• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

中非铜钴成矿带地质特征与找矿前景分析

孙凯, 张航, 卢宜冠, 邱磊, 何胜飞, 任军平, 许康康, 刘晓阳

孙凯, 张航, 卢宜冠, 邱磊, 何胜飞, 任军平, 许康康, 刘晓阳. 中非铜钴成矿带地质特征与找矿前景分析[J]. 中国地质, 2022, 49(1): 103-120. DOI: 10.12029/gc20220107
引用本文: 孙凯, 张航, 卢宜冠, 邱磊, 何胜飞, 任军平, 许康康, 刘晓阳. 中非铜钴成矿带地质特征与找矿前景分析[J]. 中国地质, 2022, 49(1): 103-120. DOI: 10.12029/gc20220107
SUN Kai, ZHANG Hang, LU Yiguan, QIU Lei, HE Shengfei, REN Junping, XU Kangkang, LIU Xiaoyang. Analysis on geological characteristics and prospecting potential of the Central African Cu-Co metallogenic belt[J]. GEOLOGY IN CHINA, 2022, 49(1): 103-120. DOI: 10.12029/gc20220107
Citation: SUN Kai, ZHANG Hang, LU Yiguan, QIU Lei, HE Shengfei, REN Junping, XU Kangkang, LIU Xiaoyang. Analysis on geological characteristics and prospecting potential of the Central African Cu-Co metallogenic belt[J]. GEOLOGY IN CHINA, 2022, 49(1): 103-120. DOI: 10.12029/gc20220107

中非铜钴成矿带地质特征与找矿前景分析

基金项目: 

中国地质调查局项目 DD20190439

中国地质调查局项目 1212011220910

国家重点研发计划 2021YFC2901804

详细信息
    作者简介:

    孙凯, 男, 1986年生, 博士生, 高级工程师, 主要从事南部非洲地质勘查和研究工作; E-mail: tjcentersk@foxmail.com

  • 中图分类号: P618.41;P681.62

Analysis on geological characteristics and prospecting potential of the Central African Cu-Co metallogenic belt

Funds: 

the project of China Geological Survey DD20190439

the project of China Geological Survey 1212011220910

the National Key R & D Program 2021YFC2901804

More Information
    Author Bio:

    SUN Kai, male, born in 1986, senior geologist, doctor candidate, engaged in the geological survey and research of Southern Africa

  • 摘要:
    研究目的 

    横跨刚果(金)和赞比亚边境地区的中非铜钴成矿带是世界上著名的沉积岩层控型铜钴成矿带,是全球第三大铜产地和第一大钴产地,然而其成矿规律和成矿潜力仍不明朗。

    研究方法 

    本文通过对中非铜钴成矿带地质背景、构造演化与成矿、矿床时空分布规律、矿床模型等方面的研究,选择地层、构造、地球化学、遥感蚀变等与成矿密切相关的地质要素图层,采用模糊证据权法圈出32个铜(钴)远景区。依据成矿后验概率计算了在不同概率下每个远景区未发现矿床数量。

    研究结果 

    结合吨位-品位模型所开展的蒙特卡洛模拟表明,该地区未发现的铜资源量平均估计为2.88亿t,钴资源量平均估计为1992万t。

    结论 

    中非铜钴成矿带复杂的演化历史形成了该地区沉积成矿、热液成矿、表生富集等多种成矿作用的叠加,铜(钴)成矿作用贯穿成矿带演化过程,成矿作用与地层和构造密切相关。其中,刚果(金)利卡西-科卢韦齐地区可能存在很好的找矿前景。

    创新点:中非铜钴成矿带铜钴成矿作用与地层和构造密切相关;利用模糊证据权法和蒙特卡洛模拟定量计算了铜钴资源潜力。

    Abstract:

    This paper is the result of mineral exploration engineering.

    Objective 

    The Central African copper-cobalt metallogenic belt which straddles the border area between the Democratic Republic of the Congo (DRC) and Zambia, is the world's most famous sediment-hosted stratabound copper-cobalt metallogenic belt. It is the world's third-largest copper and first-largest cobalt producer, but its mineralization pattern and potential are still unclear.

    Methods 

    In this paper, the geological setting, tectonic evolution and mineralization, temporal-spatial distribution rules of deposits, deposit models of the Central African copper-cobalt metallogenic belt were studied. 32 copper (cobalt) prospective areas were delineated by applying the fuzzy weight of evidence method with stratigraphic, tectonic, geochemical, remote sensing alteration and other geological elements that are closely related to mineralization. The number of undiscovered deposits in each prospective area was calculated based on the posterior probability of mineralization at different probabilities.

    Results 

    Monte Carlo simulation combined with the tonnage-grade model indicate that the average undiscovered copper resource in this area is estimated to be 288 million tons and the average cobalt resource is estimated to be 19.92 million tons, respectively.

    Conclusions 

    The complex evolutionary history of the Central African copper and cobalt metallogenic belt has resulted in the superposition of multiple metallogenic interactions such as sedimentary mineralization, hydrothermal mineralization and epigenetic enrichment in this region, with copper (cobalt) mineralization running through the evolution of the belt and mineralization closely related to stratigraphy and tectonics. In particular, the Likasi-Kolwezi area of the Democratic Republic of the Congo may have good prospects for mineralization.

  • 全球铜矿床类型有很多种,其中最为重要的是斑岩型铜矿床和沉积岩层控型铜矿床(Singer, 1995)。钴通常以副矿物的形式与铜、镍及铂族金属元素共生在一起。全球钴矿床主要集中于沉积岩层控型铜钴矿床、红土型镍钴矿床、岩浆型铜镍钴铂族元素矿床、海底铁锰结核矿床和洋底铁锰结壳矿床等5类(Schulz et al., 2017),当前钴资源主要来自沉积岩层控型铜钴矿床(卢宜冠等, 2020)。

    中非铜钴成矿带是世界上最大的沉积岩层控型铜钴矿床富集区(Cailteux et al., 2005a),集中了约1.87亿t铜和1252万t钴资源。2018年,中非铜钴带产铜约210万t,占全球总产量的13.4%;产钴约8万t,占全球总产量的58.7%,已成为全球第三大铜产地和最大的钴来源地。本文以横跨刚果(金)和赞比亚两国的中非铜钴成矿带为例,介绍其成矿地质背景,并对其找矿前景做一评价。

    中非铜钴成矿带是卢菲利安弧形构造带的一部分,位于刚果克拉通和卡拉哈里克拉通之间(李向前, 2011Qiu et al., 2021)(图 1a)。卢菲利安弧形构造带从南向北可以分为5个构造单元(Unrug, 1988李向前等, 2009):加丹加高地、复向斜带、穹隆区、外部逆冲褶皱带和卢菲利安前陆带(图 1b)。后三者构成了中非铜钴成矿带,该成矿带延伸约700 km,宽150 km,向南东延伸至赞比亚Mwenbeshi断裂带(Eberle et al., 1996Corner, 2000),向南西延伸至安哥拉境内并与纳米比亚达马拉带相连。卢菲利安前陆为卢菲利安弧形逆冲褶皱带北侧的三角形区域,是中非铜钴成矿带的北延部分。

    图  1  中非铜钴成矿带地质简图(据Selley et al., 2005; Kampunzu et al., 2009修改)
    1—克拉通;2—活动带;3—沉积盖层
    Figure  1.  Simplified regional geological map of the Central African Cu-Co Metallogenic Belt (modified from Selley et al., 2005; Kampunzu et al., 2009)
    1-Craton; 2-Active belt; 3-Sedimentary stratum

    中非铜钴成矿带地层主要由基底和沉积盖层组成(余金杰等, 2015)。西部基底岩石为新太古代刚果克拉通花岗岩和麻粒岩,东南部基底岩石主要为中元古代卢弗布超群(片岩、片麻岩和花岗岩为主)和穆瓦超群(石英岩和变泥质岩)。赞比亚穹隆区为古—中元古代片岩、花岗岩和片麻岩(余金杰等, 2015)。加丹加超群地层不整合覆盖在基底之上,自下而上分为3个单元:罗安群、恩古巴群、昆德隆古群(Batumike et al., 2006),顶部被古生代Biano群覆盖(表 1)。

    表  1  加丹加超群地层层序(据Cailteux et al., 1995; Bull et al., 2011; Cailteux and De Putter, 2019修改)
    Table  1.  Lithostratigraphic units of the Katanga Supergroup (modified from Cailteux et al., 1995; Bull et al., 2011; Cailteux and De Putter, 2019)
    下载: 导出CSV 
    | 显示表格

