)和白云母 (10%)等组成;锂辉石晶体呈柱状(图1c、d),粒径大 小在5~9 mm,干涉色呈一级橙色、正高突起、Ng/C 为25°、二轴晶、正光性和正延性;斜长石晶体形态呈 粒状,粒径3~5.5 mm,矿物种属为棋盘格子状的钠长 石(图1e);石英晶体呈粒状(图1d、e),粒径3.5~5.5

Table 1 Ar / Ar isotopic data of muscovite from pegmatite vein								
激光能量/%	40Ar/39Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	${}^{40}\text{Ar}^{*/^{39}}\text{Ar}_{k}$	⁴⁰ Ar*/%	³⁹ Ark/%	Age	$\pm 2\sigma$
							Ma	
4.6mJ	30.449	174860.832	0.0254	22.946	75.36	5.46	146.74	± 17.38
4.6mJ	36.273	74820.064	0.0466	22.498	62.02	12.29	143.99	± 11.03
4.6mJ	27.481	98686.937	0.0145	23.211	84.46	9.80	148.37	± 10.02
4.6mJ	25.254	116323.620	0.0048	23.835	94.38	7.69	152.20	± 13.44
4.6mJ	25.863	89013.341	0.0174	20.733	80.17	10.29	133.10	± 10.36
4.6mJ	25.315	125509.896	0.0087	22.756	89.89	7.47	145.58	± 12.92
4.6mJ	28.442	143455.351	0.0268	20.538	72.21	6.56	131.89	± 15.76
4.6mJ	24.635	138798.635	0.0141	20.474	83.11	6.78	131.49	± 15.31
4.6mJ	27.500	76033.053	0.0126	23.791	86.51	11.78	151.93	± 7.89
4.6mJ	23.984	258583.761	0.0009	23.724	98.92	3.48	151.52	± 19.60
4.6mJ	26.625	115993.973	0.0139	22.516	84.57	7.53	144.10	± 11.68
4.6mJ	26.295	142295.968	0.0132	22.383	85.12	6.05	143.28	± 13.04
4.6mJ	27.843	190606.591	0.0153	23.317	83.75	4.83	149.02	± 16.03

表1 伟晶岩脉中白云母⁴⁰Ar/³⁹Ar 同位素分析结果 Fable 1 ⁴⁰Ar / ³⁹Ar isotopic data of muscovite from pegmatite ve

注:193 nm 激光剥蚀,束斑 50 µm,剥蚀时间 3 min, J=0.0036840 ± 0.00001842。

mm;白云母呈片状(图1d、e),片直径0.3~1.5 mm,零 散分布,解理弯曲明显,波状消光。

测试所用的白云母样品呈叠层状集合体,纯 净、无杂物。对其开展了22个靶点的激光剥蚀测 试,其中符合精度参与计算的有13组年龄,所获数 据见表1。样品年龄谱线表现出稳定的年龄谱图, 平均后取得坪年龄(144.7±4.3) Ma,全熔年龄(144.0± 3.8) Ma(图1f)。在反等时线图上(图1g),各数据相 关性良好,得出的反等时线年龄为(145.1±7.6) Ma, 与坪年龄相一致,得到的⁴⁰Ar/³⁶Ar 初始值为293.7± 64.2,与现在大气氩的⁴⁰Ar/³⁶Ar 比值(295.5)接近。 这些数据表明,白云母自结晶形成以后对⁴⁰Ar/³⁹Ar 体系保持封闭,没有受到后期热事件的影响,不存 在过剩氩,因此,由激光原位剥蚀测定的白云母年 龄是可靠的。

4 结论(Conclusions)

研究区伟晶岩脉广泛分布在巴颜喀拉山群和 大红柳滩岩体中,均呈侵入接触关系。大红柳滩岩 体的形成时代介于220~208 Ma,为晚三叠世且持 续了较长的时间。而伟晶岩脉与岩体之间的侵入 接触关系说明其成矿时代应该不早于晚三叠世。 本文测定的白云母"Ar/"Ar年龄为(144.7±4.3) Ma, 属晚侏罗世末期至早白垩世初期,晚于围岩和岩体 形成时代;结合笔者对同一样品开展的LA-ICP-MS锆石U-Pb测试获得(144.1±1.8) Ma(未发表数 据),可见这两种方法测试获得的数据一致,因此大 红柳滩含稀有金属伟晶岩脉的成岩成矿年龄为 (144.7±4.3) Ma。

5 致谢(Acknowledgements)

感谢国家自然科学基金委员会对本项目的 支持。

基金项目:本文为陕西省自然科学基金项目 (2020JM-311)、国家科技支撑计划专题项目 (2011BAB06B05-02)、国家自然科学基金项目 (41302051)联合资助的成果。

作者简介:乔耿彪,男,1979年生,硕士,教授级 高级工程师,主要从事成矿规律与成矿预测研究; E-mail:qgb408@163.com。

图1新疆西昆仑地区大地构造位置图(a)、阿克塔斯稀有金属矿区地质图(b)、含矿岩脉的野外露头与显微镜下偏光照片(c、d、 e)、伟晶岩脉中白云母"Ar/"Ar坪年龄谱图(f)和反等时线年龄图(g)

TRMB一塔里木板块;WKLS一西昆仑造山带;TSHT一甜水海地块;BYF一巴颜喀拉褶断带;SQT一南羌塘地块。主要断裂:F1一公格尔一柯 岗大断裂;F2一康西瓦-鲸鱼湖大断裂;F3一大红柳滩断裂;F4一喀喇昆仑大断裂;Sp一锂辉石;Ab一钠长石;Ms一白云母;Qtz一石英 Fig. 1 Geotectonic position(a) in the Western Kunlun, Xinjiang and geologic map(b) of Aketasi rare metal ore deposit, field

photographs and microphotographs(c, d, e) of rare metal pegmatite vein, ⁴⁰Ar/³⁹Ar plateau age (f) and inverse isochron age (g) of muscovite

TRMB-Tarim landmass, WKLS-Western Kunlun orogenic belt, TSHT-Tianshuihai landmass, BYF-Bayan Har folded and faulted zone, SQT-Southern Qiangtang landmass. Main faults: F1-Kongur-kegang fault belt;F2-Kangxiwar-Jingyuhu fault belt;F3-Dahongliutan fault belt;F4-Karakorum fault belt;Sp-Spodumene;Ab-Albite;Ms-Muscovite;Qtz-Quartz