Genesis of Qingshuitang Lead-zinc deposit in Hunan Province: Evidence from fluid inclusions and Rb-Sr dating of quartz
-
摘要:研究目的
为探讨衡阳盆地及周边地区铅锌矿床的成因问题,本文对研究程度较高的清水塘铅锌矿床开展工作。
研究方法通过矿床地质调查,不同阶段石英、方解石及闪锌矿的流体包裹体研究及石英Rb-Sr测年工作,探讨其成矿流体地球化学特征、演化与成矿过程。
研究结果根据矿物组合及矿脉之间的穿切关系,本文将清水塘铅锌矿床成矿作用划分为黄铁矿-石英(Ⅰ)、石英-方铅矿-闪锌矿(Ⅱ)和重晶石-方解石(Ⅲ)3个阶段。流体包裹体研究表明,Ⅱ阶段石英、闪锌矿中均发育L和VL两种类型原生、次生流体包裹体;Ⅰ阶段石英、Ⅲ阶段方解石主要发育VL型原生流体包裹体。测温结果显示:Ⅱ阶段石英原生包裹体根据均一温度、盐度可细分为258~296℃、8.55%~9.21%NaCl eqv,260~298℃、3.61%~4.18%NaCl eqv,120~160℃、12.73%~18.22%NaCl eqv及145~168℃、3.06%~3.87%NaCl eqv 4组,而闪锌矿均一温度、盐度主要集中于102~178℃、10.24%~19.45%NaCl eqv;成矿流体属中—低温、中盐度的NaCl-H2O体系热液。结合包裹体产状和均一温度可知:Ⅱ阶段中盐度、低盐度流体具有不同的来源与演化过程,前者多成群分布,应为Ⅰ阶段中温(210~312℃)、中盐度(12.30%~19.30%NaCl eqv)流体演化而来;后者多沿矿物裂隙产出,可能为后期低盐度大气降水混合的结果。本文获得2组石英Rb-Sr等时线年龄分别为(88.8±2.4)Ma和(17.86±0.42)Ma,前者代表清水塘铅锌矿床的成矿时代,后者记录后期构造叠加的时代;二者均明显晚于矿区附近周家岭花岗岩((203.0±1.4)Ma)及邻区关帝庙岩体((223.4±1.9)Ma)的成岩时代。
结果考虑到区内铅锌成矿流体与岩浆活动有关,结合清水塘、留书塘矿区硫化物S、Pb同位素组成特点推测矿区深部存在晚白垩世隐伏岩体,为铅锌成矿提供物质和能量来源。
创新点:有效限定了清水塘铅锌矿床的成矿流体特征与成矿时代,揭示该区存在隐伏岩体及后期叠加改造。
Abstract:This paper is the result of the mineral exploration engineering.
ObjectiveIn order to discuss the genesis of the lead-zinc deposits in Hengyang Basin and its surrounding areas, this paper has carried out work on the highly studied Qingshuitang lead-zinc deposit.
MethodsBy means of geological survey, fluid inclusion study of quartz, calcite and sphalerite at different stages and Rb-Sr dating of quartz, we discuss the geochemical characteristics, evolution and mineralization processes of ore-forming fluid.
