• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程

宋哲, 李厚民, 李立兴, 丁建华, 孟洁

宋哲, 李厚民, 李立兴, 丁建华, 孟洁. 新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程[J]. 中国地质, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
引用本文: 宋哲, 李厚民, 李立兴, 丁建华, 孟洁. 新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程[J]. 中国地质, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
SONG Zhe, LI Houmin, LI Lixing, DING Jianhua, MENG Jie. Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes[J]. GEOLOGY IN CHINA, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
Citation: SONG Zhe, LI Houmin, LI Lixing, DING Jianhua, MENG Jie. Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes[J]. GEOLOGY IN CHINA, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303

新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程

基金项目: 

中国地质调查局项目 DD20190606

国家自然科学基金项目 41672078

国家自然科学基金项目 41272102

详细信息
    作者简介:

    宋哲, 男, 1990年生, 博士生, 从事金属矿床研究工作; E-mail:ddsz.2007@163.com

  • 中图分类号: P618.31

Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes

Funds: 

China Geological Survey Program DD20190606

National Natural Science Foundation of China 41672078

National Natural Science Foundation of China 41272102

  • 摘要:

    黑尖山铁矿床是新疆东天山阿齐山—雅满苏成矿带中典型的海相火山岩型铁矿床。黑尖山矿床围岩安山质熔岩中发育大量不规则的富铁团块,可分为钠长石磁铁矿型、钠长石钾长石磁铁矿型、钾长石磁铁矿型、绿帘石磁铁矿型和石英磁铁矿型5种类型,可能代表了在岩浆-热液成矿过程中不同演化阶段的产物,对黑尖山铁矿床成矿过程及形成环境有指示意义。本文对上述5类富铁团块中的磁铁矿进行了主量元素分析,为了精确地测出磁铁矿中铁的总量,采用差分法加入不确定的O含量,并加以ZAF矩阵校正。对比5类富铁团块中磁铁矿Ti含量,钠长石磁铁矿型最高、钠长石钾长石磁铁矿型和钾长石磁铁矿型较高、绿帘石磁铁矿型和石英磁铁矿型最低,且Ti含量与Fe含量为正相关关系;绿帘石磁铁矿型和石英磁铁矿型富铁团块Fe含量特征与矿石中磁铁矿Fe含量相近。上述特征表明钠长石磁铁矿类型是残余富铁熔体中最早的结晶产物,钠长石钾长石磁铁矿和钾长石磁铁矿类型具有岩浆热液转变的特征,而绿帘石磁铁矿和石英-磁铁矿类型则是受热液完全交代的产物,说明矿床形成于岩浆-热液成矿作用。各类富铁团块内磁铁矿的Fe含量均大于相对应蚀变环边磁铁矿的Fe含量,表明富铁岩浆结晶与热液活动分异同期发生。

    Abstract:

    The Heijianshan iron deposit represents a typical submarine volcanic rock-hosted deposit of the Aqishan-Yamansu ore belt in Eastern Tianshan Mountains. Abundant irregular iron-rich agglomerates are developed in the brecciated andesite lava (wall rock), and they can be subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar magnetite type, K-feldsparmagnetite type, epidote-magnetite type and quartz-magnetite type, likely representing evolving products of the magmatic-hydrothermal ore-forming process, which can constrain the ore-forming process and metallogenic environment of the Heijianshan iron deposit. Magnetite compositions of the five types of agglomerates were analyzed using electron microprobe analysis. For the purpose of obtaining precise Fe content, the content of undetermined O was added by difference method and the ZAF matrix correction was conducted. The Ti values of the five types of agglomerates display a positive relationship with the Fe values. Magnetite of the albite-magnetite type has highest Ti content, the albite-K-feldspar magnetite and the K-feldspar-magnetite types show medium Ti content, whereas the epidote-magnetite and quartz-magnetite types are characterized by the lowest Ti content. Also, the Fe content of the epidote-magnetite and the quartz-magnetite types is similar to that of the ores. These features indicate that the albite-magnetite type seems to have been the earliest crystallization product from a residual iron-rich melt, the albite-K-feldspar-magnetite and K-feldspar-magnetite types display features of magmatic-hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The Fe content of magnetite of each type of agglomerate is higher than its content of the corresponding alteration zone, suggesting a simultaneous relationship between the crystallization of iron-rich agglomerates and hydrothermal activities.

  • 尼玛盆地构造上位于班公湖—怒江缝合带中部,是发育在侏罗系—白垩系海相地层之上的古近系陆相裂谷盆地,北接羌塘地块,南邻冈底斯地块,近东西向展布,面积约3000 km2。本次研究目的是初步查明尼玛盆地东部冻土发育特征,调查盆地东部古近系地层层序,获取古近系烃源岩、储盖层等关键评价参数,进一步评价盆地油气资源潜力。

    结合新获取的大地电磁测深、地表地质调查及藏尼地1井资料,通过对盆地东部石油地质条件的进一步论证,中国地质调查局油气资源调查中心在盆地东部赛布错坳陷部署实施了藏双地1井,该井的实施对于西藏高原陆相盆地的油气勘探具有重要意义。

    通过资料的收集和重新处理解释,建立了尼玛盆地基础资料数据库,结合之前在尼玛盆地东部发现的油气显示带及最新的大地电磁测深和藏尼地1井资料,优选井位。藏双地1井完钻井深1206.78 m,全井段进行了取心、录井和测井,共有岩心407箱,岩心总长1108.88 m,收获率95.9%。在古近系牛堡组选取烃源岩样品进行地球化学分析测试,通过分析有机质丰度、有机质类型、热演化成熟度来评价烃源岩生烃潜力;使用荧光分析仪对岩石进行荧光分析,主要进行干照和滴照实验,来检测岩石、岩屑中的沥青、烃类等有机物质。