    罗安群从下至上分为穆索诺伊亚群(R1)、矿山亚群(R2)、丰谷鲁梅亚群(R3)和穆瓦夏亚群(R4)(Cailteux and De Putter, 2019)。穆索诺伊亚群底部为底砾岩,不整合覆盖在基底之上,主要由一套粉红色至红色或紫灰色富赤铁矿细粒碎屑沉积岩组成,含镁黏土及白云石、镁绿泥石、石英等。底部粉砂质和砂质成分较多,上部则含有较多的白云质和各种富绿泥石胶结物并出现毫米至厘米级的蒸发盐或结核,代表了一个封闭的平坦潟湖环境,并伴随着强烈的蒸发(Cailteux et al., 2005bCailteux and De Putter, 2019)。矿山亚群是主要的Cu-Co赋矿层位,主要为一套浅水/(超)盐水潮汐平原、生物礁和瀉湖环境下的碳酸盐连续沉积(Cailteux, 1994)。从下至上由卡莫托组(Kamoto)、白云质页岩组(Dolomitic shale)和坎博韦组(Kambove)组成,卡莫托组下部为浅水层状粉砂质白云岩沉积,上覆潮汐薄层状碳酸盐岩,顶部为生物礁叠层石,构成一套海进序列。随着海进序列继续发展,沉积了更深水的白云质页岩组(Cailteux and De Putter, 2019)。坎博韦组由一套海退序列的浅水生物礁碳酸盐岩、潮汐局部蒸发岩沉积,上部逐渐增厚的碎屑岩表明沉积物逐渐由矿山亚群的碳酸盐岩转变为丰谷鲁梅亚群的硅质碎屑岩沉积(Cailteux, 1994)。丰谷鲁梅亚群通常被构造破坏,局部构成重复的双层序(Cailteux, 1994),为一套浅水沉积组合。底部Kwatebala组为一套富长石、弱白云石化的泥质粉砂岩和砂岩,向上发育红色硅质白云岩层;下部Dipeta组为白云岩和绿色泥质粉砂岩;Tenke组为两个粉红色—灰色白云质砂岩和白云岩交替互层(Lefebvre, 1979);Mofya组下部为硅质白云岩,中部为砂质和泥灰质白云岩,偶见鲕状或含滑石白云岩,顶部为白云母粉砂岩(François, 1987);Kansuki组构成丰谷鲁梅亚群的顶,主要由一套生物礁叠层石组成,含微生物、滑石和砂屑白云岩互层,部分地区见鲕状和蒸发型崩塌砾岩(Cailteux, 1994Cailteux et al., 2007)。穆瓦夏亚群主要由一套硅质碎屑沉积组成(Cailteux et al., 2007),从下至上可以分为3个组:(1)Kamoya组主要为粉砂岩,整合覆盖在Kansuki组之上,代表沉积盆地的加宽;(2)Kafubu组为一套黑色页岩,局部以泥质和砂质交替纹层尖灭;(3)Kanzadi组透镜状砂岩。后两者表明随着大冰川时期的开始,气候变化导致了海平面的下降和盆地的收缩(Cailteux et al., 2007)。

    恩古巴群的沉积环境为一个南部开口的开放盆地(Batumike et al., 2007)。底部Mwale组厚度达1000 m的大砾岩与715~680 Ma的全球司图特冰期有关(Cailteux and De Putter,2019)。Dolomie Tigrée组的帽碳酸盐岩覆盖在其之上,主要为白色和灰色交替的粗条纹状白云岩组成,并表现出部分典型的帽碳酸盐岩的沉积组构。在帽碳酸盐岩之上分别沉积了Kaponda页岩、Kakontwe组灰岩和Kipushi组碳酸盐岩(Cailteux and De Putter, 2019)。恩古巴群顶部为Katete组和Monwezi组,Katete组北部为碎屑沉积,南部为碳酸盐岩沉积;Monwezi组以硅质碎屑岩为主,两者构成一套海侵序列(Batumike et al., 2007)。

    昆德隆古群底部为Kyandamu组陆源混杂岩,与660~635 Ma的马林诺冰期有关(MacGabhann, 2005)。上覆Gombela亚群,由3个组组成,底部为Lusele组帽碳酸盐岩,主要为粉红色白云岩,底部具有滑塌沉积组构,上部发育厚约几厘米的页岩或粉砂岩。Kanianga组条带状白云质页岩和粉砂岩覆盖在其之上。上覆Lubudi白云质粉砂岩,北部具有鲕状灰岩层。昆德隆古群上部为Ngule亚群,由三个组组成,底部为Mongwe组,由一套含页岩、粉砂岩和砂岩的海相泥质碳酸盐岩组成,底部为泥质基质和砂岩内碎屑构成的砾岩层,岩层越往上砂质含量越高。中间为Kiubo组,主要由砂质碳酸盐岩组成,含页岩、粉砂岩、砂岩和长石砂岩,具有交错层理和波痕构造,指示浅水沉积环境。顶部为Sampwe组,厚约1700 m,主要由泥质、粉砂质和白云质沉积岩组成,同样发育交错层理、粒序层理和内碎屑砾岩(Batumike et al., 2007)。

    Biano群主要为一套陆源碎屑磨拉石建造,包括粗粒—细粒长石砂岩和内碎屑砾岩,不整合覆盖在昆德隆古群顶部,其沉积时间可能为寒武纪(Cailteux and De Putter,2019)。

    区域内岩浆岩不发育,765~735 Ma时受罗迪尼亚超大陆裂解的影响,基性岩墙、岩床侵位于丰谷鲁梅亚群中,基性—酸性熔岩和凝灰岩分别侵入和沉积到丰谷鲁梅亚群顶部的Kansuki组中(Lefebvre,1975Cailteux,1994Key et al., 2001Cailteux and De Putter,2019)。

    中非铜钴成矿带从发现至今已有近百年的研究历史。从1924年开始,陆续有地质学家通过填图对中非铜钴成矿带开展描述性研究,建立起了早期地层格架,并且确定该地区最主要的铜矿为同沉积型,同时还识别出了脉状、深成、表生等多种类型的铜矿(François, 1973)。随着Vrána et al.(1975)在赞比亚蒙布瓦南发现卢菲利安变质期的蓝晶石榴辉岩,逐渐将卢菲利安弧作为泛非造山带的重要组成部分,替代加丹加成为该地区的代名词。Porada(1989)首次将卢菲利安造山带分为5部分并沿用至今,且将该地区的演化总结为两期裂谷+碰撞闭合的模式。近年来,随着测年技术的发展,尤其是Re-Os定年技术的完善,使得精确限定沉积型矿床的形成时代成为可能,由此涌现出了大量关于中非铜钴成矿带构造演化与成矿的新观点(Richards et al., 1988Selley et al., 2005Kampunzu et al., 2009Sillitoe et al., 2017Cailteux and De Putter, 2019Twite et al., 2019, 2020Delpomdor et al., 2020)。

    Kampunzu et al.(2009)系统总结了中非铜钴成矿带加丹加超群的地质演化过程。罗迪尼亚超大陆裂解导致大陆裂谷的形成,在基底岩石上沉积了底砾岩,随后在赞比亚形成敏多拉组砾岩-长石砂岩沉积。最新的碎屑锆石研究表明赞比亚境内加丹加超群的沉积介于840~790 Ma(Hitzman et al., 2010)。在刚果(金)一侧,加丹加超群底部为姆索诺伊亚群的陆源粉砂岩,形成于平坦的密闭潟湖环境,并伴随着强烈的蒸发(Cailteux and De Putter, 2019)。随着陆内裂谷逐渐演化为原始海洋,形成了大量的伸展构造和正断层。约765 Ma的基性岩墙、基性至酸性岩床和侵入体的出现是伸展构造应力的岩浆响应(Cailteux, 1994; Key et al., 2001)。在这个广阔的伸展盆地中,沉积了罗安群、恩古巴群和昆德隆古群的Gombela亚群,并形成了三层冰川沉积,分别对应凯噶斯(Kaigas,770~735 Ma)冰期、司图特(Sturtian,715~680 Ma)冰期和马林诺(Marinoan,660~635 Ma)冰期。