ResultsBased on the mineral assemblages and the intercutting relationships between veins, this paper classifies the metallogenesis of the Qingshuitang lead-zinc deposit into three stages: pyrite-quartz stage (Ⅰ), quartz-galena-sphalerite stage (Ⅱ) and barite-calcite stage(Ⅲ). The research of fluid inclusions show that both L- and VL-type primary and secondary fluid inclusions occur in quartzs and sphalerites at stage Ⅱ; VL-type primary fluid inclusions predominantly occurs in quartzs at stage Ⅰ and calcites at stage Ⅲ. The measured temperature results show that primary inclusions of quartz formed at stage Ⅱ can be subdivided into four groups according to the homogeneous temperature and salinity, which are 258-296℃ and 8.55%-9.21% NaCl eqv, 260-298℃ and 3.61%-4.18% NaCl eqv, 120-160℃ and 12.73%-18.22% NaCl eqv, 145-168℃ and 3.06%-3.87% NaCl eqv, respectively. By comparison, the homogenization temperature and salinity of sphalerite are mainly concentrated in the range of 102-178℃ and 10.24%-19.45%NaCl eqv. The ore-forming fluid belongs to the NaCl-H2O hydrothermal system of medium-low temperature and medium salinity. Based on occurrence and homogenization temperature of inclusions, the medium and low salinity fluids at stage Ⅱ may have different sources and evolutionary processes. The former is mostly distributed in groups and might derive from medium temperature (210-312℃) and medium salinity (12.30-19.30%NaCl eqv) fluid at stage Ⅰ. The latter mostly occurs along mineral fissures, which may be formed by mixing of the late low salinity atmospheric precipitations. In this paper, two quartz Rb-Sr isochron ages are obtained, and they are (88.8±2.4) Ma and (17.86±0.42) Ma, respectively. The former age represents the mineralization age of Qingshuitang lead-zinc deposit, and the latter age records the time of late tectonic superposition. Both of them are significantly later than the diagenetic ages of the Zhoujialing granite ((203.0±1.4) Ma) near the mine site and the adjacent Guandimiao pluton ((223.4±1.9) Ma).
ConclusionsConsidering that the metallogenic fluids of lead-zinc in the area are related to magmatic activities, it is inferred that there are the Late Cretaceous concealed intrusions in the deep part of the mining area combined with sulfur and lead isotope characteristics of sulfides from the Qingshuitang and Liushutang mining areas, which provide material and energy sources for lead-zinc mineralization.
-
1. 研究目的(Objective)
尼玛盆地构造上位于班公湖—怒江缝合带中部,是发育在侏罗系—白垩系海相地层之上的古近系陆相裂谷盆地,北接羌塘地块,南邻冈底斯地块,近东西向展布,面积约3000 km2。本次研究目的是初步查明尼玛盆地东部冻土发育特征,调查盆地东部古近系地层层序,获取古近系烃源岩、储盖层等关键评价参数,进一步评价盆地油气资源潜力。
结合新获取的大地电磁测深、地表地质调查及藏尼地1井资料,通过对盆地东部石油地质条件的进一步论证,中国地质调查局油气资源调查中心在盆地东部赛布错坳陷部署实施了藏双地1井,该井的实施对于西藏高原陆相盆地的油气勘探具有重要意义。
2. 研究方法(Methods)
通过资料的收集和重新处理解释,建立了尼玛盆地基础资料数据库,结合之前在尼玛盆地东部发现的油气显示带及最新的大地电磁测深和藏尼地1井资料,优选井位。藏双地1井完钻井深1206.78 m,全井段进行了取心、录井和测井,共有岩心407箱,岩心总长1108.88 m,收获率95.9%。在古近系牛堡组选取烃源岩样品进行地球化学分析测试,通过分析有机质丰度、有机质类型、热演化成熟度来评价烃源岩生烃潜力;使用荧光分析仪对岩石进行荧光分析,主要进行干照和滴照实验,来检测岩石、岩屑中的沥青、烃类等有机物质。
