• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

南岭成矿带中段成矿规律与找矿前景分析

秦锦华, 王登红, 王岩, 郭志强, 刘善宝, 黄凡, 赵如意

秦锦华,王登红,王岩,郭志强,刘善宝,黄凡,赵如意. 2024. 南岭成矿带中段成矿规律与找矿前景分析[J]. 中国地质, 51(4): 1095−1122. DOI: 10.12029/gc20230418001
引用本文: 秦锦华,王登红,王岩,郭志强,刘善宝,黄凡,赵如意. 2024. 南岭成矿带中段成矿规律与找矿前景分析[J]. 中国地质, 51(4): 1095−1122. DOI: 10.12029/gc20230418001
Qin Jinhua, Wang Denghong, Wang Yan, Guo Zhiqiang, Liu Shanbao, Huang Fan, Zhao Ruyi. 2024. Metallogenic law and exploration prospect of the middle part of Nanling metallogeny belt[J]. Geology in China, 51(4): 1095−1122. DOI: 10.12029/gc20230418001
Citation: Qin Jinhua, Wang Denghong, Wang Yan, Guo Zhiqiang, Liu Shanbao, Huang Fan, Zhao Ruyi. 2024. Metallogenic law and exploration prospect of the middle part of Nanling metallogeny belt[J]. Geology in China, 51(4): 1095−1122. DOI: 10.12029/gc20230418001

南岭成矿带中段成矿规律与找矿前景分析

基金项目: 国家重点研发计划课题“南岭钨锡多金属矿集区三维综合探测与深部成矿预测”(2022YFC2905101)和中国地质调查局项目(DD20221684、DD20190379)联合资助。
详细信息
    作者简介:

    秦锦华,男,1992年生,助理研究员,主要从事多金属矿产及其成矿规律研究;E-mail: qjh1992@qq.com

    通讯作者:

    王登红,男,1967年生,研究员,主要从事矿产资源研究;E-mail: wangdenghong@sina.com

  • 中图分类号: P618.2

Metallogenic law and exploration prospect of the middle part of Nanling metallogeny belt

Funds: Supported by the projects of National Key Research and Development Program of China (No.2022YFC2905101) and China Geological Survey (No.DD20221684, No.DD20190379).
More Information
    Author Bio:

    QIN Jinhua, male, born in 1992, assistant researcher, mainly engaged in polymetallic deposits and metallogenic law research; E-mail: qjh1992@qq.com

    Corresponding author:

    WANG Denghong, born in 1967, researcher, mainly engaged in mineral resources research; E-mail: wangdenghong@sina.com.

  • 摘要:
    研究目的 

    南岭中段是中国重要的有色金属、能源矿产、非金属和水气矿产资源基地,成矿地质条件优越、矿产类型丰富、成矿作用类型复杂,深入理解其成矿规律是开展区域成矿理论研究和实现找矿突破的关键。

    研究方法 

    本文基于前人丰硕的成果资料,对南岭成矿带中段成矿规律和找矿方向进行了总结分析。

    研究结果 

    此次研究明确了南岭中段主要控矿地质条件,厘定了区域两种构造格架体系的控矿作用;依据矿产资源特征,总结了成矿特征、规律及其演化,进一步探讨了区域岩浆演化和成矿潜力;整理出了南岭成矿带中亚带目前发育的50个矿种、872处矿产地和15种矿床类型,并探讨了主成岩作用特征、演化及其成矿潜力。

    结论 

    南岭中段找矿的主攻方向为:寻找接触带附近的铀矿、煤矿的滑覆构造、受变质和硫铁矿区风化型铁矿、有色金属组合的综合预测和寻找缺位类型,寻找新类型稀有、稀散矿和独立金矿,保护和开发伴生宝石矿。围绕着骑田岭及周边、乐昌—韶关—翁源远景区,有望实现钨锡钼铋铜铅锌铀稀土等矿产的找矿突破。

    创新点:

    全面系统地总结分析了南岭成矿带中段成矿特征与成矿规律,探讨了能源矿产、黑色金属、有色金属、稀有稀散和贵金属以及宝玉石矿的找矿方向,并提出了骑田岭及周边和乐昌—韶关—翁源两个重要的远景区。

    Abstract:

    This paper is the result of mineral exploration engineering.

    Objective 

    The middle part of Nanling metallogeny belt, an important resource base of non–ferrous metal, energy minerals, non–metallic minerals, groundwater and gas minerals, has superb metallogenic geological conditions, abundant mineral types and complex mineralization types. In depth understanding of the metallogenic law is the key to carry out regional metallogenic theory research and to achieve prospecting breakthrough.

    Methods 

    In this paper, the metallogenic regularity and prospecting direction of the middle part of Nanling metallogenic belt are summarized and studied on the basis of the abundant previous data.

    Results 

    The main ore–controlling geological conditions are identified and the two ore–controlling structure frameworks are determined in the middle part of Nanling metallogeny belt. Depending on the characteristics of mineral resources, the metallogenic characteristics, rules and evolution are summarized, and regional magmatic evolution and metallogenic potential are further discussed. Moreover, 50 minerals, 872 ore deposits and 15 deposit types developed in the middle part of Nanling metallogeny belt are sorted out, and the predominant magmatism characteristics, evolution and metallogenic potential are discussed.

    Conclusions 

    The prospecting of the middle part of Nanling metallogeny belt should be focused on: comprehensive prediction of U ore near the contact zone, sliding overburden structure of coal mine, metamorphic and weathering type Fe ore in pyrite mining areas, comprehensive prediction and exploration of missing types of non–ferrous metals, exploration new types of rare and scattered metals and independent Au ore, protection and exploitation the associated gem mine. Two important prospecting potential areas, which include Qitianling and its surrounding, and Lechang–Shaoguan–Wengyuan, are proposed for the key region for prospecting breakthrough of tungsten, tin, molybdenum, bismuth, copper, zinc, uranium, rare earth, etc.

    Highlights:

    The metallogenic characteristics and law of the middle part of Nanling metallogenic belt are summarized comprehensively and systematically. The prospecting directions of energy minerals, ferrous metals, non–ferrous metals, rare and rare metals, precious metals and gem are discussed. Two important prospective areas, Qitianling and its surroundings and Lecchang–Shaoguan–Wengyuan, are put forward.

  • 西南“三江”地区构造位置属于特提斯构造域(图 1a),地质构造及成矿作用极其复杂地区,许多学者认为西南“三江”南段地区古特提斯构造演化阶段存在多个陆壳地块与洋盆相间排列的多岛洋构造格局(莫宣学等,1993刘本培等,2002俞赛赢等,2003王立全等, 2008, 2013;潘桂棠等,2013;任飞等,2017尹福光等,2017刘军平等,2017王保弟等,2018Liu et al., 20202021李生喜等,2023),而昌宁—孟连古特提斯洋的构造演化及其转换时限是目前三江地区构造演化研究中最热门的科学问题之一。

    图  1  西南三江地区大地构造位置图(a、b,据王保弟等,2018)、地质简图及采样点(c,据云南省地质调查院,2016
    1—第四系;2—古生代—中生代盖层;3—低级变质带;4—高级变质带;5—糜棱岩化花岗质岩石;6—花岗岩;7—二叠纪二长花岗岩;8—二叠纪花岗闪长岩;9—三叠纪二长花岗岩;10—白垩纪二长花岗岩;11—崇山岩群;12—断裂带;13—侵入界线;14—渐变过渡界线;15—地名;16—测年样品号及采样位置;17—研究区
    Figure  1.  Geotectonic location map(a, b, after Wang Baodi et al., 2018) and simplified geological map (c, modifed from Yunnan Institute of Geological Survey, 2016) in Sanjiang area
    1-Quaternary; 2-Paleozoic-Mesozoic caprock; 3-Low metamorphic zone; 4-High metamorphic zone; 5-Mylonitized granitic rock; 6-Granite; 7-Permian adamellite; 8-Permian granodiorite; 9-Triassic adamellite; 10-Cretaceous adamellite; 11-Chongshan group; 12-Fault zone; 13-Intrusion boundary; 14-Gradual transition boundary; 15-Toponym; 16-Dating sample number and location; 17-Research area

    目前昌宁—孟连古特提斯构造演化研究比较成熟,经历了早古生代中晚期-晚古生代特提斯洋俯冲消减、晚二叠世—早三叠世主碰撞汇聚、晚三叠世晚碰撞造山等阶段的演化过程(刘本培等,2002李文昌等,2010孔会磊等,2012;潘桂棠等,2013;任飞等,2017尹福光等,2017刘军平等,2017王保弟等,2018)。晚古生代特提斯洋俯冲消减过程沉积了以鲕粒-生物碎屑灰岩为主的石炭系—二叠系渔塘寨组(CPy),以洋盆深水硅质岩、硅质泥岩、放射虫硅质岩、大洋玄武岩为主的石炭系—二叠系光色组(CPg),及中酸性火山岩为主的石炭系—二叠系龙洞河组(CPl)总体构成了洋盆-洋岛-海山-弧后盆地古地理格局;而在其东侧的临沧—勐海地块,由于昌宁—孟连洋壳向东俯冲消减,在临沧—景洪一带出现中酸性岩浆活动,锆石U-Pb年龄主要集中在280~334 Ma,显示了汇聚型大陆边缘岩浆弧花岗岩的特点(魏君奇等,2008;Peng et al.,2008;孔会磊等,2012;徐桂香等,2015;孙载波等,2015刘军平等,2017王保弟等,2018),但昌宁—孟连古特提斯洋弧-陆俯冲向碰撞、汇聚转换的具体时限及岩石学证据目前尚未报道。