    姆索诺伊、矿山和丰谷鲁梅亚群中,浸染状硫化物的出现为研究Cu-Co矿化提供了重要线索,矿山亚群的白云质页岩组成岩期斑铜矿Re-Os定年获得了821~762 Ma年龄(Muchez et al., 2015),赞比亚孔科拉铜矿矿体中也获得了(816±62)Ma的年龄(Selley et al., 2005),表明在整个成矿带范围内,矿床的沉积时代几乎是同时的(Cailteux and De Putter, 2019)。近年来,学者们又陆续获得了更加年轻的年龄:与硫铜钴矿伴生的辉铜矿Re-Os年龄(682±28)Ma(Muchez et al., 2015);卢斯维希铜钴矿矿山亚群独居石变质环带U-Th-Pb年龄(709±48)Ma(Lerouge et al., 2004);Shinkolobwe、Luishia、Swambo和Kalongwe矿床矿山亚群脉状、囊状和浸染状沥青铀矿SIMIS U-Pb年龄(652.3±7.3)Ma(Decrée et al., 2011);以及卢斯维希姆索诺伊亚群浸染状沥青铀矿U-Pb年龄(625±5)Ma(Loris et al., 1997),这些都与恩古巴裂谷时期,罗安群地层内部的盆地流体环流有关的变质-热液过程所形成的迁移活化或结晶作用有关(Cailteux and De Putter, 2019)。

    赞比亚与俯冲作用有关的榴辉岩相变质作用的出现(约595 Ma,John et al., 2003),代表着刚果克拉通和卡拉哈里克拉通汇聚的开始,盆地构造形式由伸展转变为挤压造山。在赞比亚和刚果(金)都获得了约600 Ma的黑云母和独居石变质峰期年龄(Lerouge et al., 2004Rainaud et al., 2005)。Kampunzu and Cailteux(1999)描述的D1变形期可能与这次变质事件相对应,形成了卢菲利安弧外部逆冲褶皱带和穹隆区(图 1b)。

    卢菲利安造山带第二个主变形期可能介于550~530 Ma(Hanson et al., 1993),并最终碰撞,表现为挤压期多次流体循环所形成的热液-变质重结晶或活化迁移。包括在成矿带范围内获得了大量独居石环带年龄和沥青铀矿U-Pb年龄,以及刚果(金)Kamoto矿床斑铜矿和赞比亚穹隆区Mujimbeji辉钼矿Re-Os年龄(Loris et al., 1997Lerouge et al., 2004Rainaud et al., 2005Decrée et al., 2011Eglinger et al., 2013Muchez et al., 2015Sillitoe et al., 2017)。这与Kampunzu and Cailteux(1999)描述的D2变形期相对应,形成了大规模左旋平移断层,伴随着加丹加基底的旋转,卢菲利安弧东段走向转为NW向,西段走向则为近EW向,形成弧状构造。

    沥青铀矿、独居石和辉钼矿所记录的515 Ma以及更年轻的年龄被认为与大范围的后造山成矿作用有关,表现为后期流体循环所引起的重结晶和活化迁移作用(Rainaud et al., 2005Sillitoe et al., 2017),这与赞比亚白云母中所获得的512 Ma的冷却年龄相对应(Cosi et al., 1992),即Kampunzu and Cailteux(1999)描述的D3变形期,形成了垂直卢菲利安弧走向的横向断裂及褶皱构造。这个阶段还形成了密西西比河谷型脉状Zn-Pb-Cu矿床(如刚果(金)Kipushi矿床),金属来源主要为盆地沉积岩和基底岩石(Kampunzu et al., 2009)。

    综上所述,中非铜钴带的Cu-Co成矿作用伴随整个卢菲利安造山带的演化。矿石中存在的几期硫化物代表了同成岩、早成岩和晚成岩阶段(Cailteux et al., 2005a)。硫同位素研究表明,硫的产生主要来自细菌或热化学对海水硫酸盐的还原(McGowan et al., 2003)。在母岩沉积过程中,含矿卤水主要为盐沼或高盐瀉湖中的海水,Eh-pH和盐度的变化对铜-钴的富集至关重要。挤压构造和相关的变质作用及表生富集作用在初始矿化形成后的矿体迁移和富集过程中起到了不同的作用(Cailteux et al., 2005a张银等,2021)。

    中非铜钴成矿带内共产出142处铜(钴)矿床(点),这些矿床分为沉积岩中的层控铜(钴)矿床、构造控制脉型铜(钴)矿床和含矿基底型铜矿三大矿床类型(Bernau,2007Zientek et al., 2014),其中沉积岩中的层控矿床又可以分为(碳酸盐岩质)巨型角砾岩型铜(钴)矿、含矿页岩型铜(钴)矿和砂岩型铜(钴)矿3种类型(Zientek et al., 2014)(图 2)。

    图  2  研究区铜(钴)矿床类型分布图
    1—克拉通;2—活动带;3—沉积盖层
    Figure  2.  Distribution of main types of Cu-(Co) deposits in Central African Copperbelt
    1-Craton; 2-Active belt; 3-Sedimentary stratum

    该类型的铜(钴)矿床主要包括谦比希铜(钴)矿床、巴鲁巴铜(钴)矿床、孔科拉(Konkola)铜矿床、恩昌加(Nchanga)铜矿床、恩卡纳(Nkana)铜(钴)矿床和穆利亚希(Muliashi)铜(钴)矿床等,主要产出于赞比亚卡富埃背斜的西翼,矿床特征如下:

    含矿页岩型铜(钴)矿床主岩为黑色-灰色页岩、黑色-深灰色粉砂岩、深灰色白云岩和粉砂质白云岩,均含有一定量的有机质成分。大多数含矿页岩型铜(钴)矿床形成于形状不规则的盆地边缘,流体迁移至红色砂岩并向上进入主岩(Taylor et al., 2013)。矿体的富集可能与红色砂岩层序粒度的变细,断层以及特定的沉积单元渗透率的变化有关。

    关键控矿因素:含矿页岩型铜(钴)矿床发育于赞比亚境内,形成于基特韦组含矿页岩建造中,受到低级绿片岩相至高级角闪岩相变质作用以及区域构造作用的共同影响(Selley et al., 2005)(图 3)。赋矿层位通常为红色砂岩之上的海相黑色页岩,在与砂岩的接触带中也含有矿化现象。

    图  3  含矿页岩型铜(钴)矿床成矿模式示意图(据Large et al., 2017
    Figure  3.  Formation model of the shale type Cu-(Co) deposits (after Large et al., 2017)

    该类型的铜(钴)矿床主要包括坎莫托、卢斯维希铜(钴)矿床和卡莫亚—坎博韦铜(钴)矿床等,其主要产出于卢菲利安弧外部褶皱带,矿床特征如下:

    在卢菲利安造山期发育一系列走滑断层,热流沿深断裂上升,萃取早期矿化地层中的铜多金属元素,形成富矿热卤水沿着断裂、裂隙和层隙环流,在化学性质活泼和构造破碎带发生交代、充填,不断改造富集,形成富矿体。铜(钴)成矿作用发生后,含矿地层单元、白云岩地层单元及其他地层单元,在含盐流体的加入下被溶解改造,使形成的角砾岩成为含矿层位(Garlick and Fleisher, 1972Jackson et al., 2003)(图 4)。与中非铜(钴)矿床带以外的还原相铜(钴)矿床相比,赋存于矿山亚群角砾岩中的铜(钴)矿床具有更高的品位(Taylor et al., 2013)。

    图  4  碳酸盐岩质巨型角砾岩型铜(钴)矿床成矿模式示意图(据Hitzman et al., 2012
    Figure  4.  Formation model of carbonate écaille Cu-(Co) deposits (after Hitzman et al., 2012)

    关键控矿因素:成矿阶段矿体主要受断层和矿化地层控制,形成矿体后被盐丘形成的底辟构造破坏、抬升,在更年轻的地层中就位。含矿角砾大多在纵向上定向排列。

    该类型的铜(钴)矿床主要包括姆万巴西(Mwambashi)铜矿床、布瓦纳·姆库布瓦(Bwana Mkubwa)铜矿床、齐布卢玛(Chibuluma)铜矿床和穆富里拉(Mufulira)铜矿床等,主要产于赞比亚卡富埃背斜东西两翼,含矿页岩型铜(钴)矿床的外侧,矿床特征如下:

    砂岩型铜矿床含矿岩石通常为三角洲顶部分选良好的硅质碎屑砂岩。赋矿层位主要为灰色细粒-粗粒砂岩,具交错层理、平行薄层,碎屑和波痕发育。矿体延伸长度为厚度的20到100倍。对于许多砂岩型铜矿床来说,构造上的圈闭使得碳氢化合物在沉积盆地中得以聚集,这有利于沉积物含铜物质的沉淀(Hayes et al., 2012)。完整的砂岩型铜矿床成矿环境包含了盆地内作为储层的红色岩层、烃源层以及蒸发岩(Taylor et al., 2013)。与世界其他砂岩矿床相比,中非铜钴成矿带中的砂岩铜矿床品位更高(Taylor et al., 2013)。