3. 结果(Results)
藏双地1井从上到下钻遇地层依次为第四系+ 新近系—牛堡组三段—牛堡组二段(未穿),气测录井有3处气测异常段,总烃最高为0.159%,岩性为棕红色粉砂岩、灰色细砂岩。含气量解析取样井段527.90~1206.78 m,共取样54个,现场解析在标准大气压下最高含气量为0.213 m3/t;共做浸水试验20个,拍摄视频20个,其中井深744.40 m、752.08 m、767.30 m、774.66 m、797.20 m、832.43 m均有气泡冒出,以井深752.08 m最为明显。
荧光录井井段0~1206.78 m,对全井岩心按设计逐包进行荧光直照、拍照、氯仿浸泡,定级;全井共录取荧光资料421个点,其中井深1024.23~1026.23 m牛二段灰绿色泥岩断面处,可见黑色薄膜状干沥青,具荧光显示,干照下呈黄色、淡黄色,产状为星点状、带状,用氯仿滴照可呈片状;井深1077.46~1077.76 m牛二段见油迹;井深1078.16~1078.76 m牛二段见点状干沥青;井深1078.76~1079.16 m牛二段层理间见油斑;井深1079.16~1080.16 m牛二段顶部断面处见油迹,都具有荧光显示,呈黄色、淡黄色,产状为星点状、带状(图 1)。
4. 结论(Conclusions)
(1)藏双地1井全井取心,获得了尼玛盆地东部古近系地层层序、烃源岩及储层等相关参数,分别在牛三段418.43~422.00 m、牛二段890.00~898.00 m及1068.16~1087.00 m发现3处气测异常段,总烃最高为0.159%,现场解析含气量值最大为0.213 m3/t,并在牛二段1077~1080 m处发现不同级别的油气显示,首次实现了尼玛盆地地下油气的重要发现,对盆地下一步的勘探部署具有重要意义。
(2)本井是继藏尼地1井后在西藏尼玛盆地部署实施的第2口地质调查井,通过对藏双地1井的钻井技术攻关,进一步总结出了适合高寒缺氧、地表及地下地质条件复杂的高原钻井施工工艺和设备参数,为下一步在该区钻井施工提供了重要的技术支撑。
尼玛盆地平均海拔近4800 m,由于其高海拔的特殊性,具有高寒缺氧、气候恶劣、生态脆弱等特征,在野外施工过程中与其他地区有着很大的不同,通过藏尼地1井、藏双地1井的钻探,克服了高寒条件下冻土发育钻井技术难题和高原缺氧条件下深井取心难题,基本形成了一套安全、环保、高效的作业技术体系,为高原地区的钻探施工工程积累了丰富的经验。
5. 致谢(Acknowledgement)
感谢李韬、李显亮等同志的交流和启发。
致谢: 感谢匿名审稿人的建议,提升了本文的讨论深度和质量。 -
图 1 衡阳盆地及周边地区地质矿产简图(据程顺波等, 2017)
Pt3—新元古界;Z-S—震旦系—志留系;D-T2—泥盆系—中三叠统;K-N—白垩系—新近系;a—株洲—双牌深大断裂带;b—邵阳—郴州基底断裂带;c—醴陵—宁远深大断裂;d—常德—安仁基底断裂带
Figure 1. Geological map of Hengyang basin and adjacent areas showing distribution of mineral resources(after Cheng Shunbo et al., 2017)
Pt3-Neoproterozoic; Z-S-Sinian-Silurian; D-T2-Devonian -Middle Triassic; K-N-Cretaceous-Neogene; a-Zhuzhou-Shuangpai deep large fault; b- Shaoyang-Chenzhou basement fracture; c-Liling-Ningyuan deep large fault; d-Changde-Anren basement fault
图 2 清水塘矿区地质简图(据李石锦和彭恩生, 1999)
Figure 2. Geological sketch map of the Qingshuitang ore field(after Li Shijin and Peng Ensheng, 1999)
图 3 清水塘铅锌矿床不同成矿阶段矿脉穿切关系
a、b—Ⅱ阶段石英-方铅矿-闪锌矿;c—Ⅲ阶段重晶石-方解石胶结Ⅱ阶段石英-方铅矿-闪锌矿;d—Ⅲ阶段重晶石-方解石脉穿切Ⅱ阶段石英-方铅矿-闪锌矿脉;e—Ⅱ阶段石英-方铅矿-闪锌矿脉穿切Ⅰ阶段黄铁矿-石英脉;Sp—闪锌矿;Gn—方铅矿;Py—黄铁矿;Q—石英;Cal—方解石;Brt—重晶石
Figure 3. Ore vein penetration of different mineralization stages from the Qingsuitang Pb-Zn deposit
a, b-Stage Ⅱ quartz-galena-sphalerite; c-Barite-calcite at stage Ⅲ cemented quartz-galena-sphalerite at stage Ⅱ; d-Barite-calcite veins at stage Ⅲ penetration cut quartz-galena-sphalerite veins at stage Ⅱ; e-Quartz-galena-sphalerite veins at stage Ⅱ penetration cut pyrite-quartz veins at stage I; Sp-Sphalerite; Gn-Galenite; Py-Pyrite; Q-Quartz; Cal-Calcite; Brt-Barite
表 1 清水塘铅锌矿流体包裹体测温结果
Table 1 The microthermometric results of fluid inclusions in Qingshuitang lead-zinc deposit
表 2 清水塘铅锌矿石英包裹体Rb-Sr定年结果
Table 2 Rb-Sr dating results of quartz inclusions in Qingshuitang lead-zinc deposit
-
Bai Daoyuan, Tang Fenpei, Li Bin, Zeng Guangqian, Li Yinmin, Jiang Wen. 2022. Summary of main mineralization events in Hunan Province[J]. Geology in China, 49(1): 151-180(in Chinese with English abstract).
