Processing math: 100%
  • 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

云南个旧卡房辉绿岩墙锆石U−Pb年龄、地球化学特征及其岩石圈伸展作用

尚志, 陈永清, 童祥, 沈思联

尚志,陈永清,童祥,沈思联. 2024. 云南个旧卡房辉绿岩墙锆石U−Pb年龄、地球化学特征及其岩石圈伸展作用[J]. 中国地质, 51(2): 632−649. DOI: 10.12029/gc20200906003
引用本文: 尚志,陈永清,童祥,沈思联. 2024. 云南个旧卡房辉绿岩墙锆石U−Pb年龄、地球化学特征及其岩石圈伸展作用[J]. 中国地质, 51(2): 632−649. DOI: 10.12029/gc20200906003
Shang Zhi, Chen Yongqing, Tong Xiang, Shen Silian. 2024. Geochronology, geochemistry and lithosphere extension of Kafang diabase in Gejiu area, Yunnan Province[J]. Geology in China, 51(2): 632−649. DOI: 10.12029/gc20200906003
Citation: Shang Zhi, Chen Yongqing, Tong Xiang, Shen Silian. 2024. Geochronology, geochemistry and lithosphere extension of Kafang diabase in Gejiu area, Yunnan Province[J]. Geology in China, 51(2): 632−649. DOI: 10.12029/gc20200906003

云南个旧卡房辉绿岩墙锆石U−Pb年龄、地球化学特征及其岩石圈伸展作用

基金项目: 国家自然科学基金(41972312,41672329)、国家重点研发计划课题(2016YFC0600509)和中国地质调查局项目(1212011220922)联合资助。
详细信息
    作者简介:

    尚志,男,1991年生,博士,矿产普查与勘探专业;E-mail:shangzhi6609@163.com

    通讯作者:

    陈永清,男,1960年生,教授,从事矿产普查与勘探相关教学与科研工作;E-mail:yqchen@cugb.edu.cn

  • 中图分类号: P588.12+4; P597

Geochronology, geochemistry and lithosphere extension of Kafang diabase in Gejiu area, Yunnan Province

Funds: Supported by the projects of the National Natural Science Foundation of China (No.41972312, No.41672329), the National Key Research and Development Project of China (No.2016YFC0600509), and China Geological Survey (No.1212011120341).
More Information
    Author Bio:

    SHANG Zhi, male, born in 1991, doctor, majors in mineral resource prospecting and exploration; E-mail: shangzhi6609@163.com

    Corresponding author:

    CHEN Yongqing, male, born in 1960, professor, engaged in mineral resource prospecting and exploration related teaching and research work; E-mail: yqchen@cugb.edu.cn.

  • 摘要:
    研究目的 

    卡房辉绿岩成因与成岩构造环境的探索对研究个旧地区构造岩浆演化具有重要的科学意义。

    研究方法 

    本文基于LA−ICP−MS锆石U−Pb年龄、全岩地球化学和Sr−Nd−Pb同位素分析等方法研究卡房辉绿岩墙的形成年代、地球化学特征及地质意义。

    研究结果 

    锆石U−Pb地质年代学研究表明卡房辉绿岩侵位年龄为77 Ma,年龄为2409 Ma、2616 Ma、290 Ma的继承锆石指示个旧地区存在新太古代和古元古代构造热事件形成的变质基底以及早二叠世的岩浆活动。卡房辉绿岩属于钾玄岩系列,以低硅、高钾、高钛、高镁为特征,富集Rb、K、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Hf等高场强元素,具有与洋岛玄武岩相似的稀土和微量元素分布特征。卡房辉绿岩具有较高的初始87Sr/86Sr同位素比值(0.70782~0.70791)和正的εNd(t)值(2.07~2.29);初始铅同位素组成中,(206Pb/204Pb)t=18.286~18.465,(207Pb/204Pb)t=15.668~15.717,(208Pb/204Pb)t=37.763~38.830。Sr−Nd−Pb同位素特征指示卡房辉绿岩岩浆源区具有富集地幔(EM2)特征。

    结论 

    卡房辉绿岩成岩机制为在伸展构造背景下,上涌的软流圈地幔底侵富集岩石圈地幔。在岩石圈地幔60~120 km深度,石榴石二辉橄榄岩经过5%~15%的部分熔融,形成了卡房辉绿岩的初始岩浆,在岩浆侵位过程中同化混染下地壳物质并经过较弱的分离结晶作用形成了卡房辉绿岩。

    创新点:

    采用LA−ICP−MS锆石测年、全岩地球化学和Sr−Nd−Pb同位素分析等方法揭示了个旧卡房辉绿岩的形成年代、岩石成因及源区特征。

    Abstract:

    This paper is the result of geological survey engineering.

    Objictive 

    The exploration of the petrogenesis and tectonic setting of the Kafang diabase is crucial to know about the tectonomagmatic evolution in Gejiu area.

    Methods 

    Based on LA−ICP−MS zircon U−Pb age, whole−rock geochemistry and Sr−Nd−Pb isotope analysis, the formation age, geochemical characteristics and geological significance of Kafang diabase dike are studied.

    Results 

    Zircon U−Pb dating shows that the age of Kafang diabase is 77 Ma. Inherited zircon ages (2409 Ma, 2616 Ma, 290 Ma) indicate tectono−thermal related Neoarchean and Paleoproterozoic metamorphic basement and the magmatic activity in Early Permian in Gejiu area. The Kafang diabase belongs to the shoshonite series with the characteristics of low SiO2 content and high K2O, TiO2, MgO contents. In primitive mantle normalized trace elements diagram, these samples show similarities with OIB and enriched in LILEs (such as Rb, K, Sr), depleted in HFSEs (such as Nb, Ta, Zr, Hf). High initial 87Sr/86Sr ratios (0.70782−0.70791), positive εNd(t) values (2.07−2.29) and initial Pb isotopic compositions (206Pb/204Pb=18.286−18.465, 207Pb/204Pb=15.668−15.717, 208Pb/204Pb=37.763−38.830) indicate the enriched mantle (EM2) source.

    Conclusions 

    The petrogenesis of Kafang diabase is that the upwelling of asthenosphere in an extensional setting induced 5%−15% partial melting of garnet lherzolite at a depth of 60−120 km in the lithospheric mantle. The new−formed magma with characteristics of EM2 consists of the primary magma of the Kafang diabase. During the ascent of magma, contamination of the lower crust occurred accompanied by weak fractional crystallization, and then formed the Kafang diabase.

    Highlights:

    The formation age, petrogenesis and source region characteristics of the Kafang diabase in Gejiu area are revealed by the methods of LA–ICP–MS zircon dating, whole-rock geochemistry and Sr–Nd–Pb isotope analysis.

  • 土壤是支撑国家粮食安全与生态文明建设的重要战略资源,是农业之本。随着经济社会高速发展,污染物排放激增,不断损害土壤生态环境,导致土壤污染问题越发突出(马正虎等,2022),在土壤污染的众多来源中,重金属污染高居首位。近年来,由于土壤重金属污染造成的儿童血铅中毒事件、农作物镉超标等事件接连发生(黄勇等,2022),给生态环境和食品安全带来了严重的威胁,因此,土壤重金属污染引起国内外学者的广泛关注(于锐等,2017刘同等,2022),查明土壤重金属污染并探寻其污染源成为研究热点(Xiao et al., 2010; 吕建树等,2012)。

    土壤中重金属元素来源复杂,往往是多种成因来源和作用途径叠加综合的结果(王中阳等,2018)。一般情况下,土壤中重金属元素不仅受到风化和淋滤作用的影响,同时叠加了人为活动的影响(张宪依等,2020),大致可分为自然源、人为源和复合源三大类(严洪泽等,2018黄勇等,2022刘同等,2022尹德超等,2022)。成土母质是土壤形成的物质基础,土壤对成土母质地球化学特征具有很强的“继承”性(唐将等,2005)。而农业生产、矿业开采、工业生产、交通排放、污水灌溉等多种多样的人为活动,是土壤重金属的重要来源。众多学者针对重金属来源,对重金属空间分布特征、迁移特征及评价重金属毒性生态风险等进行了大量研究(宁增平等,2017; Yang et al.,2018; Sun et al.,2019; Tume et al,2019),为指导土壤污染定性源识别和定量源解析提供了大量的研究信息(林燕萍等,2011),从而为土壤保护和指导政策制定及落实提供科学支撑(Yuan et al.,2013; Wang et al.,2019)。

    北镇特色农业区位于下辽河平原西部,是辽宁省粮食、花生、葡萄、蔬菜生产基地,但由于长期的粗放型传统经济发展模式,高强度的种养殖业生产和自然资源的消耗,生态环境受到了不同程度的污染和破坏。此前较少的样品尚不能很好地刻画研究区土壤重金属元素地球化学特征和生态风险影响情况,土壤重金属来源分析研究工作不足,亟需在研究区开展全面系统的调查研究,查明重金属地球化学特征、分布规律及潜在生态风险。

    本次开展了研究区表层土壤环境质量全面调查,取样密度、调查精度远高于过往,系统查明了8种土壤重金属元素的地球化学特征。并采用多种方法开展土壤环境质量及生态风险评价,确定土壤重金属的潜在来源,以期为研究区土壤重金属污染防治、生态环境保护与修复提供参考。

    研究区北镇市位于辽宁西部东端,医巫闾山东麓,东距沈阳200 km,西南距锦州120 km,行政区划包括沟帮子街道、正安镇、大屯乡等13个乡镇(区),面积约1121 km2。坐标范围: 121°33′~122°12′E, 41°19′~41°48′N。地势由西北向东南自然倾斜,中部为平原,西南部为洼地(图1)。中部平原地势平坦,土质肥沃,是粮、油棉产区,正建设优质粮食、出口花生、葡萄、蔬菜四大基地,形成了独具特色的农业化基地,被辽宁省确定为“北镇模式”。

    图  1  研究区地貌类型及采样点分布图
    Figure  1.  Geomorphic types and sampling point distribution of the study area

    研究区西部为林业分布区,山间盆地和山间河流阶地种植玉米,同时又是矿业及果木种植区。中部平原区是辽宁省的主要农业生产区,西北部种植有较多的杂粮,北部风沙土区有大片的花生,中部平原区种植大面积的玉米并间种大豆。中、南部辽河两岸低洼平原和下辽河平原种植大面积水稻。从地域上看土壤中元素含量状况与西部和北部低山丘陵区的基岩有密切的联系,物质主要来源于北部低山丘陵和西部山区(李秋燕等,2021)。西北部丘陵山区分布前第四纪地层,以鞍山群及侏罗世侵入岩为主,山前倾斜平原的后缘局部出露元古界高于庄组、大洪峪组、串岭沟组;白垩系零星分布于东北部。区内第四系沉积物发育,层位齐全,成因类型较复杂。综观全区,第四纪沉积物的形成与分布、岩性特征等,受新构造运动、地貌条件、基底构造、物质来源以及沉积环境等因素控制,具有较明显的变化规律(赵岩等,2021)。自新生代以来,研究区受新构造运动的控制,西北部缓慢上升,遭受风化剥蚀,东南部缓慢下降接受沉积。地势分带性明显,西北高东南低,由西北部的低山丘陵至中部的山前倾斜平原到南部的冲洪积平原。