    关键控矿因素:砂岩型铜矿床发育于基特韦组(对应刚果(金)的矿山亚群)含矿页岩建造上部及下部的粗粒硅质碎屑岩以及含矿页岩建造的白云质粉砂岩中。与其他砂岩型铜矿床类似,它们也发育于地层储层中富集石油和天然气的构造圈闭中(图 5)。

    图  5  砂岩型铜(钴)矿床成矿模式示意图(据Selley et al., 2005
    Figure  5.  Formation model of sandstone Cu-(Co) deposits (after Selley et al., 2005)

    该类型的矿床主要包括坎桑希(Kansanshi)铜金矿、卡楞瓜(Kalengwa)铜(钴)矿床和迪库卢希(Dikulushi)铜银矿等,主要产于构造活动比较发育的地区,如赞比亚索卢韦齐穹隆北侧、刚果(金)与赞比亚边境Lumata地区和刚果(金)Lupoto地区。其矿床特征如下:

    该类矿床发育于罗安群下部,穆瓦夏亚群上部,恩古巴群以及昆德隆古群中部,含矿地层跨越了多个地层单元。主要岩性包括千枚岩、片岩、钙质粉砂岩、砂岩、砾岩、薄层大理岩、页岩和白云岩。

    关键控矿因素:卢菲利安造山期及之后发育的一系列高角度断层及其他构造切割高渗透率的地层为含铜流体的运移提供了通道(El Desouky et al., 2008)(图 6)。同时,该类型矿床还发育背斜褶皱和走滑断层,这一特征与层控页岩和砂岩铜(钴)矿床形成鲜明对比。

    图  6  构造控制脉型铜(钴)矿床成矿模式示意图(据El Desouky et al., 2008
    Figure  6.  Formation model of the structurally controlled replacement and vein Cu-(Co) deposits (after El Desouky et al., 2008)

    该类型的矿床主要包括卢姆瓦纳铜矿、Chimiwungo铜矿和桑巴(Samba)铜矿等,其矿床特征如下:

    矿床通常产于穹隆内,矿体赋存于上罗安亚群之上的基底片岩和片麻岩中,由于后期构造运动造成基底片麻岩被推覆到罗安群地层之上,并在接触带由变质热液交代成矿。主要的铜矿化受强烈叶理化石英云母片岩所控制,硫化物呈浸染状或团块状分布,主要为黄铜矿和斑铜矿,少量磁黄铁矿,在氧化带和过渡带伴生有辉铜矿和其他次生铜矿物。矿区的构造-地层是剪切推覆-挤压下强烈变质和剪切作用下强烈变形的构造-地层运动结果。含矿片岩和底板石英/白云母-石英片岩地层单元是受剪切作用和交代蚀变作用最为强烈的部分。上述特征表明,含矿片岩可能并非是多种不同的岩石,而是在卢菲利安造山期顶板片麻岩强烈的剪切和变质作用下形成的构造混杂岩。

    关键控矿因素:880~750 Ma被动大陆边缘发育期间,前加丹加基底发生蚀变并伴随着硫化物矿化(John et al., 2003)。含铜钴富镁盆地卤水沿伸展基底构造运移。这一过程使得长石发生绢云母化,硫化物铜矿化(Bernau,2007)。600~500 Ma,卡拉哈里克拉通和刚果克拉通的汇聚导致了陆陆碰撞,这一过程硫化物重新活化并发生迁移,形成白云母片岩组合。在这之后区域上又经历了快速剥蚀、构造抬升和冷却(John et al., 2004)(图 7)。

    图  7  含矿基底型铜矿成矿模式示意图(据Bernau, 2007
    Figure  7.  Formation model of the ore-bearing basement Cu deposits (after Bernau, 2007)

    开展矿产资源潜力分析的目的是对资源勘查工作可能获得的结果进行预测(严光生等,2010)。在分析矿产资源潜力过程中,资源量的评价与估算一直是较困难的,传统方法有地球化学块体法、数学地质多元回归方法等(严光生等,2007)。但这些方法均试图建立资源量与多变量的线性关系。实际上,资源量的多少与地质因素的关系十分复杂,比较成熟的美国“三部式”评价认为每个矿床类型都有自己一定的品位、吨位分布特征,未发现矿床应服从目前的分布特征(严光生等,2007)。因此,本研究综合国内综合地质信息法和美国“三部式”资源潜力评价,在构造背景分析和成矿规律研究的基础上,采用综合地质信息法进行成矿信息的提取与综合,圈定找矿远景区,采用蒙特卡罗模拟的方法估计未发现资源量。

    本研究通过模糊证据权法开展综合信息矿产预测,圈定成矿可行性地段(远景区)(成秋明等,2007王佳营等, 2019, 2021滕菲等,2021)。本区铜(钴)矿床的空间分布严格受地层控制,并且与构造的关系十分密切(Dewaele et al., 2006李向前等,2009)。Dewaele et al.(2006)统计了该地区155处矿产地,其中层状铜钴矿床达97处,其中绝大多数(93处)产于矿山亚群中,其他4处产于丰谷鲁梅亚群。可见,大多数的铜矿化或铜钴矿化呈层状,且赋存在罗安群中,表现为明显的层控特征(李向前等,2009)。

    研究构造控矿作用往往要考虑构造带的影响范围(成秋明等,2009)。研究区受植被覆盖影响,实测构造数量较少,且分布不均。本研究通过地质、遥感、卫星重力等综合信息对研究区隐伏断裂构造进行推断解译。对实测及推断断裂构造进行缓冲区分析,选择多环方式,环间距250 m,共20环。计算每个缓冲区与矿床的空间相关性(图 8),计算结果表明最佳空间相关系数所对应的距离为1 km。因此,距离构造线1 km范围内可以看作有利控矿要素。

    图  8  采用证据权法计算矿床空间分布与构造线距离的相关关系
    Figure  8.  Plot showing the relationship between the distance from the faults and students t-value calculated using weights of evidence method

    上述矿床的成矿模式均与地层和构造密切相关,地球化学异常和遥感蚀变与成矿关系密切,因此选择地层、地质构造、地球化学Cu-Co-Bi主成分、卫星重力解译构造、遥感羟基蚀变、遥感铁染蚀变、遥感解译线构造等数据作为证据图层(图 9),采用模糊证据权法计算成矿后验概率。为保证后验概率的条件独立性,将第一次计算得到的后验概率作为一个新的图层,与上述证据图层重新计算,得到校正后验概率(Cheng,2008成秋明等,2009)。经统计,后验概率满足分形分布,根据分形节点对成矿后验概率值进行分级,共划分出32处成矿可行性地段(远景区)(图 10)。

    图  9  用于中非铜钴成矿带成矿预测的证据图层
    a—地层;b—地质构造buffer分析;c—地球化学Cu-Co-Bi主成分奇异性指数;d—卫星重力上延5 km线构造buffer分析;e—卫星重力上延10 km线构造buffer分析;f—卫星重力上延20 km线构造buffer分析;g—遥感解译羟基蚀变;h—遥感解译铁染蚀变;i—遥感解译线构造buffer分析
    Figure  9.  Evidence layers for mineral prediction in Central African Copperbelt
    a-Stratigraphy; b-Buffer analysis of geological structure; c-Geochemical PCA Cu-Co-Bi index; d-Buffer analysis of satellite gravity staged a 5 km line structure; e-Buffer analysis of satellite gravity staged a 10 km line structure; f-Buffer analysis of satellite gravity staged a 20 km line structure; g-Hydroxyl alteration of remote sensing; h-Iron stain alteration of remote sensing; i-Buffer analysis of remote sensing line structure
    图  10  中非铜钴成矿带成矿可行性地段分布图
    1—克拉通;2—活动带;3—沉积盖层
    Figure  10.  Distribution of tracts of Central African Copperbelt
    1-Craton; 2-Active belt; 3-Sedimentary stratum

    未发现矿床个数是预测后验概率的函数(成秋明等,2009),两者的关系式为N(>P)=P×AN为未发现矿床个数;P为计算的后验概率;A为预测区的面积)。计算出非洲中部铜钴成矿带可行性地段中不同概率意义下未发现矿床个数见表 2

    表  2  中非铜钴成矿带成矿可行性地段未发现矿床数的估计
    Table  2.  Estimation of the number of undiscovered deposits in each tract of Central African Copper belt
    下载: 导出CSV 
    | 显示表格

    品位、吨位模型反映了勘查程度较高的矿床的吨位和平均品位频率分布。在类似的地质环境下,可以认为它就是同类未发现矿床的品位、吨位模型(Zientek et al., 2014)。建立开发程度较高地区的标准品位、吨位模型具有重要意义。