Baker T, Achterberg E V, Ryan C G, Lang J R. 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 32(2): 117-120. doi: 10.1130/G19950.1
Brown P E, Hagemann S G. 1995. MacFlinCor and its application to fluids in Archean lode-gold deposits[J]. Geochimica et Cosmochimica Acta, 59(19): 3943-3952. doi: 10.1016/0016-7037(95)00254-W
Cai Minghai, Chen Kaixu, Qu Wenjun, Liu Guoqing, Fu Jianming, Yin Jianping. 2006. Geological characteristics and Re-Os dating of molybdenites in Hehuaping tin-polymetallic deposit, southern Hunan Province[J]. Mineral Deposit, 25(3): 263-268(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2006.03.005
Chen Fuwen, Li Huaqin, Mei Yuping. 2008. Zircon SHRIMP U-Pb chronology of diagenetic mineralization of the Longtoushan porphyry gold orefield, Gui County, Guangxi[J]. Acta Geologica Sinica, 82(7): 921-926(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.07.009
Cheng Shunbo, Wu Zhihua, Liu Zhongpeng, Liu Asui, Ma Liyan, Lu Youyue. 2017. Sulfur and lead isotope geochemistry of the Liushutang lead-zinc deposit in Hu'nan Province and its significance[J]. Geological Bulletin of China, 36(5): 846-856(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.05.016
Deng Jun, Yang Liqiang, Gao Bangfei, Sun Zhongshi, Guo Chunying, Wang Qingfei, Wang Jianping. 2009. Fluid evolution and metallogenic dynamics during tectonic regime transition: Example from the Jiapigou Gold Belt in Northeast China[J]. Resource Geology, 59(2): 140-152. doi: 10.1111/j.1751-3928.2009.00086.x
Driesner T. 1997. The effect of pressure on deuterium-hydrogen fractionation in high-temperature water[J]. Science, 277(5327): 91-794.
Duan Qifa, Cao Liang, Zeng Jiankang, Zhou Yun, Tang Zhaoyang, Li Kun. 2014. Rb-Sr dating of sphalerites from Shizishan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan, and its geological significance[J]. Earth Science——Journal of China University of Geosciences, 39(8): 977-986(in Chinese with English abstract). doi: 10.3799/dqkx.2014.089
Fu Jianming, Xu deming, Yang Xiaojun, Ma Liyan, Cai Minghai, Liu Yunhua, Wei Junqi, Liu Guoqing, Wei Daofang, Chen Xiqing, Cheng Shunbo, Mei Yuping. 2011. Tin Dedosits in Nanling Range[M]. Wuhan: China University of Geosciences Press, 1-252.