    笔者首次在风庆县小湾地区发现一套中二叠世晚期弱过铝质花岗岩岩体,目前并未有类似岩体的报道。本次运用锆石U-Pb LA-ICP-MS定年、岩石地球化学分析及岩石学对其进行详细研究,探讨了其岩石组合、侵位时代、岩浆演化、构造背景及源区,进而讨论了与昌宁—孟连古特提斯洋弧-陆俯冲向碰撞汇聚转换的关系,极大地丰富了昌宁—孟连古特提斯洋构造演化时限及岩浆岩记录。

    研究区位于西南“三江”南段,构造上位于羌塘—三江造山系(Ⅶ)和班公湖—双湖—怒江—昌宁—孟连对接带(Ⅷ),地层属于华南地层大区、羌北—昌都—思茅地层区、兰坪—思茅地层分区的澜沧地层小区及漾濞地层小区❶❷。研究区出露地层仅有古元古界崇山岩群,岩浆岩以二叠纪、三叠纪花岗岩为主,少量白垩纪花岗岩(图 1c);小湾花岗岩岩体与古元古界崇山岩群呈侵入接触关系,岩体中富含黑云母和暗色残留体包体,被后期三叠纪黑云二长花岗岩、白垩纪细粒钾长花岗岩侵入。1:25万凤庆幅把小湾花岗岩岩体时代置于中元古代,仅因其普遍糜棱岩化,发育片麻状构造等现象,但未有同素位年龄约束;其主要岩石类型以糜棱岩化片麻状似斑状中粒黑云二长花岗岩为主,少量糜棱岩化片麻状细粒花岗闪长岩及片麻状粗粒二长花岗质变晶初糜棱岩,岩石结构上由细粒向粗粒演化,变化的有序性和单向性明显,且在空间上紧密共生,形成时间、成分及结构变化上表现出清楚的亲缘和演化关系,说明它们是同一岩浆热事件的产物。野外三者为渐变过渡接触,整个岩体由中心至边部矿物颗粒由粗粒变为中细粒;本次以小湾花岗岩岩体为研究对象,采集了同位素、薄片、地球化学样品,野外特征见图 2a

    图  2  云南凤庆地区小湾花岗岩岩体野外照片和镜下照片特征
    a—野外露头;b—黑云二长花岗岩手标本;c—黑云二长花岗岩正交偏光照片;d—花岗闪长斑岩正交偏光照片;Kfs—钾长石;Qtz—石英;Pl—斜长石;Bt—黑云母
    Figure  2.  Photographs and granite features for the Xiaowan granite in Fengqing area, Yunnan
    a-Field outcrop; b-Biotite feldspar granite hand specimen; c-Biotite feldspar granite orthogonal polarization photo; d-Granodiorite orthogonal polarization photo; Kfs-K-feldspar; Qtz-Quartz; Pl-Plagioclase; Bt-Biotite

    糜棱岩化片麻状似斑状中粒黑云二长花岗斑岩:具变余似斑状花岗结构,中粒结构,片麻状构造。主要矿物成分由斜长石(27%)、钾长石(37%)、石英(31%)、黑云母(5%)组成,副矿物有磷灰石、锆石。矿物粒径多在2~5 mm。斜长石呈自形、半自形板状,内见聚片双晶、环带结构,已不同程度钠黝帘石化;钾长石呈他形、半自形板状,以具格子双晶微斜长石为主,部分为条纹长石,内见自形较好的斜长石包裹体及石英的穿孔交代结构,边缘见蠕英石包裹体,少部分粒度较粗大,构成斑晶;石英他形不规则粒状、集合状,充填于长石的间隙中。黑云母自形、半自形的片状,Ng-棕红色、Np-淡黄色,绿泥石化。手标本见图 2b及镜下特征见图 2c

    糜棱岩化片麻状细粒花岗闪长斑岩:具变余似斑状花岗结构,细粒结构,网结-网纹状定向构造。矿物成分主要由钾长石(15%~20%)、斜长石(50%~55%)、石英(20%~25%)、黑云母(3%~4%)、白云母(1%~2%)、长英质(1%~7%)组成,其中斑晶以斜长石为主,少量石英;基质主要为石英、钾长石及黑云母。副矿物主要有磷灰石、磁铁矿。镜下特征见图 2d

    片麻状粗粒二长花岗质变晶初糜棱岩:具变余初糜棱结构,粗粒结构,分异流动状、条痕状构造。矿物成分主要为斜长石(25%)、钾长石(39%)、石英(30%)、黑云母(1%)、电气石(< 5%);副矿物有磷灰石、锆石。矿物粒径多在0.1~2 mm。斜长石他形微细粒变晶状(部分不同程度地保留其半自形的板状特征,残余岩浆组构特征),部分粒度较粗大,保留原透镜状、眼球状碎斑外形,内见聚片双晶、环带结构,已不同程度钠黝帘石化。钾长石他形微细粒变晶状,以具格子双晶微斜长石为主,部分为条纹长石,部分粒度较粗大,保留原眼球状、透镜状碎斑外形,边缘普遍见蠕英石及斜长石包裹体。石英大部分呈多晶条带、矩形条带产出,重结晶。黑云母显微鳞片状,沿糜棱面理呈断续线痕状聚集产出,Ng-褐绿色、Np-淡黄色。电气石自形、半自形的柱状,沿长轴方向沿糜棱面理定向分布,为后期电气石化作用形成。

    锆石分选在南京宏创地质勘查技术服务有限公司完成,原岩样品经人工粉碎后,经人工淘洗后去除轻矿物部分,将得到的重砂部分经电磁选后得到含有少量杂质的锆石样品,最后在双目镜下挑选出晶型较好的锆石,制成锆石样品靶。对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,最后根据反射光、透射光及锆石CL图像选择代表性的锆石颗粒和区域进行U-Pb测年。

    U-Pb同位素定年在湖北省地质实验室测试中心重点实验室利用LA-ICP-MS分析完成。测试仪器采用的是由美国Coherent Inc公司生产的GeoLasPro全自动版193 nm ArF准分子激光剥蚀系统(LA)和美国Agilent公司生产的7700X型电感耦合等离子质谱仪(ICP-MS)联用构成的激光剥蚀电感耦合等离子体质谱分析系统(LA-ICP-MS)。样品的同位素比值和元素含量采用ICPMSDataCal 9.0进行处理分析,加权平均年龄的计算及锆石年龄谐和图的绘制采用Isoplot3.0(Ludwing,2003)来完成。采用年龄为206Pb/238U年龄,其加权平均值的误差为2σ206Pb/238U(和207Pb/206Pb)平均年龄误差为95%置信度(王海然等,2013刘军平等,2018)。

    选择10件岩体样品进行主量元素、稀土和微量元素分析。样品磨碎至200目后,在武汉上谱分析科技有限公司岩石矿物研究室进行主量和微量元素分析测试。主量元素使用X-射线荧光光谱仪(XRF-1500)法测试。用0.6 g样品和6 g四硼酸锂制成的玻璃片在ShimadzuXRF-1500上测定氧化物的质量分数值,精度优于2%~3%。微量元素及稀土元素利用酸溶法制备样品,使用ICP-MS (ElementⅡ)测试,分析精度(按照GSR-1和GSR-2国家标准):当元素质量分数值大于10×10-6时,精度优于5%,当质量分数值小于10×10-6时,精度优于10%。

    本次用于锆石U-Pb LA-ICP-MS年龄测试的样品采集位置见图 1,样品分析数据见表 1。样品糜棱岩化似斑状中粒黑云二长花岗斑岩(D01-1)为浅灰色,具不等粒半自形—自形短柱状结构,片麻状构造。将样品先经手工粉碎,后按常规重力及电磁法浮选出锆石颗粒,最后在实体镜下挑选出晶型较好的锆石约150余粒。锆石多为浅紫红色,个别呈褐色,粒状、短柱状、碎粒状,金刚光泽,透明,部分具磨蚀特征,锆石长100~150 μm,少数达200 μm。

    表  1  云南凤庆地区小湾花岗岩岩体中锆石LA-ICP-MS U-Pb同位素分析结果
    Table  1.  LA-ICP-MS U-Pb data of zircons from the Xiaowan granite in Fengqing area, Yunnan
    下载: 导出CSV 
    | 显示表格

    根据样品阴极发光(CL)图像锆石自形程度较好,棱角分明,发育较宽的韵律环带,Th/U比值较大,为典型的酸性岩浆结晶锆石(Hoskin and Schaltegger, 2003吴元保等,2004刘军平等,2018);部分锆石外围发育较亮较窄的变质增生边,可能是后期发生变质作用所致(图 3)。