    藏双地1井从上到下钻遇地层依次为第四系+ 新近系—牛堡组三段—牛堡组二段(未穿),气测录井有3处气测异常段,总烃最高为0.159%,岩性为棕红色粉砂岩、灰色细砂岩。含气量解析取样井段527.90~1206.78 m,共取样54个,现场解析在标准大气压下最高含气量为0.213 m3/t;共做浸水试验20个,拍摄视频20个,其中井深744.40 m、752.08 m、767.30 m、774.66 m、797.20 m、832.43 m均有气泡冒出,以井深752.08 m最为明显。

    荧光录井井段0~1206.78 m,对全井岩心按设计逐包进行荧光直照、拍照、氯仿浸泡,定级;全井共录取荧光资料421个点,其中井深1024.23~1026.23 m牛二段灰绿色泥岩断面处,可见黑色薄膜状干沥青,具荧光显示,干照下呈黄色、淡黄色,产状为星点状、带状,用氯仿滴照可呈片状;井深1077.46~1077.76 m牛二段见油迹;井深1078.16~1078.76 m牛二段见点状干沥青;井深1078.76~1079.16 m牛二段层理间见油斑;井深1079.16~1080.16 m牛二段顶部断面处见油迹,都具有荧光显示,呈黄色、淡黄色,产状为星点状、带状(图 1)。

    图  1  藏双地1井牛堡组二段录井柱状图及1079.16~1080.16 m油气显示
    Figure  1.  Logging histogram and the oil and gas display in 1079.16-1080.16m of the second member of Niubao formation in Well Zangshuangdi 1

    (1)藏双地1井全井取心,获得了尼玛盆地东部古近系地层层序、烃源岩及储层等相关参数,分别在牛三段418.43~422.00 m、牛二段890.00~898.00 m及1068.16~1087.00 m发现3处气测异常段,总烃最高为0.159%,现场解析含气量值最大为0.213 m3/t,并在牛二段1077~1080 m处发现不同级别的油气显示,首次实现了尼玛盆地地下油气的重要发现,对盆地下一步的勘探部署具有重要意义。

    (2)本井是继藏尼地1井后在西藏尼玛盆地部署实施的第2口地质调查井,通过对藏双地1井的钻井技术攻关,进一步总结出了适合高寒缺氧、地表及地下地质条件复杂的高原钻井施工工艺和设备参数,为下一步在该区钻井施工提供了重要的技术支撑。

    尼玛盆地平均海拔近4800 m,由于其高海拔的特殊性,具有高寒缺氧、气候恶劣、生态脆弱等特征,在野外施工过程中与其他地区有着很大的不同,通过藏尼地1井、藏双地1井的钻探,克服了高寒条件下冻土发育钻井技术难题和高原缺氧条件下深井取心难题,基本形成了一套安全、环保、高效的作业技术体系,为高原地区的钻探施工工程积累了丰富的经验。

    感谢李韬、李显亮等同志的交流和启发。

  • 图  1   东天山地区构造格架及阿齐山—雅满苏弧后盆地铁矿分布图(修改自秦克章等,2003

    Figure  1.   Tectonic framework in the Eastern Tianshan orogenic belt and distribution of iron ore deposits in Aaqishan-Yamansu backarc basin (modified from Qin Kezhang et al., 2003)

    图  2   黑尖山铁矿床地质图(修改自新疆维吾尔自治区地质调查院,2003赵联党等,2017

    Figure  2.   Geological map of the Heijianshan iron deposit (modified from Xinjiang Uygur Autonomous Region Geological Survey, 2003 and Zhao Liandang et al., 2017)

    图  3   钠长石磁铁矿型富铁团块手标本及显微镜下特征

    a—安山岩熔岩中的富铁团块(HJS-4);b—富铁团块中的杏仁结构及其冷凝边(HJS-4);c —含有钠长石、磁铁矿、石英杏仁体的富铁团块(HJS-6);d —具有硅化和绿帘石化的安山质熔岩(HJS-6)(b, c, d均为单偏光镜下成像); Ab—钠长石;Mag—磁铁矿;Amy—杏仁体;BAL—含角砾的安山质熔岩;IRA—富铁团块;Epi—绿帘石化

    Figure  3.   Photographs and photomicrographs illustrating the features of the albite-magnetite type iron-rich agglomerates

    a-Iron-rich agglomerates in brecciated andesite lava (HJS-4); b -Amygdaloidal structure and chilled margin of the iron-rich agglomerates (HJS- 4); c-Iron-rich agglomerates composed of albite, magnetite and quartz amygdale (HJS-6); d-Andesite lava showing silicification and epidotization (HJS-6) (b, c, d are under plainlight); Ab-Albite, Mag-Magnetite; Amy- Amygdale; BAL- Brecciated andesite lava; IRA-Iron-rich agglomerates; Epi-Epidotization

    图  4   钠长石钾长石磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块附近的石英-绿帘石晶洞(HJS16-1);b—含有板条状钠长石、细粒磁铁矿、石英杏仁体的富铁团块(HJS16-1);c—富铁团块(HJS16-1);d—具有玻晶交织结构的安山质熔岩(HJS16-1)(b, c为单偏光镜下成像,d为正交偏光成像); Ab—钠长石;Mag—磁铁矿;Kfs—钾长石;Amy—杏仁体;BAL—含角砾的安山熔岩;IRA—富铁团块;Epi—绿帘石化