    对收集的铜矿床品位数据进行筛选,其中有效的品位数据有130份。对这130份数据进行统计得到品位分布直方图(图 11a)和吨位分布直方图(图 11c),经P-P检验符合正态分布,可以用来建立铜矿床品位-吨位联合模型(图 11e)。

    图  11  中非铜钴成矿带铜品位(a)和钴品位(b)、铜矿体吨位(c)和钴矿体吨位(d)分布直方图以及铜品位-吨位(e)和钴品位-吨位(f)联合模型
    Figure  11.  Histogram illustrating the distribution of log-transformed values for grade of Cu deposits (a) and Co deposits (b), tonnage of Cu deposits (c) and tonnage of Co deposits (d), and bivariate graphs of ore tonnage against ore grade of Cu deposits (e), and Co deposits (f) in Central African Copper Belt

    本区钴资源主要集中在刚果(金)利卡西—科卢韦齐一带,对该地区产出的钴矿床共50份数据进行统计得到品位分布直方图(图 11b)和吨位分布直方图(图 11d),经P-P检验,符合正态分布,在此基础上建立钴矿品位-吨位联合模型(图 11f)。

    利用上述模型和Mark3资源量评价程序(Duval,2000)对本区32个可行地段进行铜资源量计算,对利卡西—科卢韦齐22个可行性地段进行钴资源量计算,获得每个可行地段的评价结果和汇总结果见表 3

    表  3  中非铜钴成矿带每个成矿可行性地段评价结果
    Table  3.  Quantitative assessment result for each tract of Cu (Co) deposit in Central African Copper belt
    下载: 导出CSV 
    | 显示表格

    目前,本区已经探明的沉积岩层控型铜(钴)矿床的铜资源量是18715.69万t,钴资源量是1251.83万t,估计的90%概率未知铜钴资源量分别是1403万t和45.9万t,50%概率的未知铜钴资源量分别是10940万t和411万t,均值未知铜钴资源量分别是28780万t和1992万t。根据定义,通常可能性为90%的矿床数的情况是估计者已经知道的,并已进行过勘查工作,只是其储量没有发布;可能性为10%矿床数的估计表示该可行地段存在形成该类型矿床就位和成矿条件(严光生等,2010)。按照这个概念,以90%概率的资源量为参照,目前已经探明的铜和钴矿资源量分别占93.03%和96.46%;以50%概率的资源量为参照,目前已经探明的铜和钴矿资源量分别占63.11%和75.28%;以均值资源量为参照,目前已经探明的铜和钴矿资源量分别占39.41%和38.59%。值得说明的是,表 3中的资源量只是可能存在的概率资源量,与实际探明的铜钴矿资源量不能等同,其意义在于表达非洲中部铜钴成矿带未发现沉积岩层控型铜钴矿的多少或资源潜力的大小。

    从预测的资源量空间分布来看,刚果(金)卢阿巴拉省利卡西—科卢韦齐一带仍是潜在铜钴资源富集区(S1-S20;S23-S24),区内预测平均铜资源量1.76亿t,占总预测平均铜资源量的61%;由于该地区查明钴资源占到了成矿带的92%,故关于钴的资源潜力评价主要集中在该地区开展,预测平均钴资源量1992万t。赞比亚铜带省(S31-S32)预测平均铜资源量6260万t,占总预测平均铜资源量的21.75%;西北省(S28-S29)预测平均铜资源量1900万t,占总预测平均铜资源量的6.6%。上述结果表明,刚果(金)利卡西—科卢韦齐仍是未来寻找铜钴矿的重要地段,赞比亚铜带省以及西北省仍有较大的找矿潜力。同时,评价结果也体现了本区勘查和研究程度比较低,成矿信息不全等问题,与实际调研情况相符。

    (1)罗迪尼亚超大陆的裂解沉积了中非铜钴成矿带罗安群、恩古巴群和部分昆德隆古群。冈瓦纳大陆的汇聚导致海水变浅,地层被抬升,变形。复杂的演化历史形成了该地区沉积成矿、热液成矿、表生富集等多种成矿作用的叠加。

    (2)中非铜钴成矿带铜(钴)矿床可划分为层控型(巨型角砾岩型、含矿页岩型和砂岩型)、构造控制脉型和含矿基底型三大类型,铜(钴)成矿作用贯穿成矿带演化过程,成矿作用与地层和构造密切相关。

    (3)采用模糊证据权法圈定32个铜成矿远景区,22个钴成矿远景区。依托研究区矿床建立了沉积岩层控型铜(钴)矿床的品位-吨位模型,潜力评价结果认为平均概率下未发现铜钴资源量分别达28780万t和1992万t。其中,刚果(金)利卡西-科卢韦齐地区是最重要的资源集中区,成矿潜力最大,也是未来寻找铜钴矿的主要方向。

    致谢:资源潜力评价工作得到了中国地质科学院矿产资源研究所江思宏研究员和中国地质调查局发展研究中心邱瑞照研究员的指导和帮助,匿名审稿人提出了诸多有益建议,在此表示诚挚的感谢。

  • 图  1   中非铜钴成矿带地质简图(据Selley et al., 2005; Kampunzu et al., 2009修改)

    1—克拉通;2—活动带;3—沉积盖层

    Figure  1.   Simplified regional geological map of the Central African Cu-Co Metallogenic Belt (modified from Selley et al., 2005; Kampunzu et al., 2009)

    1-Craton; 2-Active belt; 3-Sedimentary stratum

    图  2   研究区铜(钴)矿床类型分布图

    1—克拉通;2—活动带;3—沉积盖层

    Figure  2.   Distribution of main types of Cu-(Co) deposits in Central African Copperbelt

    1-Craton; 2-Active belt; 3-Sedimentary stratum

    图  3   含矿页岩型铜(钴)矿床成矿模式示意图(据Large et al., 2017

    Figure  3.   Formation model of the shale type Cu-(Co) deposits (after Large et al., 2017)

    图  4   碳酸盐岩质巨型角砾岩型铜(钴)矿床成矿模式示意图(据Hitzman et al., 2012

    Figure  4.   Formation model of carbonate écaille Cu-(Co) deposits (after Hitzman et al., 2012)

    图  5   砂岩型铜(钴)矿床成矿模式示意图(据Selley et al., 2005

    Figure  5.   Formation model of sandstone Cu-(Co) deposits (after Selley et al., 2005)

    图  6   构造控制脉型铜(钴)矿床成矿模式示意图(据El Desouky et al., 2008

    Figure  6.   Formation model of the structurally controlled replacement and vein Cu-(Co) deposits (after El Desouky et al., 2008)

    图  7   含矿基底型铜矿成矿模式示意图(据Bernau, 2007

    Figure  7.   Formation model of the ore-bearing basement Cu deposits (after Bernau, 2007)

    图  8   采用证据权法计算矿床空间分布与构造线距离的相关关系

    Figure  8.   Plot showing the relationship between the distance from the faults and students t-value calculated using weights of evidence method

    图  9   用于中非铜钴成矿带成矿预测的证据图层

    a—地层;b—地质构造buffer分析;c—地球化学Cu-Co-Bi主成分奇异性指数;d—卫星重力上延5 km线构造buffer分析;e—卫星重力上延10 km线构造buffer分析;f—卫星重力上延20 km线构造buffer分析;g—遥感解译羟基蚀变;h—遥感解译铁染蚀变;i—遥感解译线构造buffer分析

    Figure  9.   Evidence layers for mineral prediction in Central African Copperbelt

    a-Stratigraphy; b-Buffer analysis of geological structure; c-Geochemical PCA Cu-Co-Bi index; d-Buffer analysis of satellite gravity staged a 5 km line structure; e-Buffer analysis of satellite gravity staged a 10 km line structure; f-Buffer analysis of satellite gravity staged a 20 km line structure; g-Hydroxyl alteration of remote sensing; h-Iron stain alteration of remote sensing; i-Buffer analysis of remote sensing line structure

    图  10   中非铜钴成矿带成矿可行性地段分布图

    1—克拉通;2—活动带;3—沉积盖层

    Figure  10.   Distribution of tracts of Central African Copperbelt

    1-Craton; 2-Active belt; 3-Sedimentary stratum

    图  11   中非铜钴成矿带铜品位(a)和钴品位(b)、铜矿体吨位(c)和钴矿体吨位(d)分布直方图以及铜品位-吨位(e)和钴品位-吨位(f)联合模型

    Figure  11.   Histogram illustrating the distribution of log-transformed values for grade of Cu deposits (a) and Co deposits (b), tonnage of Cu deposits (c) and tonnage of Co deposits (d), and bivariate graphs of ore tonnage against ore grade of Cu deposits (e), and Co deposits (f) in Central African Copper Belt