    图  3  云南凤庆小湾地区花岗岩岩体代表性锆石阴极发光(CL)图像
    Figure  3.  The CL images of zircons from the Xiaowan granite in Fengqing area, Yunnan

    本次对糜棱岩化片麻状似斑状中粒黑云二长花岗岩(D01-1)共完成18个测点的锆石年龄测定(表 1),获得有效数据18个,18个有效分析点均具有较好的谐和度,谐和度均大于91%,从图 4a可以看出,分析的18个点均沿谐和线分布且较集中,且振荡环带清楚,Th/U比值较大(值为0.4~0.8),均为岩浆成因锆石,18个分析点获得206Pb/238U加权平均年龄为(260.4±1.30)Ma(MSWD=0.32,n=18),代表黑云二长花岗岩侵位时代,说明其形成于中二叠世晚期,而非前人认为的中元古代。

    图  4  云南凤庆地区小湾花岗岩岩体锆石U-Pb年龄谐和图
    Figure  4.  Zircon U-Pb concordia diagrams of the Xiaowan granite in Fengqing area, Yunnan

    小湾花岗岩的主量元素分析数据列于表 2。岩石化学成分SiO2含量为67.54%~78.66%,Al2O3含量为11.34%~14.30%,K2O+Na2O含量为6.20%~8.52%,里特曼指数σ为1.31~2.51,显示岩石属过铝质钙碱性岩类;在深成岩的SiO2-(Na2O+K2O)图解中(图 5a)样品投影点多数样品落入花岗岩区内,一件样品投影点落入花岗闪长岩区,与镜下矿物命名一致,均为亚碱性岩石;岩体A/CNK-A/NK图解中大部分样品落入准铝质区-过铝质区过渡区域,表现出弱过铝质的特点,仅1件样品落入过铝质区(图 5b)。在SiO2-K2O图解中大部分落入高钾钙碱性系列区(图 6),1件样品落入钙碱性系列。样品CIPW标准矿物显示,岩石为高硅富铝的特点,与岩石地球化学含量较为一致。

    表  2  云南凤庆地区小湾花岗岩岩体的主量元素(%)和微量元素(10-6)组成及有关参数
    Table  2.  Analytical results of major elements (%) and trace elements (10-6) of the Xiaowan granite in Fengqing area, Yunnan
    下载: 导出CSV 
    | 显示表格
    图  5  云南凤庆小湾地区花岗岩岩体SiO2-(Na2O+K2O)(a) and (A/CNK)-(A/NK)(b)图解(a,据Middlemost et al., 1994;b,据Maniar and Piccoli, 1989
    Figure  5.  SiO2-(Na2O+K2O)(a) and (A/CNK)-(A/NK) (b) diagrams of the Xiaowan granite in Fengqing area, Yunnan (a, after Middlemost et al., 1994; b, after Maniar and Piccoli, 1989)
    图  6  云南凤庆地区小湾花岗岩岩体SiO2-K2O图解(据Richwood, 1989
    Figure  6.  SiO2-K2O diagrams of the Xiaowan granite in Fengqing area, Yunnan (after Richwood, 1989)

    稀土元素、微量元素分析成果及特征参数见表 1。小湾花岗岩稀土总量(ΣREE)为125.64×10-6~300.04×10-6,平均为198.54×10-6,含量较低;轻稀土元素(LREE)含量为83.70×10-6~243.04×10-6,重稀土元素(HREE)含量为31.23×10-6~55.54×10-6,LREE/HREE为2.04~4.93,显示轻稀土元素相对于重稀土元素有一定程度的富集;(La/Yb)N=3.86~15.84,平均10.99;(La/Sm)N=2.66~7.08,平均5.37;(Gd/Yb)N=1.02~1.98,平均1.42;上述特征显示轻、重稀土之间具有明显分异特征,轻稀土元素内部的分异程度较高,稀土元素分异程度高,反映源区地壳具有较高的成熟度。小湾花岗岩δEu介于0.27~0.81,平均为0.53,在球粒陨石标准化图解上(图 7a)配分曲线Eu负异常明显,具有向右缓倾的V型特征,暗示岩石可能经历了强烈的斜长石分离结晶作用,长石矿物的分离结晶作用也可以解释花岗岩中Ba、Sr的亏损。且普遍具有弱程度的负铈异常(δCe=0.89~1.32,平均为0.96),暗示了岩浆形成于较高的氧逸度环境(刘洪等,2016刘军平等, 2017, 2020a, 2020b)。

    图  7  云南凤庆地区小湾花岗岩岩体稀土元素配分形式(a)与微量元素蛛网图(b)(原始地幔标准化数据、球粒陨石标准化数据引自文献Sun and McDonough, 1989
    Figure  7.  Chondrite-normalized rare earth elements patterns (a) and primitive mantle-normalized trace elements patterns (b) of the Xiaowan granite in Fengqing area, Yunnan (Chondrite and primitive mantle normalized data after Sun and McDonough, 1989)

    小湾花岗岩原始地幔标准化微量元素蛛网图解(图 7b)显示,样品具有明显的负Eu异常,相对富集Rb、Th、Ce等大离子亲石元素(LILE),相对亏损Ta、Nb、Zr、Ti、Hf、Y等高场强元素(HFSE)的特征;样品曲线形态趋势相近,它们应该具有相似的源区(刘洪等,2016张洪亮等,2019Liu et al., 2023)。

    研究区小湾花岗岩A/CNK值均在1.0以上,最高达1.47,表现出弱过铝质特点。CIPW标准矿物中出现刚玉分子(平均值为0.94%),Eu负异常明显,δEu平均为0.53,且具有低FeOT/MgO、低P2O5(0.03%~0.16%)和高K2O+Na2O(6.20%~8.52%)等地球化学特征,与弧火山岩及同碰撞花岗岩有部分类似特点(吴福元等,2007),可能与昌宁—孟连洋壳俯冲消亡向弧-陆碰撞汇聚对接转换有关,为过渡类型。

    不同性质的源岩形成了不同构造环境中的弱过铝质花岗岩;判别弱过铝质花岗岩的形成环境则需要判别其形成的源岩性质,对于判别弱过铝质花岗岩的源岩性质,斜长石是一个很好的指示矿物,泥质源岩贫斜长石(< 5%),而杂砂岩则富斜长石(> 5%)。一般CaO/Na2O < 0.3表明原岩为泥质岩石的部分熔融,同时岩石Rb/Sr比值> 0.1和Rb/Ba比值> 0.3,反之若CaO/Na2O < 0.3表明原岩为杂砂岩的部分熔融,其Rb/Sr和Rb/Ba比值较低(Barbarin,1999邓晋福等,2004)。小湾花岗岩的CaO/Na2O比值大部分 < 0.3(3个样品大于0.3),Rb/Sr比值均 > 0.1和大部分Rb/Ba比值> 0.3为特征,结合CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)图解(图 8a),显示其应为泥质岩石夹部分杂砂岩局部熔融而形成。

    图  8  云南凤庆地区小湾花岗岩岩体CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT) (a)及Yb-Sr(b)构造判别图(a,据Alter et al., 2000;b,据张旗等,2006)
    Figure  8.  (CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)) (a)-(Yb-Sr) (b) tectonic discrimination diagrams of the Xiaowan granite in Fengqing area, Yunnan (a, after Alter et al., 2000; b, after Zhang Qi et al., 2006)

    研究区的小湾花岗岩在张旗的Yb-Sr图解(图b)中样品落入极低Sr高Yb区和低Sr高Yb(图 9a),样品表现为低Sr高Yb型向高Sr低Yb型演化趋势,指示出地壳厚度增厚压力增大,可能与昌宁—孟连洋俯冲、碰撞造山有关。小湾花岗岩岩体6件样品(D01-1~D01-6),DI指数为93.94~90.26,分异程度较强,另一组4件样品(D01-7~D01-10),DI指数为71.66~88.65,分异程度弱或基本未分异,可能与本区花岗岩具弧花岗岩及同碰撞花岗岩双重过渡性质有关,应处于两者间的过渡类型。

    图  9  云南凤庆地区小湾花岗岩岩体(Y+Nb)-Rb(a)及Yb-Ta(b)图解(据Pearce et al., 1984)
    Figure  9.  (Y+Nb)-Rb(a) and Yb-Ta (b) diagram of the Xiaowan granite in Fengqing area, Yunnan(after Pearce et al., 1984)