    研究区属温带半湿润季风大陆性气候,四季分明,年平均气温 8.2℃,年平均降水量604.8 mm。研究区以农业用地为主,农用地面积达到802.7 km2,占整个调查区土地面积的80.27%;其次为村庄用地,占9.59%。从1:100万土壤图看,工作区土壤类型包括草甸土、棕壤、红黏土等,以草甸土为主。

    综合土地利用现状、土壤类型和地质条件,按照《土壤环境质量 农用地土壤污染风险管控标准》(GB 15618—2018)和《土地质量地球化学评价规范》(DZ/T 0295—2016)采样要求,能够代表采样单元格土壤性质为原则,采样密度为4个点/km2,采样深度 0~20 cm,共采集土壤样品 4033件。样品经晾晒风干、碾碎后过10目的尼龙筛。

    土壤重金属样品由辽宁省地质矿产研究院实验室分析测定完成,项目包括砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、铅(Pb)、镍(Ni)、锌(Zn)和pH等 9 项。测试过程执行《地质矿产实验室测试质量管理规范》(DZ/T0130.1—2006),采取实验室内部检查、密码抽查、外部检查等手段,严格监控分析测试准确度、精密度,重复性检验样品合格率均高于90%,各项质量指标均符合规范要求,分析数据质量可靠。

    环境质量评价参照《土壤环境质量 农用地土壤污染风险管控标准》(GB 15618—2018)和《土地质量地球化学评价规范》(DZ/T 0295—2016)。GB 15618 规定了农用地土壤污染风险筛选值和风险管制值两个指标,具体如表1表2所示。

    表  1  农用地土壤污染风险筛选值
    Table  1.  Pollution risk screening value of agricultural land soil
    序号 项目 风险筛选值/(mg/kg)
    pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
    1 Cd 水田 0.3 0.4 0.6 0.8
    其他 0.3 0.3 0.3 0.6
    2 Hg 水田 0.5 0.5 0.6 1.0
    其他 1.3 1.8 2.4 3.4
    3 As 水田 30 30 25 20
    其他 40 40 30 25
    4 Pb 水田 80 100 140 240
    其他 70 90 120 170
    5 Cr 水田 250 250 300 350
    其他 150 150 200 250
    6 Cu 果园 150 150 200 200
    其他 50 50 100 100
    7 60 70 100 190
    8 200 200 250 300
    下载: 导出CSV 
    | 显示表格
    表  2  农用地土壤污染风险管制值
    Table  2.  Pollution risk control value of agricultural land soil
    序号 项目 风险管制值/(mg/kg)
    pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
    1 Cd 1.5 2.0 3.0 4.0
    2 Hg 2.0 2.5 4.0 6.0
    3 As 200 150 120 100
    4 Pb 400 500 700 1000
    5 Cr 800 850 1000 1300
    下载: 导出CSV 
    | 显示表格

    DZ/T 0295在GB15618风险筛选值基础上给出了环境地球化学等级划分标准以及划分方法(表3)。污染物i的单项污染指标Pi计算公式如下:

    表  3  土壤环境地球化学等级划分
    Table  3.  Geochemical classification of soil environment
    等级 一等 二等 三等 四等 五等
    土壤环境 Pi≤1 1<Pi≤2 2<Pi≤3 3<Pi≤5 Pi>5
    清洁 轻微污染 轻度污染 中度污染 重度污染
    下载: 导出CSV 
    | 显示表格
    Pi=Ci/Si (1)

    式中:Pi为重金属元素的污染指数;Ci为重会属含量实测值;Si为土壤环境质量标准值(农用地土壤污染风险筛选值)。

    在单指标土壤环境地球化学等级基础上,按照从劣不从优原则进行土壤环境地球化学综合等级划分。

    采用德国学者Muller(1969),提出的地累积指数法(Igeo)对研究区表层土壤重金属污染程度进行评价(Forstner et al.,1993),该方法具有高效、定量、准确的特点,被广泛用于土壤重金属污染评价,其计算公式如下:

    Igeo=log2[Ci/kBEi] (2)

    式中,Igeo为地质累积指数;Ci为样品中元素i的实测值(mg/kg);BEi为地球化学背景值(mg/kg),以辽河流域土壤环境背景值作为评价标准;k为消除各地岩石差异可能引起背景值的变动而采用的系数,一般为1.5。地累积指数污染等级划分如表4所示(李凤果等,2020)。

    表  4  地质累积指数分级标准
    Table  4.  Classification standard of geological accumulation index
    等级1级2级3级4级5级6级7级
    Igeo<00~11~22~33~44~5>5
    描述无污染无到中度污染中度污染中度到强度污染强度污染强度到极强污染极强污染
    下载: 导出CSV 
    | 显示表格

    潜在生态风险指数法(Hakanson,1980)能够基于表层土壤重金属毒性、各污染物的生态效应和环境效应及环境金属元素背景值差异,对单项和多种重金属元素的生态危害做出评估(张丁等,2022),计算公式如下:

    Eir=TirCiBi (3)
    RI=ni=0Eir (4)

    式中:Tri为重金属i的毒性系数,毒性系数分别为Hg=40、Cd=30、As=10、Cu=5、Pb=5、Ni=5、Cr=2和Zn=10(Hakanson,1980徐争启等,2008);Ci为重金属i的实际测量值(mg/kg);Bi为重金属i的参比值(mg/kg),文中采用辽河流域农业地质调查中土壤重金属背景值作为参照,涉及元素Ni、Cu、Zn、Cd、Cr、Pb、As、Hg区域背景值分别为23 mg/kg、18.7 mg/kg、54 mg/kg、0.13 mg/kg、60 mg/kg、24 mg/kg、6.7 mg/kg、0.03 mg/kg;Eri为第i种重金属的潜在生态风险系数;RI为多种重金属元素综合潜在生态风险指数。潜在生态风险等级划分标准见表5

    表  5  重金属潜在生态风险等级
    Table  5.  Potential ecological risk levels of heavy metals
    生态风险指数 生态风险等级
    低度 中度 重度 严重
    Eri <40 40~80 80~160 >160
    RI <150 150~300 300~600 >600
    下载: 导出CSV 
    | 显示表格

    使用ArcGIS 10.2和MapGIS 6.5软件进行重金属元素空间插值、空间数据分析及图件绘制;采用Excel和SPSS 19.0软件进行数据统计处理、Person相关性分析及主成分分析等。

    对土壤中8种重金属元素含量进行描述性统计,结果见表6。土壤中As、Cd、Cr、Hg、Pb、Ni、Cu、Zn元素含量范围分别为0.001~75.5 mg/kg、0.03~1.98 mg/kg、17.4~112.7 mg/kg、0~1.73 mg/kg、10.1~134.5 mg/kg、5.7~95.2 mg/kg、2.4~313.2 mg/kg、14.8~712.4 mg/kg,含量均值分别为7.23 mg/kg、0.17 mg/kg、55.3 mg/kg、0.05 mg/kg、23.54 mg/kg、23.08 mg/kg、24.13 mg/kg、65.82 mg/kg。8种重金属含量的中位数值均都小于平均值,反映出研究区内土壤中8种重金属元素含量明显存在极大值。与辽宁省辽河流域土壤背景值相比,8种重金属中Cr和Pb的平均值均低于背景值,Ni的平均值约等于背景值,As、Cd、Hg、Cu和Zn的平均值分别为背景值的1.08、1.31、1.67、1.29和1.22倍,说明这5种元素在该区域农田土壤表层中存在一定的富集趋势(杨宇等,2023)。虽然Pb的含量平均值低于辽宁省辽河流域土壤背景值,但部分样品中的测定值远超背景值。因此,以上数据表明,土壤重金属元素累积主要是来自农业活动、工业活动、交通运输等方面(喻超等,2014),观察它们的极大值与极小值发现,各元素的极大值与极小值的差值甚为显著。

    表  6  表层土壤重金属元素地球化学参数特征
    Table  6.  Characteristics of chemical parameters of heavy metal elements in surface soil
    元素 最大值 最小值 平均值 中位数 标准差 偏度 峰度 变异系数 剔除3倍离差
    后平均值
    富集
    系数
    辽河流域
    背景值
    As 75.5 0.001 7.23 6.8 2.63 6.27 124.44 0.36 7.03 1.05 6.70
    Cd 1.98 0.03 0.17 0.16 0.09 6.37 84.28 0.55 0.16 1.23 0.13
    Cr 112.7 17.4 55.3 53.1 13.24 0.64 0.21 0.24 55.04 0.92 60.00
    Hg 1.73 0 0.05 0.05 0.06 14.87 321.78 1.15 0.045 1.50 0.03
    Pb 134.5 10.1 23.54 23.1 4.04 8.52 207.99 0.17 23.34 0.97 24.00
    Ni 95.2 5.7 23.08 21.7 7.38 0.88 2.13 0.32 22.94 1.00 23.00
    Cu 313.2 2.4 24.13 20.8 17.56 7.21 78.26 0.73 21.1 1.13 18.70
    Zn 712.4 14.8 65.82 56.6 43.52 6.88 69.79 0.66 58.37 1.08 54.00
      注:标准差/富集系数/变异系数/偏度/峰度均无量纲;其他指标值的质量分数单位为mg/kg;土壤背景值来自于辽宁省辽河流域农业地质调查数据背景值。
    下载: 导出CSV 
    | 显示表格

    偏度系数是指描述数据分布情况的统计数据,其绝对值越小,表示数据分布趋势的偏斜度越小。峰度系数是指描述全部数据中取值分布情况陡斜程度的统计数据(凡生,2014魏晓,2017),其绝对值越小,表示数据分布趋势的陡缓度与正态分布的差异程度越小(孙超,2010)。从表6可以看出,土壤中Hg、Pb、Cu、Zn、Cd、As含量的偏度系数与峰度系数较大,表示在部分土壤样品中Hg、Pb、Cu、Zn、Cd、As含量及累积状况较高。变异系数(CV)用于描述样品中金属元素平均变异度,其值越小,表示金属元素在空间分布越均匀,出现点源污染情况的概率越低(雷国建等,2013),同时也可反映土壤重金属受人为干扰程度(鲍丽然等,2020),变异系数越大,其差异与离散程度越大,土壤受外界干扰越显著,重金属在土壤中的分布越不均(Wang and Lu,2011孙文贤等,2021)。本研究区域内8种重金属元素的变异系数大小为:Hg(115%)>Cu(73%)>Zn(66%)>Cd(55%)>As(36%)>Ni(32%)>Cr(24%)>Pb(17%),其中Hg、Cu、Zn和Cd属于强度变异(CV>0.5),表明Hg、Cu、Zn和Cd重金属元素离散程度较高,分布不均匀,在不同点位的含量差异较大,受某些局部污染源影响较为明显;As和Ni属于中等程度变异(0.25<CV<0.5),表明As和Ni重金属元素离散程度中等,人为因素对于As和Ni的累积有一定影响;Cr和Pb属于弱变异CV<0.25,表明Cr和Pb重金属元素离散程度较低,分布均匀,基本不受人为因素影响,主要与成土母岩的地球化学背景有关。从这8种重金属元素的变异系数来看,CV−Hg最大(1.15),属于极度变异,说明该区域Hg元素的分布受外在因素影响显著。