    Figure  4.   Photographs and photomicrographs illustrating the features of the albite-K-feldspar-magnetite type iron-rich agglomerates

    a-Quartz-epidote geode near the iron-rich agglomerates (HJS16-1); b-Iron-rich agglomerates composed of lath-shaped albite, fine-grained magnetite and quartz amygdale (HJS16-1); c-Iron-rich agglomerates (HJS16-14); d-Andesite lava showing hyalopilitic structure (HJS16-1) (b, c are under plainlight); d crossed nicols); Mag- Magnetite; Kfs- K- feldspar; Amy- Amygdale; BAL- Brecciated andesite lava; IRA- Iron- rich agglomerates; Epi-Epidotization

    图  5   钾长石磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块附近的绿帘石化边(HJS16-11);b—由绿泥石和少量钛铁矿组成的富铁团聚体中的杏仁体(HJS16-4);c—安山质熔岩中沿裂隙侵入的富铁熔体(HJS16-11);d—具有绿帘石化的富铁团块(HJS16-11)(b, c, d均为单偏光镜下成像); Mag—磁铁矿;Kfs—钾长石;Ep—绿帘石;Amy—杏仁体;BAL—含角砾的安山熔岩;IRA—富铁团块;Epi—绿帘石化

    Figure  5.   Photographs and photomicrographs illustrating the features of the K-feldspar-magnetite type iron-rich agglomerates

    a-Epidotization rim of the iron-rich agglomerates (HJS16-11);b-Amygdale in the iron-rich agglomerates composed of chlorite and a trace amount of titanite (HJS16-4);c-Iron-rich melt that intruded along the fractures in the andesite lava (HJS16-11); d-Iron-rich agglomerates with epidotization (HJS16-11) (b, c, d are under plainlight); Ab-Albite, Mag-Magnetite; Kfs-K-feldspar; Ep-Epidote; Amy-Amygdale; BAL-Brecciated andesite lava; IRA-Iron-rich agglomerates; Epi-Epidotization.

    图  6   绿帘石磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块(HJS16-9);b—与石英,绿帘石共生的镜铁矿(HJS16-13);c—具有斑状构造,杏仁结构的富铁团块(HJS16-9);d —被绿帘石和石英完全交代的钾长石和钠长石(HJS16-13)(b, c, d均为单偏光镜下成像); Mag—磁铁矿;Kfs—钾长石;Ep—绿帘石;Qtz—石英;Spe—镜铁矿;Amy—杏仁体;BAL—含角砾的安山熔岩;IRA—富铁团块

    Figure  6.   Photographs and photomicrographs illustrating the features of the epidote-magnetite type iron-rich agglomerates

    a-Iron-rich agglomerates (HJS16-9); b-Specularite platelets coexisting with epidote and quartz (HJS16-3); c-Iron-rich agglomerates showing porphyritic texture and amygdaloidal structure (HJS16-9);d-K-feldspar and albite completely replaced by epidote and quartz (HJS16-13) (b, c, d are under plainlight); Mag-Magnetite; Kfs-K-feldspar; Ep-Epidote; Qtz-Quartz; Spe-Specularite; Amy-Amygdale; BAL-Brecciated andesite lava; IRA-Iron-rich agglomerates

    图  7   石英磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块(HJS16-3);b—富铁团块的核部和边部(HJS16-3);c—保留玻晶交织结构的被石英交代的板条状长石(HJS16-3);d—冷凝边(HJS16-3)(b, c, d均为单偏光镜下成像); Mag—磁铁矿;Kfs—钾长石;Ep—绿帘石;Qtz—石英;BAL—含角砾的安山熔岩;IRA—富铁团块

    Figure  7.   Photographs and photomicrographs illustrating the features of the quartz-magnetite type iron-rich agglomerates

    a-Iron-rich agglomerates (HJS16-3); b-Core and rim of iron-rich agglomerates (HJS16-3);c-Lath-shaped feldspar replaced by quartz with hyalopilitic structure retained (HJS16-3); d -Chilled margin (HJS16-3) (b, c, d are under plainlight); Mag-Magnetite; Kfs-K-feldspar; EpEpidote; Qtz-Quartz; BAL-Brecciated andesite lava; IRA-Iron-rich agglomerates

    图  8   黑尖山矿床富铁团块电子探针分析特征(背散射显微成像)

    Figure  8.   Characteristics of iron-rich agglomerates in the Heijianshan deposit by electron microprobe analysis (backscatter microscopic imaging)

    图  9   富铁团块内磁铁矿主量元素成分蛛网图

    IOCG,Kiruna,BIF,Skarn数据来自Dupuis and Beaudoin (2011);AM—钠长石磁铁矿型;AKM—钠长石钾长石磁铁矿型;KM—钾长石磁铁矿型;EM—绿帘石磁铁矿型;QM—石英磁铁矿型

    Figure  9.   Multi-element diagram for the magnetite of iron-rich agglomerates in the Heijianshan deposit

    IOCG, Kiruna, BIF, Skarn from Dupuis and Beaudoin (2011); AMAlbite-magnetite type; AKM-Albite-K-feldspar-magnetite type; KM-K-feldspar-magnetite type; EM-Epidote-magnetite type; QM-Quartz-magnetite type

    图  10   富铁团块内磁铁矿与黑尖山矿床磁铁矿成分对比

    黑尖山磁铁矿成分数据来自Zhao et al. (2016);AM—钠长石磁铁矿型; AKM—钠长石钾长石磁铁矿型; KM—钾长石磁铁矿型; EM—绿帘石磁铁矿型; QM—石英磁铁矿型; MOM—含假象磁铁矿的块状矿石; MOS—含硫化物的块状矿石; DO—浸染状矿石

    Figure  10.   Comparison of magnetite compositions between magnetite in iron-rich agglomerates and ore in the Heijianshan deposit