Heinrich C A. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65: 1-363. doi: 10.2138/rmg.2007.65.1
Horita J. 1999. Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures[J]. Science, 286(5444): 1545-1547. doi: 10.1126/science.286.5444.1545
Huang Manxang, Yue Dongsheng, Liu Shinian. 1994. Geological structure characteristics of Qingshuitang Pb-Zn ore field in Hunan Province and its control on mineralization[J]. Mineral Deposit, 13(supp. ): 109-111.
Kamenetsky V S, Wolfe R C, Eggins S M, Mernagh T P, Bastrakov E. 1999. Volatile exsolution at the Dinkidi Cu-Au porphyry deposit, Philippines: A melt-inclusion record of the initial ore-forming process[J]. Geology, 27(8): 691-694. doi: 10.1130/0091-7613(1999)027<0691:VEATDC>2.3.CO;2
Kamenetsky V S, Davidson P, Mernagh T P, Crawford A J, Gemmell J B, Portnyagin M V, Shinjo R. 2002a. Fluid bubbles in meltinclusions and pillow-rim glasses: High-temperature precursors to hydrothermal fluids[J]. Chemical Geology, 183(1/4): 349-364.
Kamenetsky V S, Achterbergh E V, Ryan C G, Naumov V B, Mernagh T P, Davidson P. 2002b. Extreme chemical heterogeneity of granite-derived hydrothermal fluids: An example from inclusions in a single crystal of miarolitic quartz[J]. Geology, 30(5): 459-462. doi: 10.1130/0091-7613(2002)030<0459:ECHOGD>2.0.CO;2
Leng Chengbiao, Zhang Xingchun, Wang Shouxu, Qin Chaojian, Wu Kongwen, Ren Tao. 2009. Advances of researches on the evolution of ore-forming fluids and the vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review, 55(1): 101-109(in Chinese with English abstract).
Li Shijin, Peng Eengsheng. 1999. Study on fracture structure and ore fluid fracturing metallogenesis in the Qingshuitang ore field[J]. Geolectonica et Metallogenia, 23(4): 328-333(in Chinese with English abstract).
Li Shuiru, Wang Denghong, Liang Ting, Qu Wenjun, Ying Lijuan. 2008. Metallogenic epochs of the Damingshan Tungsten Deposit in Guangxi and its prospecting potential[J]. Acta Geologica Sinica, 82(7): 873-879(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.07.002
Li Xiaofeng, Feng Zuohai, Xiao Rong, Song Cian, Yang Feng, Wang Cuiyun, Kang Zhiqiang, Mao Wei. 2012. Spatial and temporal distributions and the geological setting of the W-Sn-Mo-Nb-Ta deposits at the Northeast Guangxi, Southe China[J]. Acta Geologica Sinica, 86(11): 1713-1725(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.11.001
Lu Rui, Miao Baihu, Xu Zhaowen, Lu Jianjun, Wang Rucheng, Zuo Changhu, Qu Jinbao, Zhao Zengxia. 2017. Isotopic tracer of ore-forming material source from the Qingshuitang Lead-Zinc deposit, Qidong County, Hunan Province[J]. Acta Geologica Sinica, 91(6): 1285-1298(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.06.009
Lu Youyue, Fu Jianming, Cheng Shunbo, Ma Liyan, Huang Zhenbiao, Bi Yiqin. 2016. Ore-forming age of the Shanhu Tungsten-Tin deposit in Guangxi Province and its geological significance[J]. Geotectonica et Metallogenia, 40(5): 939-948(in Chinese with English abstract).
Lu Youyue, Fu Jianming, Cheng Shunbo, Ma Liyan, Zhang Kun. 2013. SHRIMP zircon U-Pb geochronology of the ore-bearing granite porphyry in the Jiepailing Tin-polymetallic deposit, Southern Hunan Province[J]. Geology and Mineral Resources of South China, 29(3): 199-206(in Chinese with English abstract).
Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 23(10): 2329-2338(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.002
Mao Jingwen, Xie Guiqing, Guo Chunli, Yuan Shunda, Cheng Yanbo, Chen Yuchuan. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510-526(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
Miao Baihu, Zuo Changhu, Zhao Zengxia, Xu Zhaowen, Lu Jianjun, Lu Rui, Chen Jinquan. 2014. Forming age and material source of the Zhoujialing granite in Qingshuitang orefield, Qidong County, Hunan Province[J]. Geological Review, 60(3): 611-623(in Chinese with English abstract).
Roedder E. 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 56(1): 5-20. doi: 10.1016/0016-7037(92)90113-W
Shi Guowei, Shao Yongjun. 2015. Geological characteristics and metallogenic regularity of qingshuitang Pb-Zn deposit in qidong of Hunan[J]. Mineral Resources and Geology, 29(5): 624-629(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2015.05.013
Shi Guowei. 2018. Geochemical characteristics and genesis analysis of Qingshuitang lead-zinc deposit in Hunan Province[J]. Mineral Resources and Geology, 32(4): 635-640(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2018.04.005
Sun Jingbo, Zhang Liming, Chen Wen, Li Huaqin, Zhang Yan, Liu Xinyu, Li Jie, Zhang Bin. 2013. Quartz Rb-Sr isotopic dating of Hongshi gold deposit in East Tianshan Mountains[J]. Geological Review, 59(2): 382-388(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2013.02.019
Tan Jun, Wei Junhao, Li Shuiru, Wang Zhongming, Fu Lebing, Zhang Keqing. 2008. Geochemical characteristics and tectonic significance of Kunlunguan A-type granite, Guangxi[J]. Earth Science——Journal of China University of Geosciences, 33(6): 743-754(in Chinese with English abstract). doi: 10.3799/dqkx.2008.090
Wang Xinyu, Huang Hongwei, Chen Nengsong, Huang Xiqiang, Wu Xiangke, Hao Shuang, Li Huimin. 2015. In-situ LA-MC-ICPMS U-Pb geochronology of cassiterite from Changpo-Tongkeng Tin-polymetallic deposits, Dachang Orefield, Guangxi[J]. Geological Review, 61(4): 892-900(in Chinese with English abstract).
Webster J D. 2004. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology, 210(1/4): 33-48.
Xiao Qinghui, Deng Jinfu, Ma Dashuan, Hong Dawei, Mo Xuanxue, Lu Xinxiang, Li Zhichang, Wang Xiongwu, Ma Changqian, Wu Fuyuan, Luo Zhaohua, Wang Tao. 2002. The Ways of Investigation on Granitoids[M]. Beijing: Geological Publishing House, 1-294(in Chinese).
Xu Zhaowen, Miao Baihu, Zuo Changhu, Qu Jinbao, Zhao Zengxia, Lu Rui, Wang Shaohua. 2017. Study of the fluid inclusions from the Qingshuitang Pb-Zn deposit, Qidong County, Hunan Province[J]. Geological Review, 63(1): 207-218(in Chinese with English abstract).
Yang Feng, Feng Zuohai, Kang Zhiqiang, Xiao Rong. 2011. Muscovite 40Ar/39Ar age of the Damingshan tungsten deposit in central Guangxi and its geological significance[J]. Geological Bulletin of China, 30(9): 1429-1433(in Chinese with English abstract).
Yang Liya, Yang Liqiang, Yuan Wanming, Zhang Chuang, Zhao Kai, Yu Haijun. 2013. Origin and evolution of ore fluid for orogenic gold traced by D-O isotopes: A case from the Jiapigou gold belt, China[J]. Acta Petrologica Sinica, 29(11): 4025-4035(in Chinese with English abstract).
Zhao Zengxia, Xu Zhaowen, Miao Baihu, Zuo Changhu, Lu Jianjun, Lu Rui, Chen Jinquan. 2015. Diagenetic age and material source of the Guandimiao granitic batholith, Hengyang City, Hunan Province[J]. Acta Geologica Sinica, 89(7): 1219-1230(in Chinese with English abstract).
Zheng Yongfei, Cheng Jiangfeng. 2000. Stable Isotope Geochemistry[M]. Beijing: Science Press, 1-323.