    花岗质岩石可以形成于多种构造环境,比如活动大陆边缘、岛弧造山带、大陆碰撞带等构造部位。

    小湾花岗岩岩体富集轻稀土及大离子亲石元素,亏损高场强元素,且具弱过铝质特点,在稀土元素和微量元素图解方面显示出岛弧花岗岩及同碰撞花岗岩双重特征,在(Y+Nb)-Rb图解(图 9a)及Yb-Ta图解(图 9b)中样品落入火山弧花岗岩及同碰撞花岗岩交汇处,应具两者双重性质,为两者过渡类型。微量元素Sr的负异常和Th的正异常也显示了岛弧岩浆岩的特征,暗示着岩浆源区可能受到过俯冲板块流体或熔体的交代作用。中晚二叠世时期为昌宁—孟连洋向东俯冲未期,由于俯冲板块体或熔体的交代作用导致楔形地幔源区发生部分熔融作用,幔源岩浆上涌,从而导致上地壳物质升温发生熔融,研究区中二叠世晚期具有典型岛弧地球化学特征的小湾花岗岩即为该事件的岩石学记录,相对于大规模俯冲消减作用的弧岩浆岩记录(280~305 Ma),本期花岗岩滞后了约20 Ma,此时区域上开始转入弧-陆碰撞阶段,由于本期花岗岩侵位时代处于二次构造事件转换阶段,故同时兼具弧花岗岩及同碰撞花岗岩双重地球化学特征。结合区域资料,昌宁—孟连带在早二叠世末—早三叠世全区进入弧-陆俯冲向碰撞汇聚转换阶段(280~245 Ma);早三叠世—晚三叠世全区进入主碰撞阶段(245~210 Ma);之后全区进入伸展拉张阶段(~210 Ma),主要沉积了以早侏罗统芒汇河组,小红桥组为代表的火山岩夹碎屑岩沉积(刘军平, 2017, 2020c王保弟等,2018吕留彦等,2019)。由些,笔者认为小湾花岗岩可能是昌宁—孟连洋壳俯冲消亡向弧-陆碰撞、汇聚对接作用的产物(Collins and Richards, 2008王保弟等,2018),而非碰撞后花岗岩。

    石炭纪—晚二叠世是昌宁—孟连古特提斯洋盆扩张、俯冲消减及弧-陆碰撞、汇聚转换的重要时期;其岩浆作用在凤庆、澜沧、景洪等地区均有该期侵入岩及火山岩的报道,该期典型代表有曼秀岩体、早石炭世平掌组(C1pz)火山岩,显示岛弧岩浆岩的地球化学特征,可能代表了昌宁—孟连洋壳发生(洋内)俯冲消减开始的记录,其岩浆记录主要集中在334 Ma以及320~348 Ma锆石U-Pb年龄(孔会磊等, 2012, 孙载波等,2015王保弟等,2018);具有典型的俯冲形成的岛弧型岩浆岩年龄主要集中在280~305 Ma,代表性岩体主要有南联山岩体锆石年龄为300~305 Ma(徐桂香等,2016);雅口岩体堆晶辉长岩的锆石年龄为296 Ma;半坡岩体锆石年龄为284~288 Ma(Wang et al., 2010);吉岔岩体锆石年龄280~297 Ma(魏君奇等,2008)。

    本次发现的小湾花岗岩锆石U-Pb LA-ICP-MS年龄为260.4 Ma,为弱过铝质花岗岩,具弧火山岩及同碰撞花岗岩双重特征,应为过渡类型;260.4 Ma是目前临沧岩浆弧发现的最为年轻的具弧岩浆岩及同碰撞花岗岩双重性质的酸性岩浆记录,与云县漫湾地区龙洞河组(CPl)中二叠世弧火山岩年龄(262.5±3.1 Ma)刘军平等,2022)及景洪大勐龙怕冷具岛弧性质的辉长-辉绿岩岩体258~262 Ma的年龄相当王保弟等,2018)。因些,结合前人的研究成果,昌宁—孟连洋构造体制由弧-陆碰撞到汇聚对接作用的转换可能发生在280~258 Ma,并引发一定规模的构造热事件,本文所报道的小湾花岗岩体应是该期事件的产物,其转换时限可能为260.4 Ma。笔者推测在云南境内昌宁—孟连洋盆向东俯冲消减作用最早碰撞发生在凤庆小湾、云县漫湾及景洪大勐龙一带,后逐渐相向延伸。

    (1)小湾花岗岩岩体结晶年龄为(260.4±1.3)Ma(MSWD=0.32,n=18),表明岩体形成于中二叠世晚期,而非前人认为的中元古代,是目前临沧岩浆弧发现的最为年轻的具弧花岗岩及同碰撞花岗岩双重性质的酸性岩浆记录。

    (2)小湾花岗岩岩体是在昌宁—孟连洋壳向东俯冲向汇聚转换背景下,上地壳泥质岩石夹部分杂砂岩成分发生部分熔融作用形成的弱过铝质亚碱性花岗岩。

    (3)小湾花岗岩岩体应是昌宁—孟连洋壳俯冲消亡向弧-陆碰撞、汇聚对接作用的产物,其转换时限可能为260.4 Ma;结合区域资料,云南境内昌宁—孟连洋盆向东俯冲消减作用最早碰撞可能发生在凤庆小湾、云县漫湾及景洪大勐龙一带,后逐渐相向延伸。

    注释

    ❶云南省地质调查院. 2008.云南1∶25万凤庆幅区域地质矿产调查报告[R].

    ❷云南省地质调查院. 2016.云南1∶5万诗礼幅、大河幅、犀牛街幅、老家库幅、哨街幅区域地质矿产调查报告[R].

    ❸云南省地质调查院. 2012.云南1∶25万澜沧幅、景洪幅、勐腊幅、勐海幅区域地质调查报告[R].

  • 图  1   南岭成矿带区域构造概略图(a,据陈毓川等, 1989; 徐志刚等, 2008)和地质图(b,据黄崇轲等, 1997

    Figure  1.   Outline map (a, after Chen Yuchuan et al., 1989; Xu Zhigang et al., 2008) and geological map (b, after Huang Chongke et al., 1997) of Nanling metallogenic belt

    图  2   南岭成矿带中段区域地质矿产图

    Figure  2.   Regional geological and mineral resources map of the middle part of Nanling metallogeny belt

    图  3   南岭成矿带中段岩浆岩TAS图解(a)和A/CNK–A/NK图解(b)

    数据资料来源于马铁球等, 2005; 姚军明等, 2005; 付建明等, 2012; 全铁军等, 2012; 郑佳浩和郭春丽, 2012; 王凯兴等, 2012; 谢银财, 2013; 陈迪等, 2017; 弥佳茹等, 2018

    Figure  3.   TAS diagram (a) and A/CNK–A/NK diagram (b) of the magmatic rocks in the middle part of Nanling metallogeny belt

    The magmatic rock data are from Ma Tieqiu et al., 2005; Yao Junming et al., 2005; Fu Jianming et al., 2012; Quan Tiejun et al., 2012; Zheng Jiahao and Guo Chunli, 2012; Wang Kaixing et al., 2012; Xie Yincai, 2013; Chen Di et al., 2017; Mi Jiaru et al., 2018

    图  4   南岭成矿带中段岩浆岩Rb–Ba–Sr图解(a)、(Zr+Nb+Y)–Rb/Ba图解(b)、Zr/Hf–Nb/Ta图解(c)和K/Rb–Nb/T图解(d)

    AGG—钠长石和云英岩化的花岗岩;DG—分异的花岗岩;NG—正常花岗岩;AG—异常花岗岩;GAD—与W、Sn、Mo有关的矿化花岗岩;GD—花岗闪长岩;QD—石英闪长岩;D—闪长岩;数据资料来源于付建明等, 2004, 2012; 姚军明等, 2005; 全铁军等, 2012; 郑佳浩和郭春丽, 2012; 王凯兴等, 2012; 马星华等, 2014; 单芝波, 2014; 陈迪等, 2014; 马丽艳等, 2016; 程亮开, 2018

    Figure  4.   Rb–Ba–Sr diagram (a), (Zr+Nb+Y)–Rb/Ba diagram (b), Zr/Hf–Nb/Ta diagram (c) and K/Rb–Nb/T diagram (d) of the magmatic rocks in the middle part of Nanling metallogeny belt

    AGG–Albite and greisen granites; DG–Differentiated granites; NG–Normal granites; AG–Anomalous granites; GAD–W, Sn, Mo-mineralized granites; GD–Granodiorites; QD–Quartz diorites; D–Diorites. The magmatic rock data are from Fu Jianming et al., 2004, 2012; Yao Junming et al., 2005; Quan Tiejun et al., 2012; Zheng Jiahao and Guo Chunli, 2012; Wang Kaixing et al., 2012; Ma Xinghua et al., 2014; Shan Zhibo, 2014; Chen Di et al., 2014; Ma Liyan et al., 2016; Cheng Liangkai, 2018

    图  5   南岭成矿带中段岩浆岩t–εNd(t)图解(a)和(87Sr/88Sr)i–εNd(t)图解(b)

    同位素数据来源于毛景文等, 1995; 柏道远等, 2005; 董少花等, 2014; 章荣清等, 2016

    Figure  5.   t–εNd(t) diagram (a) and (87Sr/88Sr)i–εNd(t) diagram (b) of the middle part of Nanling metallogeny belt

    Isotopic data are from Mao Jingwen et al., 1995; Bai Daoyuan et al., 2005; Dong Shaohua et al., 2014; Zhang Rongqing et al., 2016