    表  1   加丹加超群地层层序(据Cailteux et al., 1995; Bull et al., 2011; Cailteux and De Putter, 2019修改)

    Table  1   Lithostratigraphic units of the Katanga Supergroup (modified from Cailteux et al., 1995; Bull et al., 2011; Cailteux and De Putter, 2019)

    下载: 导出CSV

    表  2   中非铜钴成矿带成矿可行性地段未发现矿床数的估计

    Table  2   Estimation of the number of undiscovered deposits in each tract of Central African Copper belt

    下载: 导出CSV

    表  3   中非铜钴成矿带每个成矿可行性地段评价结果

    Table  3   Quantitative assessment result for each tract of Cu (Co) deposit in Central African Copper belt

    下载: 导出CSV
  • Batumike M J, Cailteux J L H, Kampunzu A B. 2007. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copper belt[J]. Gondwana Research, 11(3): 432-447. doi: 10.1016/j.gr.2006.04.012

    Batumike M J, Kampunzu A B, Cailteux J H. 2006. Petrology and geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, southeast Congo: Implications for provenance, paleoweathering and geotectonic setting[J]. Journal of African Earth Sciences, 44: 97-115. doi: 10.1016/j.jafrearsci.2005.11.007

    Bernau R. 2007. The Geology and Geochemistry of the Lumwana Basement Hosted Copper-Cobalt (Uranium) Deposits, NW Zambia[D]. University of Southampton: 1-187.

    Bull S, Selley D, Broughton D, Hitzman M, Cailteux J, Large R, McGoldrick P. 2011. Sequence and carbon isotopic stratigraphy of the Neoproterozoic Roan Group strata of the Zambian copperbelt[J]. Precambrian Research, 190(1): 70-89. https://www.sciencedirect.com/science/article/pii/S0301926811001598

    Cailteux J. 1994. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization[J]. Journal of African Earth Sciences, 19(4): 279-301. doi: 10.1016/0899-5362(94)90015-9

    Cailteux J, Binda P L, Kampunzu A B, Katekesha W M, Kaunda C, Wendorff M. 1995. Results of lithostratigraphic correlation of the Late Proterozoic Roan Supergroup between Zambia and Zaire, Central African Copperbelt[J]. Royal Museum of Central Africa (Belgium), Annales des Sciences Géologiques, 101: 21-27. https://www.academia.edu/5994061/Results_of_lithostratigraphic_correlation_of_the_late_Proterozoic_Roan_Supergroup_between_Zambia_and_Zaire_Central_African_Copperbelt

    Cailteux J L H, De Putter T. 2019. The Neoproterozoic Katanga Supergroup (D. R. Congo): State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 150: 522-531. doi: 10.1016/j.jafrearsci.2018.07.020

    Cailteux J L H, Kampunzu A B H, Batumike M J. 2005b. Lithostratigraphic position and petrographic characteristics of R.A.T. ("Roches Argilo-Talqueuses") Subgroup, Neoproterozoic Katangan Belt (Congo)[J]. Journal of African Earth Sciences, 42(1): 82-94. https://ui.adsabs.harvard.edu/abs/2005JAfES..42...82C/abstract

    Cailteux J L H, Kampunzu A B, Lerouge C. 2007. The Neoproterozoic Mwashya-Kansuki sedimentary rock succession in the central African Copperbelt, its Cu-Co mineralisation, and regional correlations[J]. Gondwana Research, 11(3): 414-431. doi: 10.1016/j.gr.2006.04.016

    Cailteux J, Kampunzu A B, Lerouge C, Kaputo A K, Milesi J P. 2005a. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences, 42(1): 134-158. https://www.sciencedirect.com/science/article/abs/pii/S1464343X05000920

    Cheng Q. 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6

    Cheng Qiuming, Chen Zhijun, Ali Khaled. 2007. Application of fuzzy weights of evidence method in mineral resource assessment for gold in Zhenyuan district, Yunnan province, China[J]. Earth Science-Journal of China University of Geosciences, 32(2): 175-184 (in Chinese with English abstract).

    Cheng Qiuming, Zhao Pengda, Zhang Shengyuan, Xia Qinglin, Chen Zhijun, Chen Jianguo, Xu Deyi, Wang Wenlei. 2009. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: Information integration and delineation of mineral exploration targets[J]. Earth Science-Journal of China University of Geosciences, 34(2): 243-252 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.022

    Corner B. 2000. Crustal framework of Namibia derived from magnetic and gravity data[J]. Communications of the Geological Survey of Namibia, 12: 15-22. http://www.mme.gov.na/files/publications/f42_Corner_crustal%20framework_plus%20maps.pdf

    Cosi M, De Bonis A, Gosso G, Hunziker J, Martinotti G, Moratto S, Robert J P, Ruhlman F. 1992. Late Proterozoic thrust tectonics, high-pressure metamorphism and uranium mineralization in the Domes Area, Lufilian Arc, Northwestern Zambia[J]. Precambrian Research, 58(1): 215-240. http://www.onacademic.com/detail/journal_1000036171362910_e276.html

    Decrée S, Deloule é, De Putter T, Dewaele S, Mees F, Yans J, Marignac C. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context[J]. Ore Geology Reviews, 40(1): 81-89. doi: 10.1016/j.oregeorev.2011.05.003

    Delpomdor F, Callec Y, Bailly L, Mashigiro E H, Ilunga S, Sebagenzi S, Mupande J F, Kampata D, Cailteux J. 2020. Sedimentary evolution and chemostratigraphy of the post-Sturtian cap carbonate-like DolomieTigrée Formation (Katanga Supergroup) in the Democratic Republic of the Congo[J]. Journal of African Earth Sciences, 162: 103727. doi: 10.1016/j.jafrearsci.2019.103727

    Dewaele S, Muchez P, Vets J, Fernandez-Alonzo M, Tack L. 2006. Multiphase origin of the Cu Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo)[J]. Journal of African Earth Sciences, 46: 455-469. doi: 10.1016/j.jafrearsci.2006.08.002

    Duval J S. 2000. A Microsoft Windows version of the MARK3 Monte Carlo mineral resource simulator[CP/OL]. http://pubs.usgs.gov/of/2000/of00-415/.

    Eberle D, Hutchins D, Rebbeck R J, Somerton I. 1996. Compilation of the Namibian airborne magnetic surveys: Procedures, problems and results[J]. Journal of African Earth Sciences, 22(2): 191-205. doi: 10.1016/0899-5362(96)00117-0

    Eglinger A, André-Mayer A, Vanderhaeghe O, Mercadier J, Cuney M, Decrée S, Feybesse J, Milesi J. 2013. Geochemical signatures of uranium oxides in the Lufilian belt: From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J]. Ore Geology Reviews, 54: 197-213. doi: 10.1016/j.oregeorev.2013.04.003

    El Desouky H A, Muchez P, Tyler R. 2008. The sandstone-hosted stratiform copper mineralization at Mwitapile and its relation to the mineralization at Lufukwe, Lufilian foreland, Democratic Republic of Congo[J]. Ore Geology Reviews, 34(4): 561-579. doi: 10.1016/j.oregeorev.2008.09.004

    François A. 1973. L'extremité occidentale de l'arc cuprifére shabien. étude géologique. Département Géologiques Gécamines, Likasi, Shaba, Zaire.

    François A. 1987. Synthèse géologique sur l'arc cuprifère du Shaba (Rép. du Zaïre)[J]. Centenaire de la Société Belge de Géologie: 15-65.

    Garlick W G, Fleisher V D. 1972. Sedimentary environment of Zambian copper deposition[J]. Geologieen Mijnbouw, 51(3): 277-298.