柏道远, 唐分配, 李彬, 曾广乾, 李银敏, 姜文. 2022. 湖南省成矿地质事件纲要[J]. 中国地质, 49(1): 151-180. http://geochina.cgs.gov.cn/geochina/article/abstract/20220110?st=search 蔡明海, 陈开旭, 屈文俊, 刘国庆, 付建明, 印建平. 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年[J]. 矿床地质, 25(3): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200603004.htm 陈富文, 李华芹, 梅玉萍. 2008. 广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究[J]. 地质学报, 82(7): 921-926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807011.htm 段其发, 曹亮, 曾健康, 周云, 汤朝阳, 李堃. 2014. 湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义[J]. 地球科学——中国地质大学学报, 39(8): 977-986. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408004.htm 程顺波, 吴志华, 刘重芃, 刘阿睢, 马丽艳, 卢友月. 2017. 湖南省留书塘铅锌矿床S、Pb同位素特征及意义[J]. 地质通报, 36(5): 846-856. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201705016.htm 付建明, 徐德明, 杨晓君, 马丽艳, 蔡明海, 刘云华, 魏君奇, 刘国庆, 魏道芳, 陈希清, 程顺波, 梅玉萍. 2011. 南岭锡矿[M]. 武汉: 中国地质大学出版社, 1-252. 黄满湘, 岳东生, 刘石年. 1994. 湖南清水塘铅锌矿田地质构造特征及其对成矿的控制[J]. 矿床地质, 13(增刊): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ4S1.054.htm 史国伟, 邵拥军. 2015. 湖南祁东清水塘铅锌矿地质特征与成矿规律[J]. 矿产与地质, 29(5): 624-629. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201505015.htm 史国伟. 2018. 湖南清水塘铅锌矿床地球化学特征与成因分析[J]. 矿产与地质, 32(4): 635-640. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201804005.htm 孙敬博, 张立明, 陈文, 李华芹, 张彦, 刘新宇, 李洁, 张斌. 2013. 东天山红石金矿床石英Rb-Sr同位素定年[J]. 地质论评, 59(2): 382-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302021.htm 李晶, 陈衍景, 李强之, 张闯, 赵凯, 于海军. 2007. 甘肃阳山金矿流体包裹体地球化学和矿床成因类型[J]. 岩石学报, 23(9): 2144-2154. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200709013.htm 冷成彪, 张兴春, 王守旭, 秦朝建, 吴孔文, 任涛. 2009. 岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评, 55(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901016.htm 李石锦, 彭恩生. 1999. 清水塘矿田断裂构造与矿液致裂成矿浅析[J]. 大地构造与成矿学, 28(4): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199904005.htm 李水如, 王登红, 梁婷, 屈文俊, 应立娟. 2008. 广西大明山钨矿区成矿时代及其找矿前景分析[J]. 地质学报, 82(7): 873-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807003.htm 李晓峰, 冯佐海, 肖荣, 宋慈安, 杨锋, 王翠云, 康志强, 毛伟. 2012. 桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景[J]. 地质学报, 86(11): 1713-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201211002.htm 路睿, 缪柏虎, 徐兆文, 陆建军, 王汝成, 左昌虎, 屈金宝, 赵增霞. 2017. 湖南祁东清水塘铅锌矿床成矿物质来源同位素示踪[J]. 地质学报, 91(6): 1285-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706010.htm 卢友月, 付建明, 程顺波, 马丽艳, 黄振标, 闭义钦. 2016. 广西珊瑚钨锡矿床成矿年代学研究及其地质意义[J]. 大地构造与成矿学, 40(5): 939-948. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605005.htm 卢友月, 付建明, 程顺波, 马丽艳, 张鲲. 2013. 