    研究区表层土壤各重金属元素地球化学分布如图2所示。Hg元素含量较高区集中分布在研究区中部青堆子镇、中安镇、大屯乡一带,在高山子镇、闾阳镇、柳家乡零星分布,低值区分布在西部和北部地区。Cd元素零星分布在全区,低值区主要分布在北部和西部地区。As元素总体分布特征为东高西低,低值区主要分布在研究区北部和西部大部分地区。Ni和Cr元素分布特征相似,青堆子镇到新立农场一带水田种植区周边为主要富集区,其次为高山子镇,西部和北部其他区相对较低。Cu和Zn元素分布规律相似,青堆子镇—吴家镇—中安镇南部和柳家乡北部周边均明显富集,其次为大屯乡等地零星分布,北部、东部等区相对较低。Pb元素主要在研究区南部水田种植区,条带状分布。

    图  2  北镇农业区表层土壤重金属元素地球化学分布图
    Figure  2.  Geochemical distribution of heavy metals in surface soil of Beizhen agricultural area

    与环保部颁布的耕地土壤污染风险筛选值(表7)相比,共发现292个点位超标。其中,存在16个土壤样点的As含量超标,超标率为0.40%;Cd有136个点位超标,超标率为3.37%;Cu有85个点位超标,超标率为2.02%;Zn有51个点位超标,超标率为1.27%;Hg和Ni有1个点位超标,超标率为0.025%;Pb有2个点位超标,超标率为0.05%;Cr不存在点位超标现象。各元素超标率大小为Cd>Cu>Zn>As>Pb>Hg=Ni>Cr,其中只有1个土壤样点Cd超过土壤污染风险管制值(表8),表明研究区Cd污染情况严重,污染范围广,并且存在局部重度污染,主要原因是研究区农田施用含有Cd的农药和肥料造成的Cd超标(鲍士海,2013);Cu和Zn污染来源于成土母质和化肥,但化肥中Cu和Zn含量较低;As污染范围集中分布在灌溉河渠两侧,表明研究区As污染来源是污染河水灌溉;Pb、Hg、Ni污染比例小于0.05%,仅有个别点存在污染,主要来源为燃煤、大气沉降、过量的化肥施加、汽车尾气排放(于锐等,2017);Cr不存在污染,主要来源为成土母质。

    表  7  农用地土壤污染风险筛选情况统计
    Table  7.  Statistics of pollution risk screening of agricultural land soil
    pH值范围 样品数量/个 重金属风险筛选超标数/个
    As Cd Cr Cu Hg Ni Pb Zn
    ≤5.5 1308 0 32 0 11 1 1 1 2
    5.5~6.5 1091 1 54 0 59 0 0 1 34
    6.5~7.5 881 0 49 0 15 0 0 0 14
    >7.5 753 15 1 0 0 0 0 0 1
    合计 4033 16 136 0 85 1 1 2 51
    超标率/% 0.40 3.37 0 2.12 0.025 0.025 0.05 1.27
    下载: 导出CSV 
    | 显示表格
    表  8  农用地土壤污染风险管制情况统计
    Table  8.  Statistics of pollution risk control of agricultural land soil
    pH值范围 Cd Hg As Pb Cr
    管制值 超标数/个 管制值 超标数/个 管制值 超标数/个 管制值 超标数/个 管制值 超标数/个
    ≤5.5 1.5 1 2 0 200 0 400 0 800 0
    5.5~6.5 2 0 2.5 0 150 0 500 0 850 0
    6.5~7.5 3 0 4 0 120 0 700 0 1000 0
    >7.5 4 0 6 0 100 0 1000 0 1300 0
    合计 1 0 0 0 0
    超标率/% 0.025 0 0 0 0
    下载: 导出CSV 
    | 显示表格

    总体来看,研究区表层土壤环境地球化学综合等级以清洁无污染为主,剔除重复采样点,共有217组样品存在不同程度的重金属污染情况,超标比率为5.4%,超标点全区都有分布,绘制研究区地表土壤环境地球化学综合等级分布图(图3),每个评价单元的土壤环境地球化学综合等级等同于单指标划分出的环境等级最差的等级。土壤环境综合等级结果(表9)显示,调查区97.683%土地为清洁状态。受Pb、As、Cu、Cd、Hg和Zn影响,有2.093%土地为轻微污染状态。受Cu、Cd和Zn影响,有1.406%土地为轻度污染状态。受Cu、Cd和Zn影响,有1.038%土地为中度污染状态。受Cu和Cd单点污染影响,0.072%土地表现为重度污染。可以看出,所采集的样品中,Cd污染最为严重,Cu和Zn污染情况也不容忽视。

    图  3  研究区环境地球化学综合等级分布图
    Figure  3.  Distribution of the comprehensive level of environmental chemistry in the study area
    表  9  研究区土壤环境元素等级统计
    Table  9.  Statistics of soil environmental element levels in the study area
    元素一级二级三级四级五级
    Cu面积/km21114.1995.4490.7740.6730.056
    比例/%99.380.4860.0690.060.005
    Ni面积/km21121.15
    比例/%100.00
    Cd面积/km21105.01715.3370.4820.2800.022
    比例/%98.5611.3680.0430.0250.002
    Pb面积/km21120.990.16
    比例/%99.990.01
    As面积/km21118.882.27
    比例/%99.800.20
    Hg面积/km21119.8321.313
    比例/%99.880.12
    Zn面积/km21117.9862.2180.9120.029
    比例/%99.720.1980.0810.003
    Cr面积/km21121.15
    比例/%100.00
    综合面积/km21095.16823.4611.4060.9820.078
    比例/%97.6832.0930.1250.0930.007
    下载: 导出CSV 
    | 显示表格

    以辽宁省辽河流域背景值为标准,对研究区土壤重金属污染程度进行地累积指数评价(表10)。重金属污染指数均值从高至低为:As(0.04)>Hg(0.03)>Cd(−0.33)>Cu(−0.38)>Zn(−0.44)>Pb(−0.63)>Ni(−0.65)>Cr(−0.74),土壤As和Hg污染现象最为突出,总体处于轻污染水平。所有土壤样都受到不同程度的Hg污染,仅个别点位土壤为重—极重污染。8种重金属污染等级主要在1~3级之间,按照受污染点位占比降序排列为As(51.90%)、Hg(49.39%)、Cd(25.59%)、Cu(19.84%)、Zn(15.72%)、Ni(8.28%)、Cr(1.09%)、Pb(0.37%),单元素污染程度以轻度—中度污染为主,强污染土壤点位较少,仅Hg元素个别点位土壤为强—极强污染。因此,金属元素在空间分布越均匀,出现点源污染情况的概率越低(雷国建等,2013),研究区农田土壤As和Hg的累积受某些局部污染源影响较为明显,Cd、Cu及Zn的累积受人为因素有一定影响。锦州市北镇农业区土壤Ni、Cr、Pb含量的变异系数均呈弱变异性,表明自然因素对这3种重金属元素的累积影响较为不明显。因此,As和Hg为研究区土壤主要相对高风险元素,Cd、Cu、Zn次之,Pb、Ni极个别样点可达到中度污染,其余全为无污染—中度污染。

    表  10  研究区单元素地累积指数分级统计
    Table  10.  Classification statistics of single element ground accumulation index in the study area
    等级 1级 2级 3级 4级 5级 6级 7级 Igeo
    均值
    受污染点位占比%
    描述 无污染 无—中度污染 中度污染 中度—强度污染 强度污染 强—极强污染 极强污染
    As 1940 2037 51 4 1 0 0 0.04 51.90
    Hg 2041 1706 213 53 13 4 3 0.03 49.39
    Cr 3989 44 0 0 0 0 0 −0.74 1.09
    Pb 4018 13 2 0 0 0 0 −0.63 0.37
    Cd 3001 961 59 10 2 0 0 −0.33 25.59
    Cu 3233 684 88 22 6 0 0 −0.38 19.84
    Zn 3399 540 71 20 3 0 0 −0.44 15.72
    Ni 3699 333 1 0 0 0 0 −0.65 8.28
    下载: 导出CSV 
    | 显示表格

    研究区土壤重金属潜在生态危害指数评价风险指数分级统计结果(表11)显示,单指标潜在生态风险由高到低排序为:Hg>Cd>As>Cu>Ni>Pb>Cr>Zn,全区地表土壤样品潜在生态风险综合指数RI分布范围为29.7~2358.16,平均值为 141.9,以低度风险为主,其次中度风险。

    表  11  研究区重金属元素潜在生态风险指数分级统计
    Table  11.  Classification statistics of potential ecological risk index of heavy metal elements in the study area
    风险等级潜在生态风险指数各风险等级样本数/个
    最小值最大值平均值低度中度重度严重
    EirAs0.0015112.6110.794028410
    Cd7.25455.8539.21251614089316
    Cr0.583.761.844033000
    Hg0.00132311.4272.485922596689156
    Pb2.128.034.94033000
    Ni1.2320.695.024033000
    Cu0.6583.766.4540171510
    Zn0.2713.191.224033000
    RI29.72358.16141.9284210918020
    下载: 导出CSV 
    | 显示表格

    Hg的生态风险级别在强风险及以上的样点占比为8种重金属元素中最高,潜在生态风险指数范围为0.0013~2311.42,存在低度至严重潜在生态风险,以中度为主,占比为54.37%,有689组样品存在重度潜在生态风险,有156组样品存在严重潜在生态风险。Cd 潜在生态风险指数范围为7.25~455.85,存在低度至严重潜在生态风险,以低度和中度为主,分布占样本总数的62.39%和34.91%,有16组样品存在严重潜在风险;As和Cu潜在生态风险指数均值分别为10.79和6.45,以低度风险等级为主,分别有5组和16组样品生态风险指数大于40;Cr、Pb、Ni和Zn潜在风险指数均小于40,为低度生态风险。

    各重金属潜在生态风险等级分区图(图4)显示,高风险样点在空间分布上的特征基本与地累积污染指数得到的结果保持一致:中风险区连片分布在研究区中部和南部地区,重度到严重风险区主要零星分布在研究区中部。因此,Hg为研究区土壤主要相对高风险元素,Cd 次之,Cu、As极个别样点可达到中度至重度风险,其余全为低风险—无风险。主要高风险重金属为 Hg、Cd,其他大片区域,生态风险低。

    图  4  研究区重金属潜在生态风险等级分区图
    Figure  4.  Classification of potential ecological risks of heavy metals in the study area

    土壤表层重金属超标常常是母岩自然风化与人为活动共同影响的结果。对研究区表层土壤重金属含量进行Pearson相关性分析,分析结果表明(表12),As、Cr、Ni这3种元素两两之间均为极显著相关(P<0.01),说明具有相似的污染源,Cr和Pb呈显著正相关;Cu 和Zn呈显著正相关,具有相似的污染源;Cd和Hg为显著相关(P<0.05)与其他重金属相性较弱,可能有不同污染源(李秋燕等,2021)。为了更加准确地识别重金属来源,进一步用主成分分析和聚类分析对土壤中重金属进行分析。