    Comparison of magnetite compositions in Heijianshan deposit after Zhao et al. (2016); AM-Albite-magnetite type; AKM-Albite-Kfeldspar-magnetite type; KM-K-feldspar-magnetite type; EMEpidote-magnetite type; QM-Quartz-magnetite type; MOMMassive ore with mushketovite; MOS-Massive ore with sulfides; DO-Disseminated ore

    图  11   黑尖山铁矿床富铁团块核部磁铁矿和雅满苏铁矿床富铁碎屑中的磁铁矿成分对比

    雅满苏铁矿床富铁碎屑中的磁铁矿成分来自Li et al. (2015);AM—钠长石磁铁矿型; AKM—钠长石钾长石磁铁矿型; KM—钾长石磁铁矿型; EM—绿帘石磁铁矿型; QM—石英磁铁矿型; OIO—更长石铁氧化物型; OAIO—更长石钠长石铁氧化物型; AIO—钠长石铁氧化物型; AKIO—钠长石钾长石铁氧化物型; KIO—钾长石铁氧化物型

    Figure  11.   Comparison of magnetite compositions in iron-rich agglomerates of the Heijianshan iron deposit and in iron-rich fragments of the Yamansu iron deposit

    Comparison of magnetite compositions in iron- rich fragments of the Yamansu iron deposit after Li et al. (2015); AM- Albite- magnetite type, AKM-Albite-K-feldspar-magnetite type; KM-K-feldspar-magnetite type; EM-Epidote-magnetite type; QM-Quartz-magnetite type; OIOOligoclase-iron oxide type; OAIO-Oligoclase-albite-iron oxide type; AIO-Albite-iron oxide type; AKIO-Albite-K-feldspar-iron oxide type; KIO-K-feldspar-iron oxide type

    表  1   黑尖山铁矿床富铁团块磁铁矿电子探针测试成分(%)

    Table  1   Major element analyses (EMPA) for magnetite from iron-rich agglomerates in the Heijianshan iron deposit(%)

    下载: 导出CSV
  • Barton M D. 2014. Iron Oxide (-Cu-Au-REE-P-Ag-U-Co)Systems[J]. University of Arizona. Chapter 515-541. http://cn.bing.com/academic/profile?id=8362c8dd757fbd24a9265e23f92ddb5d&encoded=0&v=paper_preview&mkt=zh-cn

    Charlier B, Grove T L. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent[J]. Contributions to Mineralogy and Petrology, 164:27-44. doi: 10.1007/s00410-012-0723-y

    Chen Jie, Duan Shigang, Zhang Zuoheng, Luo Gang, Jiang Zongsheng, Luo Wenjuan, Wang Dachuan, Zheng Renqiao. 2014.Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang:Constraints on genesis of the deposit[J]. Geology in China, 41(6):1833-1852(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c592e3c3fc18dba718dced3b07eea055&encoded=0&v=paper_preview&mkt=zh-cn

    Dare S A S, Barnes S, Beaudoin G. 2015. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LAICP-MS[J]. Mineralium Deposita, 50:607-617. doi: 10.1007/s00126-014-0560-1

    Ding Jianhua, Li Houmin, Li Lixing, Chen Jing and Deng Gang. 2017.Geological and geochemical features and genetic significant of carbonatite in Yamasu iron deposit, Xinjiang[J]. Mineral Deposits, 36(1):219-236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701014

    Duan Chao, Li Yanhe, Mao Jingwen, Hou Kejun, Yuan Shunda. 2012.Zircon trace element characteristics of intrusions in the Washan iron deposit of Ningwu volcanic basin and their geological significance[J]. Geology in China, 39(6):1874-1884(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206030

    Duan Shigang, Zhang Zuoheng, Wei Mengyuan, Tian Jingquan, Jiang Zongsheng, Li Fengming, Zhao Jun, Wang Houfang. 2014.Geochemistry and zircon U-Pb geochronology of the diorite associated with the Wuling iron deposit in Western Tianshan Mountains, Xinjiang[J]. Geology in China, 41(6):1757-1770(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406001

    Duchesne J C, Shumlyanskyy L, Charlier B. 2006. The Fedorivka layered intrusion (Korosten Pluton, Ukraine):an example of highly differentiated ferrobasaltic evolution[J]. Lithos, 89:353-376. doi: 10.1016/j.lithos.2006.01.003

    Dupuis C, Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 46:319-335. doi: 10.1007/s00126-011-0334-y

    Fang Weixuan, Huang Zhuanying, Tang Hongfeng, Gao Zhenquan. 2006. Lithofacies, geological and geochemical characteristics and tectonic setting of Late Carboniferous volcanic-sedimentary rocks in the Kumtag-Shaquanzi area, east Tianshan[J]. Geology in China, 33(3):529-544(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200603009

    Feng Jing, Xu Shiqi, Tian Jiangtao, Yang Zaifeng, Gao Yongfeng. 2009. Study on metallogenic regularity of marine volcanic-type iron ore of east Tianshan of Xinjiang and methods discuss[J]. Xinjiang Geology, 27(4):330-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200904006

    Fenner C N. 1929. The crystallization of basalt[J]. American Journal of Science, 18:225-253. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx201802006

    Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type[J]. Economic Geology, 73 (4):478-485. doi: 10.2113/gsecongeo.73.4.478

    Gleason J D, Marikos M A, Barton M D, Johnson D A. 2000.Neodymium isotopic study of rare earth element sources (Fe-PREE) systemsand mobility in hydrothermal Fe oxide[J]. Geochimica et Cosmochimica Acta, 64:1059-1068. doi: 10.1016/S0016-7037(99)00325-7

    Hildebrand R S. 1986. Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada[J]. Economic Geology, 81:640-659. doi: 10.2113/gsecongeo.81.3.640