湘南界牌岭锡多金属矿床含矿花岗斑岩SHRIMP锆石U-Pb年代学研究[J]. 华南地质与矿产, 29(3): 199-206. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201303005.htm 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm 缪柏虎, 左昌虎, 赵增霞, 徐兆文, 陆建军, 路睿, 陈进全. 2014. 祁东县清水塘矿区周家岭花岗岩形成时代及物质来源[J]. 地质论评, 60(3): 611-623. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201403014.htm 谭俊, 魏俊浩, 李水如, 王忠铭, 付乐兵, 张可清. 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义[J]. 地球科学——中国地质大学学报, 33(6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm 王新宇, 黄宏伟, 陈能松, 黄锡强, 吴祥珂, 郝爽, 李惠民. 2015. 广西大厂矿田长坡-铜坑锡多金属矿床锡石LA-MC-ICP-MSU-Pb年龄及其地质意义[J]. 地质论评, 61(4): 892-900. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201504018.htm 徐兆文, 缪柏虎, 左昌虎, 屈金宝, 赵增霞, 路睿, 王少华. 2017. 湖南祁东清水塘铅锌矿床流体包裹体研究[J]. 地质论评, 63(1): 207-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701022.htm 肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 李志昌, 汪雄武, 马昌前, 吴福元, 罗照华, 王涛. 2002. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 1-294. 杨锋, 冯佐海, 康志强, 肖荣. 2011. 广西中部大明山钨矿白云母40Ar/39Ar定年及其地质意义[J]. 地质通报, 30(9): 1429-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201109012.htm 杨利亚, 杨立强, 袁万明, 张闯, 赵凯, 于海军. 2013. 造山型金矿成矿流体来源与演化的氢-氧同位素示踪: 夹皮沟金矿带例析[J]. 岩石学报, 29(11): 4025-4035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311031.htm 赵增霞, 徐兆文, 缪柏虎, 左昌虎, 陆建军, 路睿, 陈进全. 2015. 湖南衡阳关帝庙花岗岩岩基形成时代及物质来源探讨[J]. 地质学报, 89(7): 1219-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507006.htm 郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社, 1-323. -
期刊类型引用(8)
1. 张云,张天福,程先钰,孙立新,程银行,王少轶,王善博,马海林,鲁超. 鄂尔多斯盆地东北部侏罗纪含铀岩系三维地质结构与铀成矿规律浅析. 中国地质. 2022(01): 66-80 . 本站查看
2. 庞康,吴柏林,孙涛,郝关清,雷安贵,杨松林,刘池阳,傅斌,权军明,王苗,郝欣,刘明义,李琪,张效瑞. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征. 中国地质. 2022(05): 1571-1590 . 本站查看
3. 林兆民,张嘉冕. 甘肃省207铀矿及富铀岩体特征研究. 甘肃地质. 2022(04): 42-48 . 百度学术
4. Reng-an Yu,Shan-bo Wang,Qiang Zhu,Qing-hong Si,Xue-ming Teng,Xiao-xue Liu,Hou-ning Liu,Yong-xiang Tang. Zircon U-Pb ages and provenance characteristics of the Zhiluo Formation sandstones and the formation background of the uranium deposit in Huangling area, Ordos Basin, China. China Geology. 2021(04): 600-615 . 必应学术
5. 张天福,张云,金若时,俞礽安,孙立新,程银行,奥琮,马海林. 鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约. 中国地质. 2020(02): 278-299 . 本站查看
6. 张云,张天福,孙立新,程银行,张祺,王少轶,程先钰,周小希. 鄂尔多斯盆地南缘黄陵地区煤铀兼探钻孔数据集成与三维地质模型构建. 中国地质. 2020(S1): 231-254 . 本站查看
7. 张天福,张云,程先钰,孙立新,程银行,周小希,王少轶,马海林,鲁超. 鄂尔多斯盆地北部东胜地区侏罗系-白垩系钻孔数据库与三维地质模型. 中国地质. 2020(S1): 220-245 . 本站查看
8. 田亮,赵天林,尹永朋,李名,叶阳. 内蒙古二连盆地额仁淖尔地区铀成矿水文地质条件分析. 矿产勘查. 2020(11): 2424-2429 . 百度学术
其他类型引用(0)