    图  6   南岭成矿带中段不同矿种(a)和不同世代(b)矿产规模柱状图

    Figure  6.   Histogram of the scale of different minerals (a) and different epochs (b) of the middle part of Nanling metallogeny belt

    图  7   南岭成矿带中段成岩时代(a)和成矿时代(b)直方图

    Figure  7.   Rock−forming ages (a) and ore−forming ages (b) histogram of the middle part of Nanling metallogeny belt

    图  8   南岭中段骑田岭钨锡钼铋铅锌铜金稀土萤石找矿远景区矿产地质简图

    Figure  8.   Mineral geological map of Qitianling tungsten, tin, molybdenum, bismuth, lead, zinc, copper, gold, rare earth fluorite prospecting potential area in the middle part of Nanling metallogeny belt

    图  9   南岭中段乐昌—韶关—翁源钨锡铜铅锌铀稀土找矿远景区矿产地质简图

    Figure  9.   Mineral geological map of Leschang–Shaoguan–Wengyuan Tungsten–tin, copper, lead–zinc, uranium, rare earth prospecting potential area in the middle part of Nanling metallogeny belt

    表  1   南岭成矿带中段主要花岗岩体年龄

    Table  1   Formation age of main granitic plutons in the middle part of Nanling metallogeny belt

    岩体 岩性 时代 方法 参考文献
    石背 黑云母二长花岗岩 174.3~187.5 Ma LA–ICP–MS 程顺波等, 2016; 林小明等, 2016
    锡田 细粒黑云花岗岩、花岗岩、黑云二长花岗岩 147~151.7 Ma、
    (228.5±2.5)Ma
    LA–ICP–MS、SHRIMP、SIMS 马铁球等, 2005; 刘国庆等, 2008; 付建明等, 2012; 周云等, 2013; 陈迪等, 2014
    贵东 二云母花岗岩、黑云母二长花岗岩 151~189.1 Ma、
    228~239 Ma
    LA–ICP–MS、SIMS、SHRIMP 孙涛等, 2003; 徐夕生等, 2003; 吴继光, 2013; 李建华等, 2014; 单芝波, 2014;
    林坤等, 2021
    宝山 花岗闪长斑岩 156.3~164.1 Ma LA–ICP–MS、SIMS 伍光英等, 2005; 路远发等, 2006; 谢银财, 2013; 弥佳茹等, 2018
    大坊 花岗闪长岩 (154.5±1.0)Ma LA–ICP–MS 弥佳茹等, 2018
    水口山 英安斑岩、花岗闪长岩 148.8~173 Ma LA–ICP–MS、SHRIMP 甄世民等, 2012; 左昌虎等, 2014; 李永胜等, 2015
    大义山 黑云母二长花岗岩、二云母二长花岗岩 147.5~171.8 Ma LA–ICP–MS
    塔山 黑云母二长花岗岩、二云母二长花岗岩 218~247 Ma LA–ICP–MS 李勇等, 2015;
    郭爱民等, 2017
    邓埠仙 白云母碱长花岗岩 154.4~158.6 Ma、
    218.2~230 Ma
    LA–ICP–MS 汪群英等, 2015;
    陈迪等, 2017
    骑田岭 角闪黑云二长花岗岩、细粒黑云母花岗岩 141~160 Ma LA–ICP–MS 毛景文等, 2004; 付建明等, 2004; 马丽艳等, 2005; 柏道远等, 2005; 李华芹等, 2006
    黄沙坪 花岗斑岩、石英斑岩 82.9~179.9 Ma SHRIMP 姚军明等, 2005; 王登红等, 2010; 全铁军等, 2012
    界牌岭 花岗斑岩 90.5~92 Ma LA–ICP–MS 王登红等, 2010
    香花岭—癞子岭 黑云母碱长花岗岩、黄玉霏细斑岩香花岭岩、细粒花岗岩 150.37~151.18 Ma LA–ICP–MS 来守华, 2014
    瑶岗仙 斑状花岗岩、白云母花岗岩 157~170.7 Ma LA–ICP–MS 董少花等, 2014
    大东山 黑云母二长花岗岩、黑云母钾长花岗岩 155.9~165 Ma LA–ICP–MS 张敏等, 2003; 黄会清等, 2008; 程亮开, 2018
    热水 钾长花岗岩、黑云母花岗岩 (162.8±5.8)Ma SHRIMP 邓平等, 2011
    王仙岭 黑云母二长花岗岩、白云母花岗岩 (155.9±1.0)Ma、
    224~235 Ma
    LA–ICP–MS 郑佳浩和郭春丽, 2012; Zhang et al., 2015
    湖南桂东 花岗闪长岩、角闪黑云母花岗岩 (148.2±1.7)Ma、
    (207.5±2.7)Ma、
    (414.5±4.5)Ma
    LA–ICP–MS 王登红等, 2010
    五峰仙 黑云母二长花岗岩、二云母二长花岗岩 (230.8±1.7)Ma LA–ICP–MS 王凯兴等, 2012
    连阳−白浆 斑状黑云二长花岗岩 100~102 Ma、
    (144.3±0.8)Ma
    LA–ICP–MS 高剑峰等, 2005;
    马星华等, 2014
    千里山 斑状黑云母花岗岩、花岗斑岩 (152±2)Ma SHRIMP Li et al., 2004
    下载: 导出CSV

    表  2   南岭成矿带中段矿种及其矿产地数量

    Table  2   Mineral species and number of mineral sites of the middle part of Nanling metallogeny belt

    矿种 矿产地/处 矿种 矿产地/处 矿种 矿产地/处
    白云岩 4 脉石英 2 石墨 5
    4 77 石英岩 2
    冰洲石 2 75 水晶 10
    大理岩 14 6 24
    地热 69 耐火黏土 6 天然矿泉水 16
    地下水 12 泥炭 2 天然石英砂 2
    高岭土 3 铌钽 6 145
    1 硼矿物 3 12
    硅灰石 3 膨润土 1 44
    红柱石 1 2 稀土 15
    花岗岩 3 其他黏土 8 56
    滑石 5 铅锌 104 页岩 1
    6 2 萤石 12
    金红石 1 砂岩 4 20
    1 2 长石 1
    硫铁矿 24 石膏 4 重晶石 4
    1 石灰岩 45
    下载: 导出CSV

    表  3   南岭成矿带中段矿床主要成矿特征

    Table  3   Main mineralization characteristics of the deposits in the middle part of Nanling metallogeny belt

    成矿作用矿床类型矿产地数量主要矿种主要成矿期典型矿床
    (内生)
    岩浆作用
    岩浆型矿床4花岗岩、铌钽印支期、燕山期小龙、垄上花岗岩矿、隘子铌钽矿
    伟晶岩型矿床3铌钽燕山期531、隘子东、一六铌钽矿
    云英岩型矿床7铌钽、锡燕山期尖峰岭铌钽矿、狮形岭锡矿
    接触交代型矿床101钨、锡、钼、硅灰石、铅锌、大理岩、铁、硼、水晶燕山期、(华力西期、前寒武纪)黄沙坪铅锌矿、水底下、东风、朝天硅灰石矿、汤市硼矿、烟竹湖硼矿、大顶铁矿、谢家山锡矿、瑶田钨矿、大平锡矿、青石岩砷矿、大顶铁矿、大中山水晶矿、大顺窿铜矿、新田岭钨矿、一六、单竹坑钨矿
    岩浆热液型矿床197钨、铷、锡、铍、铜、萤石、水晶、铀、重晶石、铋、
    滑石、硫铁矿
    燕山期、(华力西期、印支期)长岗岭铋矿、界滩滑石矿、锦潭硫铁矿、湘东铌钽矿、大笋、小坑铍矿、大尖山铅锌矿、田尾铅锌矿、拖碧塘铷矿、杉木溪铷矿、鸡脚山水晶矿、红岭、锯板坑、邓阜仙钨矿、天字号、芙蓉、白蜡水、香花岭锡矿、荷花坪锡矿、江口萤石矿、坪田铀矿、601铀矿、十里亭重晶石矿
    (内生)
    变质作用
    受变质型矿床3铁矿、石英岩前寒武纪、燕山期、华力西期九家坳铁矿、芝麻山铁矿、五官庙石英岩矿
    变成型矿床20大理岩、石墨(红柱石、石英岩)燕山期鸡公岭、安源、三托坪、鲁塘、青坑、长江、大旺
    (内生)
    含矿流体作用
    浅成中—低温热液型矿床54铅锌、锑、铀、汞、硫铁矿、冰洲石华力西期、燕山期、加里东期红岩、西牛硫铁矿、西岸汞矿、赤佬顶锑矿、圆山、东城铀矿、高坳冰洲石矿
    (外生)
    表生作用
    风化型矿床165锰、稀土、铁、
    高岭土、其他黏土
    喜山期寨背顶稀土、来石稀土、大坪
    (外生)
    沉积作用
    机械沉积型矿床16砂岩、页岩、石英砂、黏土喜山期、燕山期、华力西期乌石砂岩、牛岭砂岩、红光页岩矿
    化学沉积型矿床94白云岩、硫铁矿、
    石灰岩、(铁、锰)
    华力西期、印支期南头冲、柏塘、石灰岭、李家湾、罗仙岭、狮子山、燕山岭
    生物化学沉积型矿床80煤矿、泥炭矿华力西期、印支期永耒煤矿、白沙煤矿、杨梅山煤矿、盘村泥炭矿
    蒸发沉积型4石膏喜山期、燕山期星子盆地石膏矿
    (外生)
    流体作用
    流体型矿床107天然矿泉水、地热、地下水喜山期汤泉地热、地下水、宝林山矿泉水
    叠加(复合/
    改造)
    叠加(复合/改造)矿床5铀、铅锌、锰、铜、滑石燕山期、华力西期、喜山期水口山、杨柳塘、玛瑙山、大宝山、大莨
    下载: 导出CSV