    Hou Tong, Zhang Zhaochong, Du Yangsong. 2010. Deep ore magmahydrothermal system of Zhonggu ore field in southern part of Ningwu Basin[J]. Earth Science Frontiers, 17(1):186-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001018.htm

    Hou Tong, Zhang Zhaochong, Pirajno F, Santosh M, Encarnacion J, Liu Junlai, Zhao Zhidan, Zhang Lijian. 2014a. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China:An overview[J]. Ore Geol. Rev., 57:498-517. doi: 10.1016/j.oregeorev.2013.08.007

    Hou Tong, Zhang Zhaochong, Santosh M, Encarnacion J, Zhu Jiang, Luo Wenjuan. 2014b. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China:Constraints on the metallogenesis[J]. Ore Geol. Rev., 56:487-502. doi: 10.1016/j.oregeorev.2013.03.008

    Huang Xiaowen, Qi Liang, Meng Yumiao. 2013. Trace element and REE geochemistry of minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-)Fe deposits, eastern Tianshan Mountains[J]. Mineral Deposits, 32(6):1188-1210(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201306007

    Huang Xiaowen, Qi Liang, Wang Yichang, Liu Yingying. 2014. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Sci. China (Earth Sci.), 57:267-277. doi: 10.1007/s11430-013-4660-z

    Jang Y D, Naslund H R, McBirney A R. 2001. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization:Iron enrichment revisited[J]. Earth and Planetary Science Letter, 189:189-196. doi: 10.1016/S0012-821X(01)00366-1

    Jiang Hongjun, Han Jinsheng, Chen Huayong, Zheng Yi, Zhang Weifeng, Lu Wanjian, Deng Gang, Tan Zhixiong. 2018.Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe-Cu deposit, eastern Tianshan:implications for ore genesis and deposit type[J]. Ore Geol. Rev, 200:385-400. https://www.sciencedirect.com/science/article/pii/S0169136816301135

    Knipping J L, Bilenker L D, Simon A C, Reich M, Barra F, Deditius A P, Wälle M, Heinrich C A, Holtz F, Munizaga R. 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 171:15-38. doi: 10.1016/j.gca.2015.08.010

    Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 39(3):559-580(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201203001

    Li Houmin, Li Lixing, Yang Xiuqing, Cheng Yanbo. 2015a. Types and geological characteristics of iron deposits in China[J]. Journal of Asian Earth Sciences, 103:2-22. doi: 10.1016/j.jseaes.2014.11.003

    Li Houmin, Ding Jianhua, Zhang Zhaochong, Li Lixing, Chen Jing, Yao Tong. 2015b. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China:Constraints on metallogenesis[J]. Journal of Asian Earth Sciences, 113:1068-1081. doi: 10.1016/j.jseaes.2015.06.026

    Li Houmin, Li Lixing, Ding Jianhua, Li Yanhe, Song Zhe, Meng Jie, Ma Yubo. 2018. Occurrence of the Iron-rich melt in the Heijianshan Iron deposit, Eastern Tianshan, NW China:Insights into the origin of volcanic rock-hosted Iron deposits[J]. Acta Geologica Sinica (English Edition), 92(2):666-681. doi: 10.1111/1755-6724.13548

    Li Xiaolinbin, Gong Xiaoping, Ma Huadong, Han Qiong, Song Xianglong, Xie Lei, Feng Jun, Wang Jianshe. 2014. Geochemical characteristics and petrogenic age of volcanic rocks in the Shikebutai iron deposit of West Tianshan Mountains[J]. Geology in China, 41(6):1791-1804(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406003

    Love G. 1993 X-ray absorption correction[C]//Scott V D, Love G (eds.). Quantitative Electron-Probe Microanalysis. Ellis Horwood Ltd Press (Chichester, UK), 163-192.

    Luo Ting, Liao Qun'an, Chen Jiping, Zhang Xionghua, Guo Dongbao, Hu Zhaochu. 2012. LA-ICP-MS zircon U-Pb dating of the volcanic rocks from Yamansu Formation in the Eastern Tianshan, and its geological significance[J]. Earth Science——Journal of China University of Geosciences, 37(6):1338-1352(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024

    Mao Jingwen, Goldfarb R J, Wang Yitian, Hart C J, Wang Zhiliang, Yang Jianmin. 2005. Late Paleozoic base and precious metal deposits, east Tianshan, Xinjing, China:Characteristics and geodynamic setting[J]. Episodes, 28:23-35. doi: 10.18814/epiiugs/2005/v28i1/003

    Nadoll P, Angerer T, Mauk J L, French D, Walshe J. 2014. The chemistry of hydrothermal magnetite:a review[J]. Ore Geology Reviews, 61:1-32. doi: 10.1016/j.oregeorev.2013.12.013

    Naslund H R. 1983. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts[J]. American Journal of Science, 283:1034-1059. doi: 10.2475/ajs.283.10.1034

    Naslund H R, Henriquez F, Nystroem J O, Vivallo W, Dobbs F M. 2002. Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal Cordillera[C]//Porter T M (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective: Adelaide, Australia. PGC Publishing.

    Nyström J O, Henriquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden:Ore textures and magnetite geochemistry[J]. Economic Geology, 89:820-839. doi: 10.2113/gsecongeo.89.4.820

    Park C F. 1961. A magnetite "flow"in northern Chile[J]. Economic Geology, 56:431-441. doi: 10.2113/gsecongeo.56.2.431

    Philpotts A R. 1982. Compositions of immiscible liquids in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 80:201-218. doi: 10.1007/BF00371350

    Porter T M. 2002. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Australian Mineral Foundation[M]. PGC Publishing, Adelaide. 2, 153-161.