    表  12  研究区表层土壤重金属元素含量相关性
    Table  12.  Correlation of heavy metal elements in surface soil of study area
    重金属 As Cd Cr Hg Pb Ni Cu Zn
    As 1
    Cd 0.3039 1
    Cr 0.6444** 0.2807 1
    Hg 0.0639 0.1725 0.092 1
    Pb 0.4505* 0.2987 0.4201* 0.0612 1
    Ni 0.7019** 0.2457 0.935** 0.0528 0.3924 1
    Cu 0.2485 0.4099* 0.2797 0.2482 0.1237 0.2776 1
    Zn 0.2729 0.3801 0.2913 0.2729 0.1284 0.2975 0.9304** 1
      注:**表示P<0.01,为极显著相关;*表示P<0.05,为显著相关。
    下载: 导出CSV 
    | 显示表格

    主成分分析能够有效判别重金属元素来源,同一主成分分组元素或聚类分析中同类以及距离较近元素性质相似或来源相同(王伟鹏等,2020)。通过主成分分析可以达到以较少的变量代替原先数量较多变量的目的,可以认为同一主成分上有较高载荷的元素可能有着相似的来源。对研究区表层土壤重金属的主成分分析提取出2个主成分(表13),其累积贡献率达到64.68%,此2种主成分代表了土壤重金属的主要影响因素。

    表  13  表层土壤重金属元素含量主成分
    Table  13.  Principal component of heavy metal elements content in surface soil
    成分 初始特征值 提取平方和荷载 旋转成分矩阵
    特征值 贡献率/% 累积贡献率/% 特征值 贡献率/% 累积贡献率/% 重金属 F1 F2
    1 3.49 43.58 43.58 3.49 43.58 43.58 As 0.828 0.145
    2 1.69 21.1 64.68 1.69 21.1 64.68 Cd 0.311 0.531
    3 0.89 11.09 75.77 Cr 0.902 0.153
    4 0.83 10.4 86.17 Hg −0.031 0.490
    5 0.59 7.34 93.52 Pb 0.636 0.050
    6 0.39 4.91 98.43 Ni 0.914 0.136
    7 0.07 0.86 99.28 Cu 0.147 0.925
    8 0.06 0.72 100 Zn 0.16 0.921
    下载: 导出CSV 
    | 显示表格

    第一主成分(F1)贡献率达43.58%,As、Cr、Ni、Pb载荷均较高(As 0.828、Cr 0.902、Ni 0.914、Pb 0.636),结合前期实地调研及收集到的资料可以初步判断,研究区内重金属最大的污染来源为自然源、人为源和复合源三大类,母岩风化、道路交通、耕地施肥和采矿活动“三废”排放,通过大气降尘、随降雨冲刷和污水灌溉等过程导致的重金属在水和土两种主要环境介质中的转移扩散(杨宇等,2023)。本研究表层土壤中As、Cr、Ni平均含量与区域背景值接近,因此As、Cr、Ni主要受母岩自然风化因素影响(陈小敏等,2015; Ma et al.,2016),研究区农田土壤As的累积受某些局部污染源影响较为明显,南部表水灌溉区及周边土壤污染严重,污水灌溉加剧了土壤中As的积累,地累积指数评价结果与潜在生态风险指数评价结果一致(图2图3);除自然源对 Pb 有所影响外,Pb 含量超标的区域集中于人口密集处(汤金来等,2023)、水田种植区以及大棚种植区等。其中,主要是因污水灌溉以及化肥等农用物质的不合理施用等因素造成了相应影响。实际上,原生土壤重金属元素含量在空间上的差异受多种因素制约,如元素的化学性质、存在状态和载体矿物的风化作用、气候、水文条件和生物活动等,都可能影响土壤重金属元素的地球化学行为,从而造成其在空间上的相对富集(郝立波等,2005),人类活动则不同程度地加剧了其空间分布的不均匀性(任宇等,2024)。本研究结果(图1图2)与研究区域的地质背景、土壤地球化学性质以及污染源类型等有着密不可分的关系,因此对该结果的深入解释尚需更多数据辅助验证。

    第二主成分(F2)Cu、Zn、Cd、Hg具有较高载荷(Cu 0.92、Zn 0.92、Cd 0.53、Hg 0.49),其贡献率达21.1%,

    研究表明表层土壤里的 Cu、Zn 含量于人口稠密、人为活动干扰相对剧烈的区域偏高(崔邢涛等,2016),能够认定人为活动为其主导成因,主要受农业活动、交通排放、大气沉降等要素作用。潜在生态风险评价结果与各重金属超标率还发现,Cu是研究流域内超标率较高的重金属,同时表现出较高的生态风险,Zn的超标比率仅低于Cu但具有较低的生态风险,这可能与两种元素的化学性质有关(杨宇等,2023)。相关研究表明,农田土壤中的重金属易向作物转移并积累;Cd、Hg元素则具有独特性,Hg为相对高风险元素,Cd次之,主要受人为活动影响而进入土壤,主要方式有工业生产、农业生产、交通运输,甚至建筑活动等多种来源。

    聚类分析可验证主成分分析结果的准确性,结果反映重金属的类别情况,研究区表层土壤重金属元素的聚类分析如图5所示。在土壤重金属含量基础上,确定距离为0.5~0.6时,可分为5类:第1类重金属元素包括Cr、Ni和As,根据相关性分析和因子分析的结果,Cr、Ni可能来源于土壤母质,As可能来源于复合源;第2类重金属元素为Pb;第3类重金属元素为包括Cu和Zn;第4类重金属元素为Cd;第5类重金属元素为Hg。这说明Cr、Ni和As可能有相似的来源,Cu和Zn可能有相似的来源,Cd、Hg和Pb来源较为复杂。

    图  5  研究区表层土壤重金属聚类结果
    Figure  5.  Clustering results of heavy metals in surface soil of the study area

    综合相关性分析、聚类分析和主成分分析进行对比分析,可以将8种重金属的来源划归为5类。第1类:Cr、Ni和As这3种重金属元素,其主要来源于自然源(陈雅丽等,2019),相关性分析、聚类分析和主成分分析都表明这3种重金属具有同一来源。统计性分析结果(表6)表明,Cr、Ni和As这3种元素平均值接近辽河流域土壤元素背景值,元素离散程度较高,分布不均匀,在不同点位的含量差异较大,这反映它们在表层土壤中基本保持了原始背景状态,主要受土壤环境生物地球化学作用和成土母质的控制,受人为活动影响较小或基本未受影响。第2类:Pb,分析表明Pb与Hg来源相反、与As、Cr、Ni有同一来源,平均值低于辽河流域土壤元素背景值,仅有个别样品有超标现象。因此,综合判定其主要来源于自然源,其次为交通源和工农业污染源(姜佰文等,2020)。第3类:Cu和Zn,属于强度变异,反映受人为活动影响较大,其主要来源为工农业污染源(邵莉等,2012),交通源次之,存在面源污染。第4类:Cd,相关性分析表明Cd与其他几种重金属元素都存在一定的联系,这说明Cd主要来源于交通源、自然源和工农业污染源(汤金来等,2023)。第5类:Hg,属于极度变异,其主要来源于工农业污染源,主要为点源污染,说明该区域Hg元素的受人类活动干扰较为严重。

    (1)锦州市北镇农业区土壤质量总体良好,但存在一定程度的富集现象,其中Hg富集作用最为明显,Cd、Cu、Zn、As含量超过风险筛选值的比例分别为45.56%、29.11%、11.47%和5.48%,Cr元素没有超过风险筛选值,土壤质量中度污染—重度污染区主要受Cu、Cd和Zn影响,(除Cd有1个样点超过风险管制值外)其他均低于土壤环境质量管制值。

    (2)据重金属污染程度评价结果,单指标重金属污染等级主要在1~3级,As 和 Cd属于轻度污染状态,大部分土壤样品的重金属属于无—轻度的污染状态,仅Hg元素个别点位土壤为强—极强污染,受污染点位占比由大到小排序为 As>Hg>Cd>Cu>Zn>Ni>Cr>Pb。

    (3)重金属潜在生态风险评价结果表明,Hg为研究区土壤主要相对高风险元素,Cd 次之,Cu、As极个别样点可达到中度至重度风险,其余全为低风险—无风险,单指标潜在生态风险由高到低排序为:Hg>Cd>As>Cu>Ni>Pb>Cr>Zn,全区地表土壤样品潜在生态风险综合指数RI分布范围为 29.7~2358.16,平均值为 141.9,以低度风险为主,其次中度风险,重度及严重风险区零星分布在研究区中部,其他大片区域为生态风险低区。

    (4)研究区表层土壤重金属来源可分为三类:①Ni、Cr、As和Pb具有同源性,Ni、Cr主要受母岩自然风化因素影响,As、Pb除受成土母质影响外,还受农业生产和工业生产活动的影响;②Cu和Zn的污染源主要受人类活动的影响,人为源主要为农业生产活动,并且 Cu 的污染来源较为复杂,在一定程度上也受交通排放、工业生产等的影响;③Cd和Hg与其他重金属相关性较弱,有不同污染源,Cd、Hg元素则具有独特性,农业生产、交通排放、污水灌溉等多种来源。

  • 图  1   东南亚地质略图(a),个旧矿区地质简图(b)和卡房剖面及取样位置图(c)

    TP—塔里木板块;YB—扬子地体;CB—华夏地体;SB—滇缅泰马地体;ICB—印支地体;IP—印度板块

    Figure  1.   Simplified geological map of the Southeast Asia (a), geological map of the Gejiu ore district (b) and geological section of diabase in Kafang profile and sample location (c)

    TP−Tarim Plate; YB−Yangtze Block; CB−Cathaysia Block; SB−Dian−Mian−Tai−Ma Block; ICB−Indochina Block; IP−India Plate

    图  2   辉绿岩墙侵入到大理岩中(a),辉绿岩手标本照片(b),正交偏光显微镜下照片(c、d、e),单偏光显微镜下照片(f)

    Bt—黑云母;Pl—斜长石;Px—辉石

    Figure  2.   Diabase intrudes into marble (a), hand specimen of Kafang diabase (b), cross-polarized light photomicrograph of Kafang diabase (c, d, e), single-polarized light photomicrograph of Kafang diabase (f)

    Bt−Biotite; Pl−Plagioclase; Px−Pyroxene

    图  3   卡房辉绿岩锆石阴极发光图(a)和锆石U−Pb谐和图(b)

    Figure  3.   Cathodoluminescence (CL) images of zircons for LA−ICP−MS dating (a) and zircon U−Pb concordia diagram (b) in Kafang diabase

    图  4   卡房辉绿岩样品SiO2−(Na2O+K2O)图(a),Nb/Y−Zr/Ti图(b),Na2O−K2O图(c),SiO2−K2O图(d)

    Figure  4.   SiO2−(Na2O+K2O) diagram (a), Nb/Y−Zr/Ti diagram (b), Na2O−K2O diagram (c), SiO2−K2O diagram (d) of Kafang diabase

    图  5   稀土元素球粒陨石标准化图解(a)和原始地幔标准化图解(b)(标准化值据Sun and McDonough, 1989)

    Figure  5.   Chondrite normalized rare earth elements patterns (a) and primitive mantle normalized trace elements patterns (b) (normalization values after Sun and McDonough, 1989)