    Hanson R E, Wardlaw M S, Wilson T J, Mwale G. 1993. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: constraints on Pan-African deformation, plutonism, and transcurrent shearing in Central Zambia[J]. Precambrian Research, 63(3): 189-209. http://www.ingentaconnect.com/content/el/03019268/1993/00000063/00000003/art00002

    Hayes T S, Landis G P, Whelan J F, Rye R O, Moscati R J. 2012. The spar lake strata-bound Cu-Ag deposit formed across a mixing zone between trapped natural gas and metals-bearing brine[J]. Economic Geology, 107(6): 1223-1249. doi: 10.2113/econgeo.107.6.1223

    Hitzman M W, Selley D, Bull S. 2010. Formation of sedimentary rock-hosted stratiform copper deposits through Earth History[J]. Economic Geology, 105(3): 627-639. doi: 10.2113/gsecongeo.105.3.627

    Hitzman M W, Broughton D, Selley D, Woodhead J, Wood D, Bull S. 2012. The Central African copper belt: Diverse stratigraphic, structural, and temporal settings in the world's largest sedimentary copper district[J]. Society of Economic Geologists Special Publication, 16: 487-514. https://pubs.geoscienceworld.org/segweb/books/book/1385/chapter/107056968/The-Central-African-CopperbeltDiverse

    Jackson M P A, Warin O N, Woad G M, Hudec M R. 2003. Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan Copperbelt, central Africa[J]. GSA Bulletin, 115(3): 314-330. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/115/3/314/183967/Neoproterozoic-allochthonous-salt-tectonics-during

    John T, Schenk V, Haase K, Scherer E, Tembo F. 2003. Evidence for a Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites[J]. Geology, 31(3): 243-246. doi: 10.1130/0091-7613(2003)031<0243:EFANOI>2.0.CO;2

    John T, Schenk V, Mezger K, Tembo F. 2004. Timing and PT evolution of Whiteschist metamorphism in the Lufilian Arc-Zambezi Belt Orogen (Zambia): Implications for the assembly of Gondwana[J]. The Journal of Geology, 112(1): 71-90. doi: 10.1086/379693

    Kampunzu A B, Cailteux J. 1999. Tectonic evolution of the Lufilian Arc (Central Africa Copper Belt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 2(3): 401-421. doi: 10.1016/S1342-937X(05)70279-3

    Kampunzu A B, Cailteux J L H, Kamona A F, Intiomale M M, Melcher F. 2009. Sediment-hosted Zn-Pb-Cu deposits in the Central African copper belt[J]. Ore Geology Reviews, 35(3-4): 263-297. doi: 10.1016/j.oregeorev.2009.02.003

    Key R M, Liyungu A K, Njamu F M, Somwe V, Banda J, Mosley P N, Armstrong R A. 2001. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 33(3): 503-528. http://www.sciencedirect.com/science/article/pii/S0899536201000987

    Large R R, Mukherjee I, Gregory D D, Steadman J A, Maslennikov V V, Meffre S. 2017. Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: Implications for ore genesis in sedimentary basins[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 112(2): 423-450. doi: 10.2113/econgeo.112.2.423

    Lefebvre J J. 1975. Les roches ignées dans le Katangien du Shaba (Zaïre), le district du cuivre[J]. Annales de la Société géologique de Belgique, 98: 47-73.

    Lefebvre J J. 1979. Le Groupe de Mwashya, mégacyclothème terminal du Roan (Shaba, Zaïre Sud-Oriental); I approche lithostratigraphique et étude de l'environnement sédimentaire[J]. Annales de la Societe Geologique de Belgique, 101(1978): 209-225. http://www.researchgate.net/publication/283737220_Le_Groupe_de_Mwashya_megacycloteme_terminal_du_Roan_Shaba_Zaire_Sud-Oriental_L'approche_stratigraphique_et_etude_de_l'environnement_sedimentaire

    Lerouge C, Cocherie A, Cailteux J, Kampunzu A B, Breton J, Gilles C, Milesi J P. 2004. Preliminary U-Th-Pb electron microprobe dating of monazite: Chronological constraints on the genesis of the Luisweshi Cu-Co-U ore deposit, D.R. Congo[C]//Geoscience Africa 2004, University of the Witwatersrand, Johannesburg, South Africa, 382-383.

    Li Xiangqian, Mao Jingwen, Yan yanling, Gao Hongshan, Li Mengwen, Xu Xianli. 2009. Regional geology and characteristics of ore deposits in Katangan copper-cobalt belt within Congo (Kinshasa), Central Africa[J]. Mineral Deposits, 28(3): 366-380 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=KCDZ200903013&dbcode=CJFD&year=2009&dflag=pdfdown

    Li Xiangqian. 2011. Metallogenic Series and Metallogeny in Congo (Kinshasa) Part of Central African Copperbelt[D]. China University of Geosciences (Beijing): 1-117 (in Chinese with English abstract).

    Loris N B T, Charlet J M, Pechman E, Clare C, Chabu M, Quinif Y. 1997. Caractéristiques minéralogiques, cristallographiques, physico-chimiques et ages des minéralisations uranifères de Luiswishi (Shaba, Zaïre)[J]. Actes du Colloque International Cornet: 285-306.

    Lu Yiguan, Hao Bo, Sun Kai, He Shengfei, Xu Kangkang, Gong Penghui, Zhang Hang. 2020. General situation of cobalt resource and its utilization analysis[J]. Geological Survey and Research, 43(1): 72-80 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0304386X1931076X

    MacGabhann B A. 2005. Age constraints on Precambrian glaciations and the subdivision of Neoproterozoic time[C]. IUGS Ediacaran Subcommission Circluar: 1-13.

    McGowan R R, Roberts S, Foster R P, Boyce A J, Coller D. 2003. Origin of the copper-cobalt deposits of the Zambian Copper belt: An epigenetic view from Nchanga[J]. Geology, 31(6): 497-500. doi: 10.1130/0091-7613(2003)031<0497:OOTCDO>2.0.CO;2

    Muchez P, André-Mayer A, El Desouky H A, Reisberg L. 2015. Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt[J]. Mineralium Deposita, 50(4): 437-447. doi: 10.1007/s00126-015-0582-3

    Porada H. 1989. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 44(2): 103-136. doi: 10.1016/0301-9268(89)90078-8

    Qiu Ruizhao, Li Tingdong, Xiao Qinghui, Sun Kai, Liu Yong, Qiu Lei, Chen Xiufa, Zhao Hongjun, Wang Liangliang, Zhu Quanlong, Ren Xiaodong, Zhao Like. 2021. A new pattern of the tectonic units in Africa continent in terms of lithosphere[J]. China Geology. doi: 10.31035/cg2021073.

    Rainaud C, Master S, Armstrong R A, Phillips D, Robb L J. 2005. Monazite U-Pb dating and 40Ar-39Ar thermochronology of metamorphic events in the Central African Copperbelt during the Pan-African Lufilian Orogeny[J]. Journal of African Earth Sciences, 42(1): 183-199. http://www.sciencedirect.com/science/article/pii/S1464343X05000981

    Richards J, Cumming G, Krstic D, Wagner P, Spooner E. 1988. Pb isotope constraints on the age of sulfide ore deposition and U-Pb age of late uraninite veining at the Musoshi stratiform copper deposit, Central Africa copper belt, Zaire[J]. Economic Geology, 83: 724-741. doi: 10.2113/gsecongeo.83.4.724

    Schulz K J, DeYoung J H, Seal R R, Bradley D C, Abdelsalam M G. 2017. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply: Professional Paper[Z]. Reston, VA: 2017862.

    Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, McGoldrick P, Croaker M, Pollington N, Barra F. 2005. A new look at the geology of the Zambian copper belt[J]. Economic Geology, One Hundredth Anniversary Volume: 965-1000. http://www.researchgate.net/profile/Robert_Scott9/publication/284791953_A_new_look_at_the_geology_of_the_Zambian_Copperbelt/links/567e3ebe08ae19758387c518.pdf

    Sillitoe R H, Perelló J, Creaser R A, Wilton J, Wilson A J, Dawborn T. 2017. Age of the Zambian Copperbelt[J]. Mineralium Deposita, 52(8): 1245-1268. doi: 10.1007/s00126-017-0726-8

    Singer D A. 1995. World class base and precious metal deposits; a quantitative analysis[J]. Economic Geology, 90(1): 88-104. doi: 10.2113/gsecongeo.90.1.88

    Taylor C D, Causey J D, Denning P D, Hammarstrom J M, Hayes T S, Horton J D, Kirschbaum M J, Parks H L, Wilson A B, Wintzer N E, Zientek M L. 2013. Descriptive Models, Grade-tonnage Relations, and Databases for the Assessment of Sediment-hosted Copper Deposits-With Emphasis on Deposits in the Central African Copperbelt, Democratic Republic of the Congo and Zambia[R]. U.S. Geological Survey Scientific Investigations Report 2010-5090-J: 1-154.

    Teng Fei, Peng Lina, Meng Qinglong, Xing Yi. 2021. Applying weight of evidence to predict Ag-Pb-Zn potentiality in Fengning region, Hebei[J]. North China Geology, 44(1): 21-26(in Chinese with English abstract).