    Qin Kezhang, Peng Xiaoming, San Jinzhu, Xu Xingwang, Fang Tonghui, Wang Shulai, Yu Haifeng. 2003. Types of major ore deposits, division of metallogenic belts in Eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization[J]. Xinjiang Geology, 21(2):143-150(in Chinese with English abstract).

    Reed S J B. 1993. Electron Microprobe Analysis[M]. Cambridge University Press (Cambridge, UK), 260.

    Rhodes A L, Oreskes N, Sheets S. 1999. Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile[J]. Soc. Econ. Geol. Spec. Publ., 7:299-332. http://cn.bing.com/academic/profile?id=10cfc5d71dc40bbbdd76334d8627bd53&encoded=0&v=paper_preview&mkt=zh-cn

    Sillitoe R H, Burrows D R. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile[J]. Economic Geology, 97:1101-1109. http://cn.bing.com/academic/profile?id=96d032a9b70002f6dd387b2209e6926c&encoded=0&v=paper_preview&mkt=zh-cn

    Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yueheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Sanjeewa P K.Malaviarachchi. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Res., 20:516-531. doi: 10.1016/j.gr.2010.11.015

    Tornos F, Velasco F, Morata D, Barra F, Rojo M. 2011. The magmatic hydrothermal evolution of the El Laco as tracked by melt inclusions and isotope data[C]//Barra F, Reich M F T (eds.).Proceedings of the 11th Biennial SGA Meeting. Antofagasta, Chile, 443-445.

    Tornos F, Velasco F, Hanchar J M. 2016. Iron oxide melts, magmatic magnetite and superheated magmatic-hydrothermal systems:The El Laco deposit, Chile[J]. Geology, 44(6):427-430. doi: 10.1130/G37705.1

    Van Baalen M R. 1993. Titanium mobility in metamorphic systems:A review[J]. Chemical Geology, 110:233-249. doi: 10.1016/0009-2541(93)90256-I

    Veksler I V. 2009. Extreme iron enrichment and liquid immiscibility in mafic intrusions:Experimental evidence revisited[J]. Lithos, 111:72-82. doi: 10.1016/j.lithos.2008.10.003

    Velasco F, Tornos F, Hanchar J M. 2016. Immiscible iron-and silicarich melts and magnetite geochemistry at El Laco volcano(northern Chile):Evidence for a magmatic origin for the magnetite deposits[J]. Ore Geology Reviews, 79:346-366. doi: 10.1016/j.oregeorev.2016.06.007

    Wang Dachuan, Jia Jindian, Duan Shigang, Zhang Zuoheng, Jiang Zongsheng, Chen Jie. 2014. Mineralogy and stable isotopic characteristics of the Tiemulike iron deposit in West Tianshan Mountains[J]. Geology in China, 41(6):1853-1872(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406007

    Wang Guocan, Zhang Meng, Zhang Xionghua, Liao Qun'an, Wang Wei, Tian Jinming, Xuan Zeyou. 2019. Significant Paleozoic tectonic events in the northern part of the east Tianshan Mountains, Xinjiang and their implications for the evolution of CAOB:New evidence from 1:50000 geological survey of Banfanggou and Xiaoliugou sheets[J]. Geology in China, 46(5):954-976(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201905003

    Wang Tiezhu, Che Linrui, Yu Jinjie, Lu Bangcheng. 2014. Electron microprobe analysis and REE geochemical characteristics of minerals from the Meishan iron deposit in Nanjing-Wuhu area, Eastern China[J]. Geology in China, 41(6):1964-1985(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406013

    Williams P J, Barton M D, Johnson D A, Fontbote L, de Haller A, Mark G, Oliver N H S, Marschik R. 2005. Iron Oxide CopperGold Deposits: Geology, Space-time Distribution and Possible Modes of Origin[J]. Economic Geology 100th Anniversary Volume SEG, Denver, 371-405.

    Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, Sun Shu, Li Jiliang. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. Am. J. Sci., 304:370-395. doi: 10.2475/ajs.304.4.370

    Xinjiang Uygur Autonomous Region Geological Survey (abv.XUARGS), 2003. Report for Target Selection and Potential Resources in Caixiashan-Jintan in the Eastern Tianshan, Xinjiang[R]. 1-187 (in Chinese).

    Xu Lulu, Chai Fengmei, Li Qiang, Zeng Hong, Geng Xinxia, Xia Fang, DengGang. 2014.Geochemistry and zircon U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu deposit in east Tianshan mountains and their geological significance[J]. Geology in China, 41(6):1771-1790 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406002

    Xu Shiqi, Zhao Tongyang, Feng Jing, Gao Yongfeng, Tian Jiangtao, Yang Zaifeng, Liu Dequan. 2011. Study on regional metallogenic regularity of marine volcanic type iron ore in the east Tianshan of Xinjiang[J]. Xinjiang Geology, 29(2):173-177 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201102012.htm

    Yang Shuiyuan, Zhang Ruoxi, Jiang Shaoyong, Xie Jing. 2017.Electron Probe Microanalysis of variable oxidation state oxides: protocol and Pitfalls[J]. Geostandards and Geoanalytical Research.