    图  6   Nb/Yb−Ta/Yb图解(a)和Nb/Yb−La/Yb图解(b)(据Pearce et al., 1995; 冯志硕等, 2010

    N−MORB—正常洋中脊玄武岩;E−MORB—富集洋中脊玄武岩;OIB—洋岛玄武岩

    Figure  6.   Nb/Yb−Ta/Yb diagram (a) and Nb/Yb−La/Yb diagram (b) (after Pearce et al., 1995; Feng Zhishuo et al., 2010)

    N−MORB−N−type mid−ocean ridge basalt; E−MORB−E−type mid−ocean ridge basalt; OIB−Oceanic island basalt

    图  7   Sm−Sm/Yb(a)和La/Sm−Sm/Yb图解(b)(据Aldanmaz et al., 2000

    N−MORB—正常洋中脊玄武岩;E−MORB—富集洋中脊玄武岩;DM—亏损地幔;PM—原始地幔

    Figure  7.   Sm−Sm/Yb (a) and La/Sm−Sm/Yb diagram (b) (after Aldanmaz et al., 2000)

    N−MORB−N−type mid−ocean ridge basalt; E−MORB−E-type mid-ocean ridge basalt; DM−Depleted mantle; PM−Primitive mantle

    图  8   (87Sr/86Sr)iεNd(t)图解(a)(据Zimmer et al., 1995)和(206Pb/204Pb)t−(207Pb/204Pb)t图解(b)(据Zindler and Hart, 1986,t=77 Ma;MORB据Zimmer et al., 1995;OIB据White and Duncan, 1995;EM1和EM2据Hart, 1988)

    MORB—洋中脊玄武岩;OIB—洋岛玄武岩;EM1—富集1型地幔;EM2—富集2型地幔;BSE—全硅酸盐地球

    Figure  8.   (87Sr/86Sr)iεNd(t) diagram (a) (after Zimmer et al., 1995) and (206Pb/204Pb)t−(207Pb/204Pb)t diagram (b) (after Zindler and Hart, 1986, t=77 Ma; MORB after Zimmer et al., 1995; OIB after White and Duncan, 1995; EM1 and EM2 after Hart, 1988)

    MORB−Mid−ocean ridge basalt; OIB−Oceanic island basalt; EM1−1−type enriched mantle; EM2−2−type enriched mantle; BSE−Bulk silicate earth

    图  9   分离结晶作用趋势图解

    Ol—橄榄石;Cpx—单斜辉石;Opx—斜方辉石;Hb—角闪石;Bt—黑云母;Pl—斜长石

    Figure  9.   Trend diagrams of fractional crystallization

    Ol−Olivine; Cpx−Clinopyroxene; Opx−Orthopyroxene; Hb−Hornblende; Bt−Biotite; Pl−Plagioclase

    图  10   卡房辉绿岩成岩模式图

    Figure  10.   Diagenetic pattern of Kafang diabase

    图  11   微量元素构造判别图解(据Pearce and Cann, 1973; Wood, 1980; Mechede, 1986

    Figure  11.   Trace element tectonic discrimination diagrams (after Pearce and Cann, 1973; Wood, 1980; Mechede, 1986)

    表  1   卡房辉绿岩样品SS13806锆石U−Pb测年数据

    Table  1   Zircon U−Pb dating data of diabase sample SS13806 in Kafang

    点号Th/10−6U/10−6Th/U同位素比值年龄/Ma
    207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ206Pb/238U1σ207Pb/235U1σ
    157358440.100.04730.00100.08170.00120.01250.0002801801
    2111426300.420.04790.00100.07880.00140.01190.0002761771
    31142900.390.15570.003110.1480.13570.47230.0063240927244812
    441016190.250.04890.00120.08590.00160.01270.0002821842
    582980.830.05420.00340.34410.02060.04610.0007290530016
    613410960.120.17610.00338.37550.11400.34500.0045261621227312
    7108848680.220.04810.00100.07870.00120.01190.0002761771
    82014080.490.04760.00230.08340.00380.01270.0002811814
    91063752502.030.04500.00100.07430.00110.01200.0002771731
    10567741781.360.04830.00100.08000.00120.01200.0002771781
    11431440611.060.04880.00110.07720.00120.01150.0002741751
    121012670.380.04610.00160.07940.00250.01250.0002801782
    13603944631.350.04790.00110.07680.00120.01170.0002751751
    14233323890.980.05050.00120.07880.00150.01130.0002731771
    15105233820.310.04480.00100.07120.00120.01150.0002741701
    下载: 导出CSV

    表  2   卡房辉绿岩全岩主量元素(%)和微量元素(10−6)含量

    Table  2   Compositions of whole−rock major (%) and trace elements (10−6) of Kafang diabase

    分析项目SS13806分析项目SS13806
    01020304050607090102030405060709
    SiO243.1943.8744.3544.4544.3245.3645.1744.56Nb23.7417.9818.3226.881.1316.931.1416.31
    TiO23.052.552.643.152.632.542.632.54Cd0.300.220.260.270.0560.240.0530.22
    Al2O312.8913.1613.1213.4912.9312.9112.6012.72In0.290.320.430.910.0610.570.0470.35
    TFe2O313.5312.4812.7910.1213.0611.6212.7312.31Cs333.4429.4339.9280.7308.2256.0292.2358.2
    MnO0.1700.1500.1600.1500.1700.1700.1900.170Ba252.8274.7299.6197.9139.9169.8101.5235.0
    MgO12.9413.1911.8312.2712.1112.0212.1813.17La21.6716.4817.3827.2517.3816.5215.7514.86
    CaO6.186.186.939.437.198.957.196.86Ce49.0637.1239.3059.4027.5736.9125.7133.55
    Na2O0.960.831.180.771.151.081.270.96Pr6.044.644.857.314.874.594.464.25
    K2O3.754.523.523.303.362.813.473.89Nd28.7622.2223.0233.6223.0121.5821.1820.73
    P2O50.500.390.400.600.400.390.400.38Sm6.295.245.307.015.355.154.784.69
    LOI2.261.921.861.802.031.601.591.75Eu2.051.962.122.821.961.871.641.62
    Total99.4299.2498.7899.5399.3599.4599.4299.31Gd6.835.685.938.285.685.665.335.40
    Li55.2558.6346.9939.2714.2833.7711.6845.94Tb0.990.790.851.160.840.790.750.76
    Be0.540.810.490.430.180.560.150.63Dy4.914.114.225.694.224.003.994.11
    Sc13.7917.7614.1811.4812.9812.3812.6114.96Ho0.830.670.680.930.700.660.640.66
    V156.5151.2154.7138.111.27144.112.13142.2Er2.171.771.762.461.781.861.791.81
    Cr342.2404.6394.5175.0124.2380.2132.1371.1Tm0.270.220.230.320.220.210.200.21
    Co38.5933.5334.2620.142.5531.153.0733.55Yb1.421.131.151.681.061.251.231.25
    Ni159.6161.1161.896.3411.29147.114.91145.0Lu0.210.160.170.250.150.170.160.16
    Cu117.194.72101.780.634.8474.574.6575.75Hf4.463.593.594.710.513.410.453.28
    Zn115.3109.1111.7104.111.1497.1412.70105.8Ta1.751.371.482.080.091.330.101.29
    Ga12.8612.9712.1914.477.6412.146.5511.12Pb1.761.722.111.900.721.870.401.58
    Rb705.8881.6641.4667.1518.3540.0477.7734.4Bi0.460.290.550.460.0530.270.0020.14
    Sr570.0568.9627.7743.6591.5693.5566.7684.2Th3.032.302.323.992.192.022.052.37
    Y16.1513.1113.7118.7213.6612.6012.9613.17U0.820.610.661.020.0860.610.0710.58
    Zr139.2106.5108.6152.513.96101.112.6397.97Mg#65.4567.6864.6970.664.7567.265.4667.94
    下载: 导出CSV

    表  3   卡房辉绿岩Sr−Nd同位素组成

    Table  3   Sr−Nd isotopic compositions of Kafang diabase

    样品 年龄/Ma Rb/10−6 Sr/10−6 87Sr/86Sr (87Sr/86Sr)i Sm/10−6 Nd/10−6 143Nd/144Nd (143Nd/144Nd)i εNd(t)
    SS13806-10 77 478 566 0.71056 0.70791 4.78 21.18 0.51272 0.51266 2.29
    SS13806-11 77 734 684 0.71119 0.70782 4.69 20.73 0.51271 0.51265 2.07
    下载: 导出CSV

    表  4   卡房辉绿岩Pb同位素组成

    Table  4   Pb isotopic compositions of Kafang diabase

    样品 年龄/Ma 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t Φ μ Th/U
    SS13806-07 77 18.622±0.003 15.724±0.001 39.212±0.006 18.465 15.717 37.763 0.583 9.68 3.96
    SS13806-09 77 18.610±0.007 15.683±0.008 39.254±0.014 18.286 15.668 38.830 0.579 9.61 3.98
      注:Φμ为源区特征值。
    下载: 导出CSV
  • [1]

    Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000. Petrogenetic evolution of Late Cenozoic, post−collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology Geothermal Research, 102(1/2): 67−95.

    [2]

    Barth M G, McDonough W F, Rudnick R I. 2000. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 165: 197−213. doi: 10.1016/S0009-2541(99)00173-4

    [3]

    Buiter S J H, Torsvik T H. 2014. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break−up along sutures?[J]. Gondwana Research, 26(2): 627−653. doi: 10.1016/j.gr.2014.02.007

    [4]

    Chen Maohong, Zhang Wei, Yang Zongxi, Lu Gang, Hou Kejun, Liu Jianhui. 2009. Zircon SHRIMP U−Pb age and Hf isotopic composition of Baiceng ultrabasic dykes in Zhenfeng County, southwestern Guizhou Province[J]. Mineral Deposits, 28(3): 240−250 (in Chinese with English abstract).

    [5]

    Chen Yongqing, Chen Shouyu, Huang Jingning, Shang Zhi, Zhao Binbin, Zhang Lina, Wang Zhenyi, Qin Luxue, Yang Rong. 2020. Geodynamic Background−Metallogenic Process−Quantitative Evaluation of Gejiu Super−large Tin−Copper Polymetallic Deposit[M]. Beijing: Geological Publishing House, 1−206 (in Chinese).

    [6]

    Cheng Yanbo, Mao Jingwen, Chen Maohong, Yang Zongxi, Feng Jiarui, Zhao Haijie. 2008. LA−ICP−MS zircon dating of the alkaline rocks and lamprophyres in Gejiu area and its implications[J]. Geology in China, 35(6): 1138−1149 (in Chinese with English abstract).

    [7]

    Cheng Yanbo. 2012. Spatial−temperal Evolution of the Magmatism and Mineralization in Gejiu Supergiant Sn Polymetallic District and Insights into Several Key Problems[D]. Beijing: China University of Geosciences, 1−306 (in Chinese with English abstract).