    表  4   南岭成矿带中段主要矿床成矿年龄

    Table  4   Formation age of main deposits in the middle part of Nanling metallogeny belt

    矿床名称 测试对象和测年方法 年龄/Ma 资料来源
    石背大顶铁锡矿 金云母Ar–Ar 185.9±1.2 程顺波等, 2016
    辉钼矿Re–Os 186.7±1.2 袁顺达, 2017
    锡田锡钨矿 石英Rb–Sr 153±12 付建明等, 2012
    辉钼矿Re–Os 150.0±2.7 刘国庆等, 2008
    辉钼矿Re–Os 150.3±0.5 董超阁, 2018
    宝山铅锌多金属矿 辉钼矿Re–Os 160±2 路远发等, 2006
    三角潭钨矿 辉钼矿Re–Os 224.9±1.3 彭能立等, 2017
    白沙子岭锡矿 石英Rb–Sr 160±1 张晓军等, 2014
    邓阜仙钨矿 辉钼矿Re–Os 152.4±3.3 蔡杨等, 2012
    白云母Ar–Ar 148.3±1.1 孙颖超等, 2017
    辉钼矿Re–Os 150.7±2.3 董超阁, 2018
    金船塘锡矿 矽卡岩矿物Sm–Nd 141±11 马丽艳等, 2010
    黄铁矿Pb–Pb 164±12 肖红全等, 2003
    辉钼矿Re–Os 158.8±6.6 刘晓菲, 2014
    红旗岭锡多金属矿 石英Rb–Sr 143.1±8.7 马丽艳等, 2010
    矿脉白云母Ar–Ar 153.5±1.5 袁顺达等, 2012
    芙蓉白腊水锡矿 金云母Ar–Ar 154.1±1.1 彭建堂等, 2007
    角闪石Ar–Ar 156.9±1.1 彭建堂等, 2007
    芙蓉淘锡窝锡矿 白云母Ar–Ar 154.8±0.6 彭建堂等, 2007
    芙蓉三门锡矿 白云母Ar–Ar 156.1±0.4 毛景文等, 2004
    芙蓉淘锡窝锡矿 白云母Ar–Ar 160.1±0.9 毛景文等, 2004
    芙蓉锡矿 含矿云英岩Rb–Sr 146±3 马丽艳等, 2005
    芙蓉白腊水锡矿 石英Rb–Sr 177±39 蔡锦辉等, 2004
    黄沙坪铅锌多金属矿床 矿脉辉钼矿Re–Os 153.8~157.5 马丽艳等, 2007; 毛景文等, 2007; 王登红等, 2010
    香花岭锡多金属矿 白云母Ar–Ar 154.4±1.1 Yuan et al., 2007
    香花岭—牛角湾 闪锌矿脉石英Rb–Sr 154±2 王登红等, 2010
    闪锌矿脉萤石Sm–Nd 156.1±8.4 王登红等, 2010
    香花岭—新风 黄铁矿Re–Os 158.9 王登红等, 2010
    界牌岭锡多金属矿 矿脉黑云母Ar–Ar 91.1±1.1 毛景文等, 2007
    白云母Ar–Ar 92.1±0.7 Yuan et al., 2015
    瑶岗仙钨矿 辉钼矿Re–Os 158.0±1.2 李顺庭等, 2011
    瑶岗仙尚滩钨矿 辉钼矿Re–Os 160.0±3.3 李顺庭等, 2011
    瑶岗仙钨矿 石英Rb–Sr 175.8±4.1 王登红等, 2009
    石英Rb–Sr 156±3 王登红等, 2009
    辉钼矿Re–Os 170±5 王登红等, 2009
    合江口锡矿 辉钼矿Re–Os 225.0±3.6 邓湘伟等, 2015
    荷花坪锡矿 辉钼矿Re–Os 224.0±1.9 蔡明海等, 2006
    锆石U–Pb 156 Zhang et al., 2015
    香花铺钨矿 白云母Ar–Ar 161.3±1.1 Yuan et al., 2007
    尖峰岭锡矿 白云母Ar–Ar 158.7±1.2 Yuan et al., 2007
    桂东青石岭钨多金属矿 辉钼矿Re–Os 147.6±6.8 王登红等, 2010
    下庄335铀矿 沥青铀矿U–Pb 93.5±1.2 邹东风等, 2011
    下庄石土岭铀矿 沥青铀矿U–Pb 138.5±1.9 何德宝, 2017
    下庄希望铀矿 沥青铀矿U–Pb 81.8±1.1 何德宝, 2017
    下庄寨下铀矿 沥青铀矿U–Pb 92.0±1.3 何德宝, 2017
    下庄仙石铀矿 沥青铀矿U–Pb 96.4±1.4 何德宝, 2017
    下庄竹山下 沥青铀矿U–Pb 134 李子颖等, 2011
    下庄大帽峰 沥青铀矿U–Pb 84.3 李子颖等, 2011
    下庄仙人嶂 沥青铀矿U–Pb 81 李子颖等, 2011
    柿竹园钨多金属矿 辉钼矿Re–Os 151.0±3.5 李红艳等, 1996
    萤石Sm–Nd 149±2 Li et al., 2004
    下载: 导出CSV
  • [1]

    Bai Daoyuan, Chen Jianchao, Ma Tieqiu, Wang Xianhui. 2005. Geochemical characteristics and tectonic setting of Qitianling A−type granitic pluton in southeast Hunan[J]. Acta Petrologica et Mineralogica, 24(4): 255−272 (in Chinese with English abstract).

    [2]

    Bai Daoyuan, Ma Tieqiu, Wang Xianhui, Zhang Xiaoyang, Chen Bihe. 2008. Progress in the study of Mesozoic tectono−magmatism and mineralization in the central segment of the Nanling Mountains[J]. Geology in China, 35(3): 436−455 (in Chinese with English abstract).

    [3]

    Bai Daoyuan, Tang Fenpei, Li Bin, Zeng Guangqian, Li Yinmin, Jiang Wen. 2022. Summary of main mineralization events in Hunan Province[J]. Geology in China, 49(1): 151–180 (in Chinese with English abstract).

    [4]

    Bai Hui, Qiu Kaiguo, Chen Fugui, Cheng Xingmin, Wang He. 2016. Preliminary study on Nappe in coal−bearing strata in Xinfeng County[J]. Jiangxi Coal Science and Technology, (4): 108−109 (in Chinese with English abstract).

    [5]

    Cai Fucheng, Qin Jinhua, Qin Jinning, Jiang Biguang, Zhu Chengsheng. 2021. Geochemical characteristics and LA–ICP–MS zircon U–Pb dating of ore−bearing granite of Chuankou intrusion−related tungsten deposit, Hunan Province[J]. Geology in China, 48(4): 1212−1224 (in Chinese with English abstract).

    [6]

    Cai Jinhui, Wei Changshan, Sun Minghui. 2004. A discussion on the ore−forming age of the Bailashui tin deposit in Qitianling, Hunan[J]. Acta Geoscientica Sinica, 25(2): 235−238 (in Chinese with English abstract).

    [7]

    Cai Minghai, Chen Kaixu, Qu Wenjun, Liu Guoqing, Fu Jianming, Yin Jianping. 2006. Geological characteristics and Re–Os dating of molybdenites in Hehuaping tin−polymetallic deposit, southern Hunan Province[J]. Mineral Deposits, 25(3): 263−268 (in Chinese with English abstract).

    [8]

    Cai Minghai, Zhang Wenbin, Peng Zhenan, Liu Hu, Guo Tengfei, Tan Zemo, Tang Longfei. 2016. Study on minerogenetic epoch of the Hehuaping tin−polymetallic deposit in southern Hunan[J]. Acta Petrologica Sinica, 32(7): 2111−2123 (in Chinese with English abstract).

    [9]

    Cai Yang, Ma Dongsheng, Lu Jianjun, Huang Hui, Zhang Rongqinig, Qu Wenjun. 2012. Re–Os geochronology and S isotope geochemistry of Dengfuxian tungsten deposit, Hunan Province, China[J]. Acta Petrologica Sinica, 28(12): 3798−3808 (in Chinese with English abstract).