    Zeng Hong, Chai Fengmei, Zhou Gang, Geng Xinxia, Li Qiang, Meng Qingpeng, Xu Lulu. 2014. Mineralogy of skarn and magnetite of the Yamansu iron deposit and its geological significance[J]. Geology in China 41(6):1914-1928 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406010

    Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xueyan, Wang Meng. 2014. Spatiotemporal distribution and tectonic settings of the major iron deposits in China:an overview[J]. Ore Geol. Rev., 57:247-263. doi: 10.1016/j.oregeorev.2013.08.021

    Zhang Zhaochong, Chai Fengmei, Xie Qiuhong. 2016. Highangle subduction in a thermal structure with warm mantlecool crust:formation of submarine volcanic-hosted iron deposits[J]. Geology in China, 43(2):367-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201602001.htm

    Zhang Zhenliang, Feng Xuanjie, Gao Yongwei, Wang Zhihua, Dong Fuchen, Tan Wenjuan. 2015. A tentative discussion on the genetic type and ore-forming process of main late Paleozoic magnetite deposits in West Tianshan Mountains, Xinjiang[J]. Geology in China, 42 (2):737-758 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503025

    Zhang Weifeng, Chen Huayong, Han Jinsheng, Zhao Liandang, Huang Jianhan, Yang Juntao, Yan Xuelu. 2016. Geochronology and geochemistry of igneous rocks in the Bailingshan area:Implications for the tectonic setting of late Paleozoic magmatism and iron skarn mineralization in the eastern Tianshan, NW China[J]. Gondwana Res., 38:40-59. doi: 10.1016/j.gr.2015.10.011

    Zhao Hongjun, Chen Xiufa, He Xuezhou, Zhang Xinyuan, Zhang Chao, Wang Liangliang, Chen Yuming, Chen Xifeng, Lu Minjie, Zhou Shangguo, Huang Feixin, Yao Chunyan, Yang Yanchen. 2018. A study of genetic type characteristics and important distribution zones of global iron deposits[J]. Geology in China, 45(5):890-919 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201805003

    Zhao Liandang, Chen Huayong, Zhang Li, Li Dengfeng, Zhang Weifeng, Wang Chengming, Yang Juntao, Yan Xuelu. 2017.Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:Metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geol. Rev., 91:110-132. doi: 10.1016/j.oregeorev.2017.10.014

    Zhao Liandang, Chen Huayong, Zhang Li, Li Dengfeng, Zhang Weifeng, Wang Chengming, Yang Juntao, Yan Xuelu. 2016.Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geol. Rev., 100:422-440. https://www.sciencedirect.com/science/article/pii/S0169136816301342

    Zhao Liandang, Chen Huayong, Zhang Li, Zhang Zengjie, Li Dengfeng, Zhang Weifeng, Lu Wanjian, Yang Jun and Yan Xuelu. 2017. H-O isotope characteristics and geological significance of Heijianshan Fe-Cu (-Au) deposit in eastern Tianshan, Xinjiang[J]. Mineral Deposits, 36(1):38-56 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201701003.htm