    [8]

    Cheng Y B, Carl S, Mao J W. 2012. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: A case of two−stage mixing of crust−and mantle−derived magmas[J]. Contributions to Mineralogy and Petrology, 164: 659−676. doi: 10.1007/s00410-012-0766-0

    [9]

    Cheng Y B, Mao J W. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China: Constraints on their petrogenesis and tectonic setting[J]. Lithos, 120: 258−276. doi: 10.1016/j.lithos.2010.08.013

    [10]

    Cheng Y B, Mao J W, Liu P. 2016. Geodynamic setting of Late Cretaceous Sn−W mineralization in southeastern Yunnan and northeastern Vietnam[J]. Solid Earth Sciences, 1(3): 79−88. doi: 10.1016/j.sesci.2016.12.001

    [11]

    Condie K C. 2003. Incompatible element ratios in oceanic basalts and komatiites, tracking deep mantle sources and continental growth rates with time[J]. Geochemistry, Geophysics, Geosystems, 4: 1−28.

    [12]

    Dai Fusheng. 1990. The evolution of two diagenetic series of the Gejiu tin district[J]. Acta Petrologica and Mineralogica, 9(3): 224−233 (in Chinese with English abstract).

    [13]

    DePaolo D J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 53(2): 189−202. doi: 10.1016/0012-821X(81)90153-9

    [14]

    Du Yuansheng, Tong Jinnan. 2008. Introduction to Palaeontology and Historical Geology[M]. Wuhan: China University of Geosciences Press, 1−266 (in Chinese).

    [15]

    Fan Weiming, Menzies M A. 1992. Geochronology and Geochemistry of Cenozoic Volcanic Rocks in China[M]. Beijing: Geological Publishing House, 320−329 (in Chinese).

    [16]

    Feng Qianwen. 2012. The Late Paleozoic Geodynamical Environment of Central Asia: Evidence from Dark Dykes[D]. Beijing: Chinese Academy of Geological Sciences, 1−182 (in Chinese with English abstract).

    [17]

    Feng Zhishuo, Zhang Zhicheng, Li Jianfeng, Guo Zhaojie. 2010. Geochemistry and geological significance of the Cretaceous OIB−type mafic dykes in Sanweishan, Dunhuang, Gansu Province[J]. Acta Petrologica Sinica, 26(2): 607−616 (in Chinese with English abstract).

    [18]

    Ge Xiaoyue, Li Xianhua, Zhou Hanwen. 2003. Geochronologic, geochemistry and Sr−Nd isotopes of the Late Cretaceous mafic dike swarms in southern Hainan Island[J]. Geochimica, 32(1): 11−20 (in Chinese with English abstract).

    [19]

    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust−mantle system[J]. Chemical Geology, 120(3/4): 347−359.

    [20]

    Halls H C, Fahrig W C. 1987. Mafic dike swarms[J]. Geological Society of Canada Special Publication, 34: 57−64.

    [21]

    Han Jiangwei, Xiong Xiaolin, Zhu Zhaoyu. 2009. Geochemistry of Late−Cenozoic basalts from Leiqiong area: The origin of EM2 and the contribution from sub−continental lithosphere mantle[J]. Acta Petrologica Sinica, 25(12): 3208−3220 (in Chinese with English abstract).

    [22]

    Hart S R, Allegre C J. 1980. Trace−element constraints on magma genesis[C]//Hargraves R B, (ed.). Physics of Magmatic Processes. New Jersey: Princeton University Press, 121−159.

    [23]

    Hart S R. 1988. Heterogeneous mantle domains: Signature, genesis and mixing chronologies[J]. Earth and Planetary Science Letters, 90: 273−296. doi: 10.1016/0012-821X(88)90131-8

    [24]

    Herzberg C. 1992. Depth and degree of melting of komatiites[J]. Journal of Geophysical Research, 97: 4521−4540. doi: 10.1029/91JB03066

    [25]

    Herzberg C. 1995. Generation of plume magmas through time: An experimental approach[J]. Chemical Geology, 126: 1−16. doi: 10.1016/0009-2541(95)00099-4

    [26]

    Hoek J D, Seitz H M. 1995. Continental mafic dyke swarms as tectonic indicators: An example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 75(3/4): 121−139.

    [27]

    Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism[J]. Nature, 385: 219−229. doi: 10.1038/385219a0

    [28]

    Hofmann A W. 2003. Sampling Mantle Heterogeneity Through Oceanic Basalts: Isotopes and Trace Elements[M]. Pergamon: Elsevier, 61−101.

    [29]

    Hooper P, Widdowson M, Kelley S. 2010. Tectonic setting and timing of the final Deccan flood basalt eruptions[J]. Geology, 38(9): 839−842. doi: 10.1130/G31072.1

    [30]

    Hou Y L, Zhong Y T, Xu Y G, He B. 2017. The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U−Pb−Hf−O isotopes of detrital zircons[J]. Lithos, 278/281: 240−254. doi: 10.1016/j.lithos.2017.01.013

    [31]

    Hou G T, Liu Y L, Li J H. 2006a. Evidence for ~1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U−Pb dating of mafic dyke swarms in Shandong Province[J]. Journal of Asian Earth Science, 27(4): 392−401. doi: 10.1016/j.jseaes.2005.05.001

    [32]

    Hou G T, Wang C C, Li J H, Qian X L. 2006b. Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton[J]. Tectonophysics, 422: 89−98. doi: 10.1016/j.tecto.2006.05.008

    [33]

    Huang Wenlong, Xu Jifeng, Chen Jianlin, Huang Feng, Zeng Yunchuan, Pi Qiaohui, Cai Yongfeng, Jiang Xingzhou. 2016. Geochronology and geochemistry of the Gejiu complex in the Yunnan Province, SW China: Petrogenesis and contributions of mantle−derived melts to tin mineralization[J]. Acta Petrologica Sinica, 32(8): 2330−2346 (in Chinese with English abstract).

    [34]

    Jia Runxing, Fang Weixuan, Ruan Xueyan. 2014. Geochemical characteristics and tectonic granites in Gejiu Tin deposit, Yunnan setting of the province[J]. Mineral Exploration, 5(2): 257−266 (in Chinese with English abstract).

    [35]

    Jiao Wenfang, Wu Yuanbao, Peng Min, Wang Jing, Yang Saihong. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U−Pb age and Hf isotope composition[J]. Science in China, 39(7): 972−978 (in Chinese with English abstract).

    [36]

    Kalfoun F, Ionov D, Merlet C. 2002. HFSE residence and Nb/Ta ratios in metasomatised, rutile−bearing mantle peridotites[J]. Earth and Planetary Science Letters, 199(1/2): 49−65.

    [37]

    Khan T, Murata M, Karim T, Zafar M, Ozawa H. 2007. A Cretaceous dike swarm provides evidence of a spreading axis in the back−arc basin of the Kohistan paleo−island arc, northwestern Himalaya, Pakistan[J]. Journal of Asian Earth Sciences, 29(2/3): 350−360.

    [38]

    Lebedev S, Meier T, Hilst R D. 2006. Asthenospheric flow and origin of volcanism in the Baikal Rift area[J]. Earth and Planetary Science Letters, 249(3/4): 415−424.

    [39]

    Li Hongbo, Zhang Zhaochong, Lü Linsu, Li Yongsheng. 2012. Geochronology, geochemistry and geological significances of the Permian basic dykes in Mianning, Sichuan Province[J]. Geological Review, 58(5): 953−964 (in Chinese with English abstract).

    [40]

    Li Sanzhong, Zang Yibo, Wang Pengcheng, Suo Yanhui, Li Xiyao, Liu Xin, Zhou Zaizheng, Liu Xiaoguang, Wang Qian. 2017. Mesozoic tectonic transition in South China and initiation of Palaeo Pacific subduction[J]. Earth Science Frontiers, 24(4): 213−225 (in Chinese with English abstract).

    [41]

    Li Xiaolong, Mao Jingwen, Cheng Yanbo. 2011. Petrology, geochemistry and petrogenesis of the Baishachong and Beipaotai granitic stocks in Gejiu, Yunnan Province, Southwest China[J]. Geological Review, 57(6): 837−850 (in Chinese with English abstract).

    [42]

    Li Yingshu, Qin Dexian, Cai Yan, Xie Yang, Chen Nan, Wang Lun, Luo Xi, Yang Xiaoyu, Chen Jiaojiao, He Daqing. 2011. Geological and geochemical features of east dyke and its ore−controlling in Dachang Sn−polymetallic orefield, Guangxi[J]. Journal of Jilin University (Earth Science Edition), 41(Sup.1): 106−113 (in Chinese with English abstract).

    [43]

    Liu Hongying, Xia Bin, Zhang Yuquan. 2004. Zircon SHRIMP dating ang geological significance of Maomaogou sodic alkaline rock in Huili, Panxi[J]. Chinese Science Bulletin, 49: 1431−1438 (in Chinese).

    [44]

    Liu Jiao, Zhou Yang, Xie Degen, Ji Xingxing, Li Dewei. 2016. Geochronology, geochemistry and geological implications of the lamprophyre in Jianshui, east Yunnan Province[J]. Geology in China, (6): 1977−1991 (in Chinese with English abstract).

    [45]

    Liu Lang, Liu Demin, Shao Junqi, Ding Guoli, Huang Binbin, Huang Jinshan. 2020. Geochronology, geochemistry and tectonic evolution of the basaltic trachyandesite in Huize, northeastern Yunnan Province[J]. Geology in China, 47(3): 678−692 (in Chinese with English abstract).

    [46]

    Liu Xiaoming, Gao Shan, Ling Wenchu, Yuan Honglin, Hu Zhaochu. 2005. Discovery and geological significance of 3.5 Ga detrital zircons in the Yangtze craton[J]. Progress in Natural Science, 15(11): 1334−1337 (in Chinese).

    [47]

    Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010a. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51: 537−571. doi: 10.1093/petrology/egp082

    [48]

    Liu S, Su W C, Hu R Z, Feng C X, Gao S, Ian M C, Wang T, Feng G Y, Tao Y, Xia Y. 2010b. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China[J]. Lithos, 114: 253−264. doi: 10.1016/j.lithos.2009.08.012

    [49]

    Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.

    [50]

    Ma L, Wang Q, Li G X, Wyman D A, Jung G Q, Yang J H, Gou G N, Guo H F. 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere−asthenosphere interaction during slab rollback and an insight into early Late Cretaceous (ca. 100−80 Ma) magmatic “flare−up” in southern Lhasa (Tibet)[J]. Lithos, 172/173: 17−30. doi: 10.1016/j.lithos.2013.03.007

    [51]

    Mao Jingwen, Xie Guiqing, Yuan Shunda, Liu Peng, Meng Xuyang, Zhou Zhenhua, Zheng Wei. 2018. Current research progress and future trends of porphyry−skarn copper and granite−related tin polymetallic deposits in the Circum Pacific metallogenic belts[J]. Acta Petrologica Sinica, 34(9): 2501−2517.

    [52]

    Mechede M. 1986. A method of discriminating between different types of mid−ocean ridge basalts and continental tholeiites with the Nb−Zr−Y diagram[J]. Chemical Geology, 56(3/4): 207−218.

    [53]

    Mo Guopei. 2006. Genetic type of granites in Gejiu superlarge tin polymetallic deposit[J]. Mineral Resources and Geology, 20(4): 413−417 (in Chinese with English abstract).