    Twite F, Broughton D, Nex P, Kinnaird J, Gilchrist G, Edwards D. 2019. Lithostratigraphic and structural controls on sulphide mineralisation at the Kamoa copper deposit, Democratic Republic of Congo[J]. Journal of African Earth Sciences, 151: 212-224. doi: 10.1016/j.jafrearsci.2018.12.016

    Twite F, Nex P, Kinnaird J. 2020. Strain fringes and strain shadows at Kamoa (DRC), implications for copper mineralisation[J]. Ore Geology Reviews, 122: 103536. doi: 10.1016/j.oregeorev.2020.103536

    Unrug R. 1988. Mineralization controls and source of metals in the Lufilian fold belt, Shaba (Zaire), Zambia, and Angola[J]. Economic Geology, 83(6): 1247-1258. doi: 10.2113/gsecongeo.83.6.1247

    Vrána S, Prasad R, Fediuková E. 1975. Metamorphic kyanite eclogites in the lufilian arc of Zambia[J]. Contributions to Mineralogy and Petrology, 51(2): 139-160. doi: 10.1007/BF00403755

    Wang Denghong. 2019. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).

    Wang Jiaying, Liu Xing, Xue Shengsheng, Zhang Xiaojun, Zhang Qi, Li Guangyao, Xie Yu. 2021. Application of singularity theory in weak information extraction for ore prospecting in the Dalaimiao Grassland-covered Area[J]. North China Geology, 44(2): 14-24(in Chinese with English abstract).

    Wang Jiaying, Zhang Xiaojun, Yao Chunliang, Zhang Qi, Xie Yu, Li Guangyao, Ding Ning. 2019. Application of nonlinear theory and fuzzy weights of evidence method in metallogenic prediction for Mo Polymetalic deposits in the Dalaimiao grassland-covered area, Inner Mongolia[J]. Geological Survey and Research, 42(3): 174-184 (in Chinese with English abstract).

    Yan Guangsheng, Qiu Ruizhao, Lian Changyun, Li Jinyi, Xiao Keyan, Mao Jingwen. 2010. Quantitative Assessment of the Resource Potential of Porphyry Copper and Sandstone Copper Systems in China[M]. Beijing: Geological Publishing House: 1-218 (in Chinese).

    Yan Guangsheng, Qiu Ruizhao, Lian Changyun, Warren J. Nokleberg, Cao Li, Chen Xiufa, Mao Jingwen, Xiao Keyan, Li Jinyi, Xiao Qinghui, Zhou Su, Wang Mingyan, Liu Dawen, Yuan Chunhua, Han Jiuxi, Wang Liangliang, Chen Zheng, Chen Yuming, Xie Guiqing, Ding Jianhua. 2007. Quantitative assessment of the resource potential of porphyry copper systems in China[J]. Earth Science Frontiers, 14(5): 27-41 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60034-7

    Yu Jinjie, Liu Xiaoyang, Wang Jie, Wang Tiezhu, Lu Bangcheng, Liu Shuaijie. 2015. Geological setting and ore-controlling factors of the central African Cu-Co metallogenic belt[J]. Contributions to Geology and Mineral Resources Research, 30(S1): 119-128 (in Chinese with English abstract).

    Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract).

    Zhang Yin, Hu Dengpan, Yu Can, Cui Jianjun. 2021. Geological characteristics and prospecting potential of Kanunka copper-cobalt deposit in Lualaba, Democratic Republic of Congo[J]. Geology and Resources, 30(4): 450-455 (in Chinese with English abstract).

    Zientek M L, Bliss J D, Broughton D, Christie M, Denning P D, Hayes T S, Hitzman M W, Horton J D, Frostkillian S, Jack D J. 2014. Sediment-hosted stratabound copper assessment of the Neoproterozoic Roan Group, central African copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia[R]. U.S. Geological Survey Scientific Investigations Report 2010-5090-7: 1-162.

    成秋明, 陈志军, Ali Khaled. 2007. 模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J]. 地球科学, 32 (2): 175-184. doi: 10.3321/j.issn:1000-2383.2007.02.004
    成秋明, 赵鹏大, 张生元, 夏庆霖, 陈志军, 陈建国, 徐德义, 王文磊. 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定[J]. 地球科学, 34(2): 243-252. doi: 10.3321/j.issn:1000-2383.2009.02.003
    李向前, 毛景文, 闫艳玲, 高洪山, 李蒙文, 徐宪立. 2009. 中非刚果(金)加丹加铜钴矿带主要矿化类型及特征[J]. 矿床地质, 28(3): 366-380. doi: 10.3969/j.issn.0258-7106.2009.03.012
    李向前. 2011. 中非铜带刚果(金)段成矿系列和成矿规律[D]. 中国地质大学(北京): 1-117.
    卢宜冠, 郝波, 孙凯, 何胜飞, 许康康, 龚鹏辉, 张航. 2020. 钴金属资源概况与资源利用情况分析[J]. 地质调查与研究, 43(1): 72-80. doi: 10.3969/j.issn.1672-4135.2020.01.008
    滕菲, 彭丽娜, 孟庆龙, 邢怡. 2021. 证据权法在河北丰宁地区银铅锌多金属矿成矿预测中的应用[J]. 华北地质, 44(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202101004.htm
    王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
    王佳营, 刘行, 薛生升, 张晓军, 张琪, 李光耀, 谢瑜. 2021. 奇异性理论在达来庙草原覆盖区找矿弱信息提取中的应用[J]. 华北地质, 44(2): 14-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102003.htm
    王佳营, 张晓军, 姚春亮, 张祺, 谢瑜, 李光耀, 丁宁. 2019. 非线性理论和模糊证据权方法在内蒙古达来庙草原覆盖区钼多金属矿产预测中的应用[J]. 地质调查与研究, 42(3): 174-184. doi: 10.3969/j.issn.1672-4135.2019.03.003
    严光生, 邱瑞照, 连长云, Warren J. Nokleberg, 曹黎, 陈秀法, 毛景文, 肖克炎, 李锦轶, 肖庆辉, 周肃, 王明燕, 刘大文, 元春华, 韩九曦, 王靓靓, 陈正, 陈玉明, 谢桂青, 丁建华. 2007. 中国大陆斑岩铜矿资源潜力定量评价[J]. 地学前缘, 14(5): 27-41. doi: 10.3321/j.issn:1005-2321.2007.05.004
    严光生, 邱瑞照, 连长云, 李锦轶, 肖克炎, 毛景文. 2010. 中国斑岩铜矿砂岩铜矿资源潜力定量评价[M]. 地质出版社: 1-218.
    余金杰, 刘晓阳, 王杰, 王铁柱, 陆邦成, 刘帅杰. 2015. 中非新元古代铜钴成矿带的地质背景和控矿因素[J]. 地质找矿论丛, 30(S1): 119-128. doi: 10.6053/j.issn.1001-1412.2015.S1.015
    翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 33(2): 106-111.
    张银, 胡登攀, 余璨, 翟建军. 2021. 刚果(金)卢阿拉巴省康隆卡铜钴矿床地质特征及找矿前景[J]. 地质与资源, 30(4): 450-455.
  • 期刊类型引用(7)

    1. 尚志,陈永清,童祥,沈思联. 云南个旧卡房辉绿岩墙锆石U-Pb年龄、地球化学特征及其岩石圈伸展作用. 中国地质. 2024(02): 632-649 . 本站查看
    2. 梁任鑫,时毓,庞超伟,刘希军. 桂东南岑溪—陆川地区斜长角闪岩的年代学、地球化学特征及其地质意义. 高校地质学报. 2024(02): 178-195 . 百度学术
    3. 唐远兰,时毓,王永强,孙艺容,刘希军. 桂中都安-马山煌斑岩成因及其构造意义. 地球科学. 2021(06): 2083-2116 . 百度学术
    4. 李彬,谢小明,魏超. 个旧锡矿老厂矿田接触带锡铜矿化特征及成矿预测. 云南地质. 2020(02): 216-223 . 百度学术
    5. 时毓,杨金磊,李响,王新宇,吴祥珂,刘希军,三元合,张晓晨. 桂东北平乐县沙子煌斑岩LA-ICP-MS锆石U-Pb年龄及Hf同位素组成. 桂林理工大学学报. 2019(01): 13-25 . 百度学术
    6. 严清高,郭忠林,李超,江小均,王忠强,李亚东. 滇中姚安干沟金矿床煌斑岩锆石LA-ICP-MS U-Pb年代学及Hf同位素特征. 矿床地质. 2019(03): 526-540 . 百度学术
    7. 杨阳,温建亮,谢维,刘思琴. 瞬变电磁法探测岩浆岩侵入煤层范围浅析. 地质与勘探. 2019(05): 1261-1267 . 百度学术

    其他类型引用(2)

图(11)  /  表(3)
计量
  • 文章访问数:  3500
  • HTML全文浏览量:  1095
  • PDF下载量:  2984
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-03-05
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-02-24

目录

/

返回文章
返回
x 关闭 永久关闭