    [10]

    Chen Di, Chen Yanming, Ma Aijun, Liu Wei, Liu Yaorong, Ni Yanjun. 2014. Magma mixing in the Xitian pluton of Hunan Province: Evidence from petrography, geochemistry and zircon U–Pb age[J]. Geology in China, 41(1): 61−78 (in Chinese with English abstract).

    [11]

    Chen Di, Liu Jueyi, Fu Shengyu, Ma Tieqiu, Liu Yaorong. 2017. Petrology, geochemistry, zircon U–Pb age characteristics and significance of Dengfuxian pluton in Hunan Province[J]. Geological Bulletin of China, 36(9): 1601−1615 (in Chinese with English abstract).

    [12]

    Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W–Sn–Nb–Ta–bearing granites in the Nanling Range[J]. Geological Journal of China Universities, 14(4): 459−473 (in Chinese with English abstract).

    [13]

    Chen Peirong, Hua Renmin, Zhang Bangtong, Lu Jianjun, Fan Chunfang. 2002. Early Yanshanian post−orogenic granites in Nanling: Petrological constraints and geodynamic settings[J]. Science in China (Series D: Earth Sciences), 32(4): 279−289 (in Chinese).

    [14]

    Chen Yuchuan, Pei Rongfu, Zhang Hongliang. 1990. The geology of nonferrous and rare metal deposits related to Mesozoic granitoids in the Nanling region, China[J]. Bulletin of the Chinese Academy of Geological Sciences, (1): 79−85 (in Chinese).

    [15]

    Chen Yuchuan, Pei Rongfu, Zhang Hongliang, Lin Xinduo, Bai Ge, Li Chongyou, Hu Yongjia, Liu Jinyou, Xian Baiqi. 1989. Nonferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Area[M]. Beijing: Geological Publishing House, 1–508 (in Chinese).

    [16]

    Chen Yuchuan, Wang Denghong, Xu Zhigang, Huang Fan. 2014. Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in south China[J]. Geotectonica et Metallogenia, 38(2): 219−229 (in Chinese with English abstract).

    [17]

    Cheng Liangkai. 2018. Zircon U–Pb dating and geological significance of Caledonian Dadongshan pluton in the Northern Guangdong province[J]. South China Geology, 34(1): 31−40 (in Chinese with English abstract).

    [18]

    Cheng Shunbo, Fu Jianming, Ma Liyan, Lu Youyue, Wang Xiaodi, Xia Jinlong. 2016. Early Jurassic iron−tin mineralization event in the Nanling Range: Evidence from LA–ICP–MS zircon U–Pb and phlogopite 39Ar–40Ar dating of the Dading deposit in Lianping, Northern Guangdong[J]. Acta Geologica Sinica, 90(1): 163−176 (in Chinese with English abstract).

    [19]

    Deng Ping, Shen Weizhou, Ling Hongfei, Zhang Liqiang, Zhu Ba, Huang Guolong, Tan Zhengzhong. 2011. SHRIMP zircon U–Pb dating and geochemistry characteristics of Reshui granitic batholith, Northern Guangdong[J]. Acta Geologica Sinica, 85(8): 1274−1283 (in Chinese with English abstract).

    [20]

    Deng Xiangwei, Liu Jishun, Dai Xueling. 2015. Geological characteristics and molybdenite Re–Os isotopic age of Hejiangkou tungsten and tin polymetallic deposit, East Hunan, China[J]. The Chinese Journal of Nonferrous Metals, 25(10): 2883−2897 (in Chinese with English abstract).

    [21]

    Ding Xing, Chen Peirong, Chen Weifeng, Huang Hongye, Zhou Xinmin. 2005. LA–ICPMS U–Pb dating of zircons from the Weishan granite in Hunan province: Implications for diagenesis[J]. Science in China (Series D: Earth Sciences), 35(7): 606−616 (in Chinese).

    [22]

    Dong Chaoge. 2018. Studies on Granitic and Metallogenic Chronology and Geodynamics of the Xitian Tin–Tungsten and Dengfuxian Tungsten Deposits, Hunan Province, China[D]. Beijing: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 1–158 (in Chinese with English abstract).

    [23]

    Dong Shaohua, Bi Xianwu, Hu Ruizhong, Chen Youwei. 2014. Petrogenesis of the Yaogangxian granites and implications for W mineralization Hunan Province[J]. Acta Petrologica Sinica, 30(9): 2749−2765 (in Chinese with English abstract).

    [24]

    Fu Jianming, Ma Changqian, Xie Caifu, Zhang Yeming, Peng Songbai. 2004. Zircon SHRIMP dating of the Cailing granite on the eastern margin of the Qitianling granite, Hunan, South China, and its significance[J]. Geology in China, 31(1): 96−100 (in Chinese with English abstract).

    [25]

    Fu Jianming, Chen Shunbo, Lu Youyue, Wu Shicong, Ma Liyan, Chen Xiqing. 2012. Geochronology of the greisen−quartz−vein type tungsten−tin deposit and its host granite in Xitian, Hunan Province[J]. Geology and Exploration, 48(2): 313−320 (in Chinese with English abstract).

    [26]

    Gao Jianfeng, Ling Hongfei, Shen Weizhou, Lu Jianjun, Zhang Min, Huang Guolong, Tan Zhengzhong. 2005. Geochemistry and petrogenesis of Lianyang granite composite, west Guangdong Province[J]. Acta Petrologica Sinica, 21(6): 1645−1656 (in Chinese with English abstract).

    [27]

    Gu Xiongfei, Ding Kuishou, Xu Yingnian. 1976. Nanling: A new arsenite mineral from southern China[J]. Geochimica, (2): 107−112 (in Chinese).

    [28]

    Guo Aiming, Chen Bihe, Chen Jianfeng, Du Yun, Zhen Zhengfu, Zhou Chao, Tian Lei, Fan Hui. 2017. SHRIMP zircon U–Pb age of Tashan granitic pluton from Hunan Province and its geological significance[J]. Geological Bulletin of China, 36(Z1): 459−465 (in Chinese with English abstract).

    [29]

    He Debao. 2017. A Comparative Study on the Metallogenic Mechanism of Different Types of Uranium Deposits in Xiazhuang Orefield, North Guangdong, the Nanling Mountain Devonian Stratabound Deposit[D]. Beijing: Beijing Research Institute of Uranium Geology, 1–82 (in Chinese with English abstract).

    [30]

    Huang Chongke, Zhu Yusheng, Zhang Zhongwei. 1997. The Silver Deposits in Nanling[M]. Beijing: Geological Publishing House, 1–293 (in Chinese with English abstract).

    [31]

    Huang Huiqing, Li Xianhua, Li Wuxian, Liu Yin. 2008. Age and origin of the Dadongshan granite from the Nanling Range: SHRIMP U–Pb zircon age, geochemistry and Sr–Nd–Hf isotopes[J]. Geological Journal of China Universities, 14(3): 317−333 (in Chinese with English abstract).

    [32]

    Huang Yunhui, Du Shaohua. 1986. The discovery and study of the first new mineral in China: Xianghua stone (1958) [J]. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (18): 1 (in Chinese).

    [33]

    Jia Dacheng, Hu Ruizhong, Xie Guiqing. 2002. Trace element geochemical characteristics and genesis of Mesozoic mafic dikes in Northeast Hunan Province[J]. Geology Geochemistry, 30(3): 33−39 (in Chinese with English abstract).

    [34]

    Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun. 2014. The Early Jurassic A−type granites in Northern Guangxi, China: Petrogenesis and implications[J]. Earth Science (Journal of China University of Geosciences), 39(1): 21−36 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.003

    [35]

    Jiang H, Jiang S Y, Li W Q, Zhao K D. 2018. Highly fractionated Jurassic I−type granites and related tungsten mineralization in the Shirenzhang deposit, northern Guangdong, South China: Evidence from cassiterite and zircon U–Pb ages, geochemistry and Sr–Nd–Pb–Hf isotopes[J]. Lithos, 312–313: 186–203.

    [36]

    Jiang Y H, Wang G C, Zheng L, Ni C Y, Qing L, Zhang Q. 2015. Repeated slab advance retreat of the Palaeo−Pacific plate underneath SE China[J]. International Geology Review, 57(4): 472−491. doi: 10.1080/00206814.2015.1017775

    [37]

    Lai Shouhua. 2014. Research on Mineralization of the Xianghualing Tin Polymetallic Deposit, Hunan Province, China[D]. Beijing: China University of Geosciences (Beijing), 1–142 (in Chinese with English abstract).

    [38]

    Li Tong, Yuan Huanyu, Wu Shengxi. 1998. On the average chemical composition of granitoids in China and the world[J]. Geotectonica et Metallogenia, 22(1): 29−34 (in Chinese with English abstract).

    [39]

    Li Hongyan, Mao Jingwen, Sun Yali, Zhou Xiaoqiu, He Hongliao, Du Andao. 1996. Re–Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, Southern Hunan[J]. Geological Review, 42(3): 261−267 (in Chinese with English abstract).