    [54]

    Niu Y L, Wilson M, Humphreys E R. 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML)[J]. Episodes, 35(2): 310−327. doi: 10.18814/epiiugs/2012/v35i2/002

    [55]

    Paces J B, Bell K. 1989. Non−depleted sub−continental mantle beneath the Superior Province of the Canadian Shield: Nd−Sr isotopic and trace element evidence from mid−continent rift basalts[J]. Geochimica et Cosmochimica Acta, 53: 2023−2035. doi: 10.1016/0016-7037(89)90322-0

    [56]

    Peng P, Zhai M G, Ernst R, Guo J H, Liu F, Hu B. 2008. A 1.78 Ga large igneous province in the North China Craton: The Xiong'er volcanic province and the North China dyke swarm[J]. Lithos, 101(3/4): 260−280.

    [57]

    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 19(2): 290−300. doi: 10.1016/0012-821X(73)90129-5

    [58]

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33−47. doi: 10.1007/BF00375192

    [59]

    Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 23: 1073−1109.

    [60]

    Qi Shengsheng, Deng Jinfu, Ye Zhanfu, Liu Rong, Wang Guoliang. 2013. LA−ICP−MS zircon U−Pb dating of Late Devonian diabase dike swarms in Qimantag area[J]. Geological Bulletin of China, 32(9): 1385−1393 (in Chinese with English abstract).

    [61]

    Qiu Y M, Gao S, McNaughton N J, Groves D I, Ling W L. 2000. First evidence of ≥3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28: 11−14.

    [62]

    Radhakrishna T, Mathew J. 1996. Late Precambrian (850−800 Ma) paleomagnetic pole for the south Indian shield from the Harohalli alkaline dykes Geotectonic: Implications for Gondwana reconstructions[J]. Precambrian Research, 80(1/2): 77−87.

    [63]

    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews of Geophysics, 33: 267−309. doi: 10.1029/95RG01302

    [64]

    Søager N, Holm P M, Llambías E J. 2013. Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment[J]. Chemical Geology, 349: 36−53.

    [65]

    Scarrow J H, Leat P T, Wareham C D, Millar I L. 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental−margin batholith: A record of arc evolution[J]. Contributions to Mineralogy and Petrology, 131(2): 289−305.

    [66]

    Southwest Metallurgical Geological Exploration Company. 1984. Geology of Gejiu Tin Deposit[M]. Beijing: Metallurgical Industry Press, 1−256 (in Chinese).

    [67]

    Srivastava R K. 2011. Dake Swarms: Keys for Geodynamic Interpretation[M]. Heidelberg: Springer, 1−603.

    [68]

    Staudigel H, Hart, S R. 1983. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust−seawater budget[J]. Geochimica et Cosmochimica Acta, 47: 337−350. doi: 10.1016/0016-7037(83)90257-0

    [69]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    [70]

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1−328.

    [71]

    Tatsumoto M, Basu A R, Huang W K, Wang J W, Xie J H. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China; Enriched components EMⅠ and EMⅡ in subcontinental lithosphere[J]. Earth and Planetary Science Letters, 113: 107−128. doi: 10.1016/0012-821X(92)90214-G

    [72]

    Wang C Y, Zhou M F, Qi L. 2007. Permian flood basalts and magmatic intrusions in the Jinping (SW China)−Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation[J]. Chemical Geology, 243: 317−343.

    [73]

    Wang Dezi, Shu Liangshu. 2007. On granitic tectono−magmatic assemblages[J]. Geological Journal of China Universities, 13(3): 362−370 (in Chinese with English abstract).

    [74]

    Wang Xiang, Ma Changqian, Deng Jialiang, Wu Heng. 2020. Discovery of ~2.5 Ga amphibolite at Liuping Town of Susong County in the mid−eastern region of the Yangtze Block[J]. Geology in China, 47(4): 1262−1263 (in Chinese with English abstract).

    [75]

    Wang Yonglei, Pei Rongfu, Li Jinwen, Wu Junde, Li Li, Wang Haolin. 2007. Geochemical characteristics and tectonic setting of Laochang granite in Gejiu[J]. Acta Geologica Sinica, 81(7): 979−985 (in Chinese with English abstract).

    [76]

    Weaver B L, Tamey J. 1981. The Scourie dike suite: Petrogenesis and geochemical nature of the Proterozoic subcontinental mantle[J]. Contributions to Mineralogy and Petrology, 78: 175−188. doi: 10.1007/BF00373779

    [77]

    Weaver B L. 1991. The origin of ocean island basalt end−member composition: Trace element and isotopic constrains[J]. Earth and Planetary Science Letters, 104(2/4): 381−397.

    [78]

    White W M, Duncan R A. 1995. Geochemistry and geochronology of the Society Island: New evidence for deep mantle recycling. In: Basu A , Hart S R. (eds.). Geochemistry and geochronology of the Society Island: new evidence for deep mantle recycling. Isotope studies of crust−mantle evolution[C]// Geophysics Monograph, 95. AGU, Washington, DC, 1−23.

    [79]

    Wilson M B. 1989. Igneous Petrogenesis: A Global Tectonic Approach[M]. London: Unwyn Hyman.

    [80]

    Wood D A. 1980. The application of a Th−Hf−Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province[J]. Earth and Planetary Science Letters, 50: 11−30. doi: 10.1016/0012-821X(80)90116-8

    [81]

    Wu Hao, Xu Zuyang, Yan Weibing, Hao Yujie, Liu Haiyong. 2023. Zircon U–Pb ages and geochemical characteristics of diabase in Nie'erco area, central Tibet: Implication for Neo–Tethyan slab breakoff[J]. Geology in China, 50(6): 1804–1816 (in Chinese with English abstract).

    [82]

    Xu X S, O’Reilly S Y, Griffn W L, Zhou X M. 2003. Enrichment of upper mantle peridotite; Petrological, trace element and isotopic evidence in xenoliths from SE China[J]. Chemical Geology, 198: 163−188. doi: 10.1016/S0009-2541(03)00004-4

    [83]

    Xu D R, Xia B, Li P C, Chen G H, Ma C, Zhang Y Q. 2007. Protolith natures and U−Pb sensitive high mass−resolution ion microprobe (SHRIMP) zircon ages of the metabasites in Hainan Island, South China: Implications for geodynamic evolution since the Late Precambrian[J]. Island Arc, 16(4): 575−597. doi: 10.1111/j.1440-1738.2007.00584.x

    [84]

    Xu D R, Xia B, Bakun−Czubarow N, Bachlinski R, Li P, Chen J, Chen T. 2008. Geochemistry and Sr−Nd isotope systematics of metabasites in the Tunchang area, Hainan Island, South China: Implications for petrogenesis and tectonic setting[J]. Mineralogy and Petrology, 92(3/4): 361−391.

    [85]

    Xu Qidong, Xia Qinglin, Cheng Qiuming. 2009. Tectono−magmatic evolution related to metallogenic system in Gejiu ore−concentration area, Southeast Yunnan of China[J]. Earth Science, 34(2): 307−311 (in Chinese with English abstract).

    [86]

    Xu Yao, Zhang Yongqian, Yan Jiayong, Xu Zhiwu, Chen Changxin. 2019. Teleseismic P−wave velocity structure of upper mantle beneath the southeastern part of South China and its implications[J]. Geology in China, 46(4): 737−749 (in Chinese with English abstract).

    [87]

    Xu Yigang. 1999. Advances in Chemical Geodynamics[M]. Beijing: Science Press, 159−167 (in Chinese).

    [88]

    Yan Q R, Wang Z Q, Liu S W. 2005. Opening of the Tethys in southwest China and its significance to the breakup of East Gondwanaland in late Paleozoic: Evidence from SHRIMP U−Pb zircon analyses for the Garzê ophiolite block[J]. Chinese Science Bulletin, 50: 256−264. doi: 10.1007/BF02897536

    [89]

    Yang Jie, Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Zhanqing, Pei Lei, Liu Chengjun, Chen Youxin, Chen Guochao, Gao Jingmin. 2014. Geochemical characteristics and geological implications of Haerguole basalt in Buqingshan area on the southern margin of East Kunlun Mountains[J]. Geology in China, 41(2): 335−350 (in Chinese with English abstract).

    [90]

    Yu J H, O’Reilly S Y, Zhang M. 2006. Roles of melting and metasomatiam in the formation of the lihtospheric mantle beneath the Leizhou Peninsula, South China[J]. Journal of Petrology, 47: 355−383. doi: 10.1093/petrology/egi078

    [91]

    Zhang J W, Dai C G, Huang Z L, Luo T Y, Qian Z K, Zhang Y. 2015. Age and petrogenesis of Anisian magnesian alkali basalts and their genetic association with the Kafang stratiform Cu deposit in the Gejiu supergiant tin−polymetallic district, SW China[J]. Ore Geology Review, 69: 403−416. doi: 10.1016/j.oregeorev.2015.03.011

    [92]

    Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146: 16−34. doi: 10.1016/j.precamres.2006.01.002

    [93]

    Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006b. Zircon U−Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 252: 56−71. doi: 10.1016/j.jpgl.2006.09.027

    [94]

    Zhang X H, Zhang H F, Tang Y J, Wilde S A, Hu Z C. 2008. Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 249: 262−281. doi: 10.1016/j.chemgeo.2008.01.005

    [95]

    Zhang Ying, Huang ZhilongL, Luo Taiyi, Qian Zhikuan, Zhang Jiawei, Sun Jianbo. 2013. The geochemistry and SIMS U−Pb zircon dating of the Jiasha gabbric−monzonitic intrusion in Gejiu district, Yunnan Province[J]. Geochimica, 42(6): 523−543 (in Chinese with English abstract).

    [96]

    Zhao J H, Zhou M F. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction−related metasomatism in the upper mantle[J]. Precambrian Research, 152: 27−47. doi: 10.1016/j.precamres.2006.09.002

    [97]

    Zhao Wenjun. 2018. Genesis and understanding of the Jiasha complex in Gejiu, Yunman Province[J]. Energy and Environment, 6: 55−58 (in Chinese).

    [98]

    Zhao Yonggui, Zhong Dalai, Liu Jianhua, Wu Hua, Liu Futian. 1992. Fundamentals of geological interpretation for seismic tomography and its application to studying of west Yunnan’s deep structure[J]. Scientin Geologica Sinica, (2): 105−113 (in Chinese with English abstract).

    [99]

    Zheng J, Griffin W L, O'Reilly S Y, Lu F X, Wang C Y, Zhang M, Wang F Z, Li H M. 2004. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton[J]. Geology, 32: 229−232.

    [100]

    Zhu Yongfeng, Xu Xin, Wei Shaoni, Song Biao, Guo Xuan. 2007. Geochemistry and tectonic significance of OIB−like pillow basalts in western Mts. of Karamay city (western Junggar), NW China[J]. Acta Petrologica Sinica, 23(7): 1739−1748 (in Chinese with English abstract).