    陈杰, 段士刚, 张作衡, 罗刚, 蒋宗胜, 骆文娟, 王大川, 郑仁乔.2014.新疆西天山式可布台铁矿地质、矿物化学和S同位素特征及其对矿床成因的约束[J].中国地质, 41(6):1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006
    丁建华, 李厚民, 李立兴, 陈靖, 邓刚.2017.新疆雅满苏铁矿区碳酸盐岩地质地球化学特征及其对矿床成因的制约[J].矿床地质, 36(1):219-236. http://d.old.wanfangdata.com.cn/Periodical/kcdz201701014
    段超, 李延河, 毛景文, 侯可军, 袁顺达. 2012.宁芜火山岩盆地凹山铁矿床侵入岩锆石微量元素特征及其地质意义[J].中国地质, 39(6):1874-1884. doi: 10.3969/j.issn.1000-3657.2012.06.030
    段士刚, 张作衡, 魏梦元, 田敬佺, 蒋宗胜, 李凤鸣, 赵军, 王厚方.2014.新疆西天山雾岭铁矿闪长岩地球化学及锆石U-Pb年代学[J].中国地质, 39(6):1757-1770. doi: 10.3969/j.issn.1000-3657.2014.06.001
    方维萱, 黄转盈, 唐红峰, 高珍权.2006.东天山库姆塔格-沙泉子晚石炭世火山-沉积岩相学地质地球化学特征与构造环境[J].中国地质, 33(3):529-544. doi: 10.3969/j.issn.1000-3657.2006.03.009
    冯京, 徐仕琪, 田江涛, 杨在峰, 高永峰.2009.东天山海相火山岩型铁矿成矿规律研究方法[J].新疆地质, 27(4):330-336. doi: 10.3969/j.issn.1000-8845.2009.04.006
    侯通, 张招崇, 杜杨松.2010.宁芜南段钟姑矿田的深部矿浆-热液系统[J].地学前缘, 17(1):186-194. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001015
    黄小文, 漆亮, 孟郁苗.2013.东天山黑峰山、双峰山及沙泉子(铜)铁矿床的矿物微量和稀土元素地球化学特征[J].矿床地质, 32(6):1188-1210. doi: 10.3969/j.issn.0258-7106.2013.06.007
    李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军.2012.中国铁矿成矿规律及重点矿集区资源潜力分析[J].中国地质, 39(3):559-580. doi: 10.3969/j.issn.1000-3657.2012.03.001
    李厚民, 丁建华, 李立兴, 姚通.2014.东天山雅满苏铁矿床矽卡岩成因及矿床成因类型[J].地质学报, 88(12):2477-2489. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412024
    李潇林斌, 弓小平, 马华东, 韩琼, 宋相龙, 谢磊, 凤骏, 王建设. 2014.西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义[J].中国地质, 39(6):1791-1804. doi: 10.3969/j.issn.1000-3657.2014.06.003
    罗婷, 廖群安, 陈继平, 张雄华, 郭东宝, 胡兆初. 2012.东天山雅满苏组火山岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].地球科学——中国地质大学学报, 37(6):1338-1352. http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024
    秦克章, 彭晓明, 三金柱, 徐兴旺, 方同辉, 王书来, 于海峰.2003.东天山主要矿床类型、成矿区带划分与成矿远景区优选[J].新疆地质, 21(2):143-150. doi: 10.3969/j.issn.1000-8845.2003.02.001
    王大川, 贾金典, 段士刚, 张作衡, 蒋宗胜, 陈杰. 2014.西天山铁木里克铁矿床矿物学及稳定同位素特征[J].中国地质, 41(6):1853-1872. doi: 10.3969/j.issn.1000-3657.2014.06.007
    王国灿, 张孟, 张雄华, 廖群安, 王玮, 田锦明, 玄泽悠.2019.东天山北部古生代重大构造事件及其对中亚造山带演化的启示:基于1:5万板房沟幅和小柳沟幅地质调查新证据[J].中国地质, 46(5):954-976. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190502&flag=1
    王铁柱, 车林睿, 余金杰, 陆邦成.2014.宁芜地区梅山铁矿床矿物的电子探针分析和稀土元素地球化学特征[J].中国地质, 41(6):1964-1985. doi: 10.3969/j.issn.1000-3657.2014.06.013
    吴昌志, 张遵忠, Khin Zaw, Fernando Della-pasque, 唐俊华, 郑远川, 汪传胜, 三金柱.2006.东天山觉罗塔格红云滩花岗岩年代学-地球化学及其构造意义[J].岩石学报, 22; 1121-1134. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605006
    新疆维吾尔自治区地质调查院.2003.新疆东天山彩霞山-金滩一带靶区优选及资源评价报告[R]. 1-187.
    徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚.2014.东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].新疆地质, 41(6):1771-1790. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201406002
    徐仕琪, 赵同阳, 冯京, 高永峰, 田江涛, 杨在峰, 刘德权.2011.东天山海相火山岩型铁矿区域成矿规律研究[J].新疆地质, 29(2):173-177. doi: 10.3969/j.issn.1000-8845.2011.02.011
    曾红, 柴凤梅, 周刚, 耿新霞, 李强, 孟庆鹏, 徐璐璐.2014.新疆雅满苏铁矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J].中国地质, 41(6):1914-1928. doi: 10.3969/j.issn.1000-3657.2014.06.010
    赵宏军, 陈秀法, 何学洲, 张新元, 张潮, 王靓靓, 陈玉明, 陈喜峰, 卢民杰, 周尚国, 黄费新, 姚春彦, 杨言辰.2018.全球铁矿床主要成因类型特征与重要分布区带研究[J].中国地质, 45(5):890-919. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180502&flag=1
    张招崇, 柴凤梅, 谢秋红. 2016.热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成[J].中国地质, (2):367-379. doi: 10.3969/j.issn.1000-3657.2016.02.001
    张振亮, 冯选洁, 高永伟, 王志华, 董福辰, 谭文娟2015.新疆西天山晚古生代主要磁铁矿床(点)成因类型与成矿过程探讨[J].中国地质, (3):737-758. doi: 10.3969/j.issn.1000-3657.2015.03.025
    赵联党, 陈华勇, 张莉, 张增杰, 李登峰, 张维峰, 陆万俭, 杨骏, 闫学录. 2017.新疆黑尖山Fe-Cu (-Au)矿床氢氧同位素特征及其地质意义[J].矿床地质, 36(1):38-56. http://d.old.wanfangdata.com.cn/Periodical/kcdz201701003
  • 期刊类型引用(8)

    1. 张云,张天福,程先钰,孙立新,程银行,王少轶,王善博,马海林,鲁超. 鄂尔多斯盆地东北部侏罗纪含铀岩系三维地质结构与铀成矿规律浅析. 中国地质. 2022(01): 66-80 . 本站查看
    2. 庞康,吴柏林,孙涛,郝关清,雷安贵,杨松林,刘池阳,傅斌,权军明,王苗,郝欣,刘明义,李琪,张效瑞. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征. 中国地质. 2022(05): 1571-1590 . 本站查看
    3. 林兆民,张嘉冕. 甘肃省207铀矿及富铀岩体特征研究. 甘肃地质. 2022(04): 42-48 . 百度学术
    4. Reng-an Yu,Shan-bo Wang,Qiang Zhu,Qing-hong Si,Xue-ming Teng,Xiao-xue Liu,Hou-ning Liu,Yong-xiang Tang. Zircon U-Pb ages and provenance characteristics of the Zhiluo Formation sandstones and the formation background of the uranium deposit in Huangling area, Ordos Basin, China. China Geology. 2021(04): 600-615 . 必应学术
    5. 张天福,张云,金若时,俞礽安,孙立新,程银行,奥琮,马海林. 鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约. 中国地质. 2020(02): 278-299 . 本站查看
    6. 张云,张天福,孙立新,程银行,张祺,王少轶,程先钰,周小希. 鄂尔多斯盆地南缘黄陵地区煤铀兼探钻孔数据集成与三维地质模型构建. 中国地质. 2020(S1): 231-254 . 本站查看
    7. 张天福,张云,程先钰,孙立新,程银行,周小希,王少轶,马海林,鲁超. 鄂尔多斯盆地北部东胜地区侏罗系-白垩系钻孔数据库与三维地质模型. 中国地质. 2020(S1): 220-245 . 本站查看
    8. 田亮,赵天林,尹永朋,李名,叶阳. 内蒙古二连盆地额仁淖尔地区铀成矿水文地质条件分析. 矿产勘查. 2020(11): 2424-2429 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  3328
  • HTML全文浏览量:  728
  • PDF下载量:  3842
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-09-26
  • 修回日期:  2020-04-14
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2020-06-24

目录

/

返回文章
返回
x 关闭 永久关闭