    [101]

    Zimmer M, Kroner A, Jochum K P, Reischmann T, Todt W. 1995. The Gabal Gerf complex: A Precambrian N−MORB ophiolite in the Nubian Shield, NE Africa[J]. Chemical Geology, 123: 29−51. doi: 10.1016/0009-2541(95)00018-H

    [102]

    Zindler A, Hart S R. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425

    [103] 陈懋弘, 章伟, 杨宗喜, 陆刚, 侯可军, 刘建辉. 2009. 黔西南白层超基性岩墙锆石 SHRIMP U−Pb 锆石年龄和 Hf 同位素组成研究[J]. 矿床地质, 28(3): 240−250. doi: 10.3969/j.issn.0258-7106.2009.03.002
    [104] 陈永清, 陈守余, 黄静宁, 尚志, 赵彬彬, 张丽娜, 王振义, 覃璐雪, 杨融. 2020. 个旧超大型锡铜多金属矿床成矿地质背景过程定量评价[M]. 北京: 地质出版社, 1−206.
    [105] 程彦博, 毛景文, 陈懋弘, 杨宗喜, 冯佳睿, 赵海杰. 2008. 云南个旧锡矿田碱性岩和煌斑岩LA−ICP−MS锆石U−Pb测年及其地质意义[J]. 中国地质, 35(6): 1138−1149. doi: 10.3969/j.issn.1000-3657.2008.06.011
    [106] 程彦博. 2012. 个旧超大型锡多金属矿区成岩成矿时空演化及一些关键问题探讨[D]. 北京: 中国地质大学, 1−306.
    [107] 戴福盛. 1990. 个旧锡矿区两个成岩系列的演化[J]. 岩石矿物学杂志, 9(3): 224−233.
    [108] 杜远生, 童金南. 2008. 古生物地史学概论[M]. 武汉: 中国地质大学出版社, 1−266.
    [109] 范蔚茗, Menzies M A. 1992. 中国新生代火山岩年代学与地球化学[M]. 北京: 地质出版社, 320−329.
    [110] 冯乾文. 2012. 中亚地区古生代晚期地球动力学环境—来自暗色岩墙的证据[D]. 北京: 中国地质科学院, 1−182.
    [111] 冯志硕, 张志诚, 李建锋, 郭召杰. 2010. 敦煌三危山地区白至纪OIB型基性岩墙的特征及地质意义[J]. 岩石学报, 26(2): 607−616.
    [112] 葛小月, 李献华, 周汉文. 2003. 琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr−Nd同位素研究[J]. 地球化学, 32(1): 11−20. doi: 10.3321/j.issn:0379-1726.2003.01.002
    [113] 韩江伟, 熊小林, 朱照宇. 2009. 雷琼地区晚新生代玄武岩地球化学: EM2成分来源及大陆岩石圈地慢的贡献[J]. 岩石学报, 25(12): 3209−3220.
    [114] 黄文龙, 许继峰, 陈建林, 黄丰, 曾云川, 皮桥辉, 蔡永丰, 蒋兴洲. 2016. 云南个旧杂岩体年代学与地球化学: 岩石成因和幔源岩浆对锡成矿贡献[J]. 岩石学报, 32(8): 2330−2346.
    [115] 贾润幸, 方维萱, 隗雪燕. 2014. 云南个旧锡矿花岗岩地球化学特征及构造环境研究[J]. 矿产勘查, 5(2): 257−266.
    [116] 焦文放, 吴元保, 彭敏, 汪晶, 杨赛红. 2009. 扬子板块最古老岩石的锆石U−Pb年龄和Hf同位素组成[J]. 中国科学(D辑:地球科学), 39(7): 972−978.
    [117] 李宏博, 张招崇, 吕林素, 李永生. 2012. 四川冕宁基性岩墙的年代学、地球化学特征及其地质意义[J]. 地质论评, 58(5): 953−964.
    [118] 李三忠, 臧艺博, 王鹏程, 索艳慧, 李玺瑶, 刘鑫, 周在征, 刘晓光, 王倩. 2017. 华南中生代构造转换和古太平洋俯冲启动[J]. 地学前缘, 24(4): 213−225.
    [119] 李肖龙, 毛景文, 程彦博. 2011. 云南个旧白沙冲和北炮台花岗岩岩石学、地球化学研究及成因探讨[J]. 地质论评, 57(6): 837−850.
    [120] 黎应书, 秦德先, 蔡燕, 谢阳, 陈楠, 王伦, 罗曦, 杨晓宇, 陈姣姣, 贺大庆. 2011. 广西大厂锡多金属矿田东岩墙地质地球化学特征及其控矿作用[J]. 吉林大学学报(地球科学版), 41(增刊 1): 106−113.
    [121] 刘红英, 夏斌, 张玉泉. 2004. 攀西会理猫猫沟钠质碱性岩锆石SHRIMP定年及其地质意义[J]. 科学通报, 49: 1431−1438.
    [122] 刘娇, 周洋, 谢德根, 纪星星, 李德威. 2016. 云南建水煌斑岩年代学和地球化学及其构造意义[J]. 中国地质, (6): 1977−1991.
    [123] 刘浪, 刘德民, 邵俊琦, 丁国立, 黄彬彬, 黄锦山. 2020. 云南会泽地区玄武粗安岩年代学、地球化学及构造演化[J]. 中国地质, 47(3): 678−692. doi: 10.12029/gc20200309
    [124] 柳小明, 高山, 凌文黎, 袁洪林, 胡兆初. 2005. 扬子克拉通35亿年碎屑锆石的发现及其地质意义[J]. 自然科学进展, 15(11): 1334−1337.
    [125] 毛景文, 谢桂青, 袁顺达, 刘鹏, 孟旭阳, 周振华, 郑伟. 2018. 环太平洋成矿带斑岩−矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望[J]. 岩石学报, 34(9): 2501−2517.
    [126] 莫国培. 2006. 个旧超大型锡多金属矿区花岗岩成因类型[J]. 矿产与地质, 20(4): 413−417.
    [127] 祁生胜, 邓晋福, 叶占福, 刘荣, 王国良. 2013. 青海祁漫塔格地区晚泥盆世辉绿岩墙群LA−ICP−MS锆石U−Pb年龄及其构造意义[J]. 地质通报, 32(9): 1385−1393.
    [128] 王德滋, 舒良树. 2007. 花岗岩构造岩浆组合[J]. 高校地质学报, 13(3): 362−370. doi: 10.3969/j.issn.1006-7493.2007.03.006
    [129] 王翔, 马昌前, 邓佳良, 吴衡. 2020. 扬子陆块中东部宿松县柳坪镇发现~2.5 Ga斜长角闪岩[J]. 中国地质, 47(4): 1262−1263.
    [130] 王永磊, 裴荣富, 李进文, 武俊德, 李莉, 王浩琳. 2007. 个旧老厂矿田花岗岩地球化学特征及其形成构造背景[J]. 地质学报, 81(7): 979−985.
    [131] 吴浩, 徐祖阳, 严维兵, 郝宇杰, 刘海永. 2023. 西藏中部聂尔错地区辉绿岩锆石U–Pb年龄与地球化学特征:对新特提斯洋板片断离的指示[J]. 中国地质, 50(6): 1804–1816.
    [132] 徐启东, 夏庆霖, 成秋明. 2009. 云南个旧矿集区区域构造−岩浆演化与锡铜多金属成矿系统[J]. 地球科学, 34(2): 307−311.
    [133] 徐峣, 张永谦, 严加永, 徐志伍, 陈昌昕. 2019. 华南东南部上地幔远震P波速度结构及意义[J]. 中国地质, 46(4): 737−749.
    [134] 徐义刚. 1999. 化学地球动力学进展[M]. 北京: 科学出版社, 159−167.
    [135] 杨杰, 裴先治, 李瑞保, 李佐臣, 刘战庆, 裴磊, 刘成军, 陈有炘, 陈国超, 高景民. 2014. 东昆仑南缘布青山地区哈尔郭勒玄武岩地球化学特征及其地质意义[J]. 中国地质, 41(2): 335−350. doi: 10.3969/j.issn.1000-3657.2014.02.003
    [136] 冶金工业部西南冶金地质勘探公司. 1984. 个旧锡矿地质[M]. 北京: 冶金工业出版社, 1−256.
    [137] 张颖, 黄智龙, 罗泰义, 钱志宽, 张嘉玮, 孙建博. 2013. 云南个旧西区贾沙辉长−二长岩体SIMS锆石U−Pb定年及地球化学研究[J]. 地球化学, 42(6): 523−543.
    [138] 赵文君. 2018. 云南个旧贾沙岩浆岩认识及成因类型[J]. 能源与环境, 6: 55−58. doi: 10.3969/j.issn.1672-9064.2018.01.027
    [139] 赵永贵, 钟大赍, 刘建华, 吴华, 刘福田. 1992. 地震层析地质解释原理及其在滇西深部构造研究中的应用[J]. 地质科学, (2): 105−113.
    [140] 朱永峰, 徐新, 魏少妮, 宋彪, 郭玻. 2007. 西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究[J]. 岩石学报, 23(7): 1739−1748. doi: 10.3969/j.issn.1000-0569.2007.07.019
  • 期刊类型引用(7)

    1. 钟广见,强昆生,杨建礼,孙鸣,赵静,冯常茂,王超,易海,赵忠泉,阎贫,刘大锰. 利用弹性参数反演预测潮汕坳陷目标构造的含油气性. 中国地质. 2024(05): 1748-1760 . 本站查看
    2. Tao XING,Guangjian ZHONG,Wenhuan ZHAN,Zhongquan ZHAO,Xi CHEN. Oil-gas reservoir in the Mesozoic strata in the Chaoshan depression, northern South China Sea: a new insight from long offset seismic data. Journal of Oceanology and Limnology. 2022(04): 1377-1387 . 必应学术
    3. 何苗,秦兰芝,尹太举,刘勇,王建宁,冯文杰. 分支河流体系在东海西湖凹陷南部的运用及其对油气潜力的指示. 中国地质. 2021(03): 820-831 . 本站查看
    4. 赵忠泉,孙鸣,万晓明,陈胜红,赵静,宋立军,李辉,强昆生,梁永兴. 微生物勘探技术在潮汕坳陷油气勘探中的应用初探. 中国地质. 2020(03): 645-654 . 本站查看
    5. 戴宗,衡立群,孙润平,王亚会,罗东红,刘太勋,刘可禹,张青青. 珠江口盆地番禺地区珠江组沉积前古地貌及其对沉积体系的控制. 海相油气地质. 2020(03): 269-277 . 百度学术
    6. 熊量莉,杨楚鹏,吴峧岐,高红芳,姚永坚,李学杰,朱雪影,程子华. 南海南-北陆缘盆地地层沉积发育特征及其对油气成藏的差异性控制. 中国地质. 2020(05): 1407-1425 . 本站查看
    7. 侯林君,陈洪德,罗林军,张成弓,赵俊兴,苏中堂. 鄂尔多斯盆地前寒武纪末期古地貌恢复及其对烃源岩的控制作用. 地球科学与环境学报. 2019(04): 475-490 . 百度学术

    其他类型引用(2)

图(11)  /  表(4)
计量
  • 文章访问数:  3138
  • HTML全文浏览量:  1218
  • PDF下载量:  373
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-09-05
  • 修回日期:  2020-10-30
  • 网络出版日期:  2024-04-18
  • 刊出日期:  2024-03-24

目录

/

返回文章
返回
x 关闭 永久关闭