    [40]

    Li Huaqin, Lu Yuanfa, Wang Denghong, Chen Yuchuan, Yang Hongmei, Guo Jin, Xie Caifu, Mei Yuping, Ma Liyan. 2006. Dating of the rock−forming and ore−froming ages and their geological significances in the Furong ore−field, Qitian Mountain, Hunan[J]. Geological Review, 52(1): 113−121 (in Chinese with English abstract).

    [41]

    Li Jianhua, Zhang Yueqiao, Xu Xianbin, Li Hailong, Dong Shuwen, Li Tingdong. 2014. SHRIMP U–Pb dating of zircons from the Baimashan Longtan super−unit and Wawutang granites in Hunan Province and its geological implication[J]. Journal of Jilin University (Earth Science Edition), 44(1): 158−175 (in Chinese with English abstract).

    [42]

    Li Sai, Duan Xianzhe, Niu Sujuan, Li Nan, Sun Haoran, Wu Peng, Dai Haotong, Guo Cong, Ding Xinke. 2022. Geochemical characteristics and geodynamic significance of Mesozoic basalts in South China Block[J]. Geology and Exploration, 58(5): 1001−1015 (in Chinese with English abstract).

    [43]

    Li Shunting, Wang Jingbin, Zhu Xinyou, Li Chao. 2011. Re–Os dating of molybdenite and sulfur isotope analysis of the Yaogangxian tungsten polymetallic deposits in Hunan Province and their geological significance[J]. Geoscience, 25(2): 228−235 (in Chinese with English abstract).

    [44]

    Li Shunting, Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, Jiang Binbin. 2015. Geological and geochemical characteritics of the Yaogangxian complex granitoid and its relationship with tungsten mineralization[J]. Mineral Exploration, 6(4): 347−355 (in Chinese with English abstract).

    [45]

    Li Yong, Zhang Yueqiao, Su Jinbao, Li Jianhua, Dong Shuwen. 2015. Zircon U–Pb dating of Dayishan and Tashan plutons in Hunan Province and its tectonic implications[J]. Acta Geoscientica Sinica, 36(3): 303−312 (in Chinese with English abstract).

    [46]

    Li Yongsheng, Zhen Shimin, Gong Fanyin, Du Zezhong, Jia Delong. 2015. Geological and geochemical characteristics of Yagongtang No. 3 rock mass in Shuikoushan lead−zinc−silver ore field, Hunan[J]. Acta Mineralogica Sinica, 35(S1): 708−709 (in Chinese with English abstract).

    [47]

    Li Zhenhong. 2020. Constraints of the upper mantle and lower crust on the Yanshanian metallogenic granites in the Middle Nanling (Hunan)[J]. Land and Resources Herald, 17(1): 27−33 (in Chinese with English abstract).

    [48]

    Li Ziying, Huang Zhizhang, Li Xiuzhen. 2011. Guidong Magmatic Rocks and Uranium Mineralization in the Nanling Mountain[M]. Beijing: Geological Publishing House, 1–292 (in Chinese).

    [49]

    Li X H, Liu D Y, Sun M, Li W X, Liang X R, Liu Y. 2004. Precise Sm–Nd and U–Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite SE China[J]. Geological Magazine, 141(2): 225−231. doi: 10.1017/S0016756803008823

    [50]

    Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopopic constrains on age and origin of Jurassic I− and A−type granites from central Guangdong, SE China: A major igneous event in response to foundering of a sub−ducted flat−slab?[J]. Lithos, 96: 186−204. doi: 10.1016/j.lithos.2006.09.018

    [51]

    Liang Xinquan, Li Xianhua, Qiu Yuanxi, Yang Dongsheng. 2005. Indosinian collisional orogeny: Evidence from structural and sedimentary geology in Shiwandashan, South China[J]. Geotectonica et Metallogenia, 29(1): 99−112 (in Chinese with English abstract).

    [52]

    Liao Sen, Zou Zhenwei, Xie Gang. 2017. Geological structure characteristics of Xinfeng Daqiao coalfield[J]. Resource Information and Engineering, 32(6): 55−56 (in Chinese with English abstract).

    [53]

    Liao Yuzhong. 2019. The Qianlishan Granite Genetically Related to the Zoning of Shizhuyuan Ore−field[D]. Beijing: China University of Geosciences (Beijing), 1–197 (in Chinese with English abstract).

    [54]

    Lin Kun, Li Haidong, Liu Bin, Long Ziqiang, Wu Jianyong. 2021. Zircon U–Pb chronology and Hf isotope composition of porphyritic dacite in Hekou rock mass of northern Guangdong and their geological implications[J]. Geology and Exploration, 57(2): 392−401 (in Chinese with English abstract).

    [55]

    Lin Xiaoming, Li Hongwei, Huang Jianye, Lou Feng. 2016. LA–ICP–MS zircon U–Pb dating of Shibei pluton at Dading iron mine area in Lianping, Guangdong and its geological significance[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 55(1): 131−136 (in Chinese with English abstract).

    [56]

    Liu Chang, Tian Jianji, He Debao, Wang Wenquan, Li Junyang, Liu Wei. 2022. The uranium occurrence and paragenetic association of minerals in the Shuikoushan Pb–Zn polymeallie orefield, Hunan Province[J]. Geology and Exploration, 58(1): 1−11 (in Chinese with English abstract).

    [57]

    Liu Guoqing, Wu Shicong, Du Andao, Fu Jianming, Yang Xiaojun, Tang Zhihua, Wei Junqi. 2008. Metallogenic ages of the Xitian tungsten−tin deposit, eastern Hunan Province[J]. Geotectonica et Metallogenia, 32(1): 63−71 (in Chinese with English abstract).

    [58]

    Liu Xiaofei. 2014. Geology, Geochemistry and Genesis of the Jinchuantang Tin–Bismuth Deposit, Hunan Province[D]. Beijing: China University of Geosciences (Beijing), 1–80 (in Chinese with English abstract).

    [59]

    Liu X H, Li B, Xu J W, He B, Liao J, Peng H W, Wang Y H, Lai J Q. 2022. Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li–Rb–Cs deposit in South China[J]. Ore Geology Reviews, 150: 105147. doi: 10.1016/j.oregeorev.2022.105147

    [60]

    Lu Youyue, Fu Jianming, Chen Shunbo, Ma Liyan, Zhang Kun. 2013. SHRIIMP zircon U–Pb geochronology of the ore−bearing granite porphyry in the Jiepailing tin−polymetallic deposit, Southern Hunan province[J]. South China Geology, 29(3): 199−206 (in Chinese with English abstract).

    [61]

    Lu Yuanfa, Ma Liyan, Qu Wenjun, Mei Yuping, Chen Xiqing. 2006. U–Pb and Re–Os isotope geochronology of Baoshan Cu–Mo polymetallic ore deposit in Hunan province[J]. Acta Petrologica Sinica, 22(10): 2483−2492 (in Chinese with English abstract).

    [62]

    Ma Liyan, Lu Yuanfa, Mei Yuping, Chen Xiqing, Yang Hongmei. 2005. Rb–Sr isotopic ages of the Furong tin orefield in Hunan and their implications[J]. Acta Geoscientica Sinica, 26(S1): 143−145 (in Chinese with English abstract).

    [63]

    Ma Liyan, Lu Yuanfa, Qu Wenjun, Fu Jianming. 2007. Re–Os isotopic chronology of molybdenites in Huangshaping lead–zinc deposit, southeast Hunan, and its geological implications[J]. Mineral Deposits, 26(4): 425−431 (in Chinese with English abstract).

    [64]

    Ma Liyan, Lu Yuanfa, Fu Jianfa, Chen Xiqing, Chen Shunbo. 2010. The Rb–Sr and Sm–Nd geochronology constraints on the formation age of Jinchuantang and Hongqiling tin−polymetallic deposits in Dongpo orefield, Hunan Province[J]. South China Geology, 26(4): 23−29 (in Chinese with English abstract).

    [65]

    Ma Liyan, Liu Shusheng, Fu Jianming, Chen Shunbo, Lu Youyue, Mei Yuping. 2016. Petrogenesis of the Tashan−Yangmingshan granitic batholiths: Constraint from zircon U–Pb age, geochemistry and Sr–Nd isotopes[J]. Acta Geologica Sinica, 90(2): 284−303 (in Chinese with English abstract).

    [66]

    Ma Tieqiu, Bai Daoyuan, Kuang Jun, Wang Xianhui. 2005. Zircon SHRIMP dating of the Xitian granite pluton, Chaling, southeastern Hunan, and its geological significance[J]. Geological Bulletin of China, 24(5): 415−419 (in Chinese with English abstract).

    [67]

    Ma Xinghua, Chen Bin, Wang Zhiqiang, Gao Lin, Sun Keke. 2014. Petrogenesis of the Lianyang composite granite, Nanling region: U–Pb zircon geochronology, geochemistry and Nd–Hf isotopes constraints[J]. Earth Science Frontiers, 21(6): 264−280 (in Chinese with English abstract).

    [68]

    Mao J W, Cheng Y B, Chen M H. 2013. Major types and time−space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium deposita, 48(3): 267−294. doi: 10.1007/s00126-012-0446-z

    [69]

    Mao Jinwen, Li Hongyan, Pei Rongfu. 1995. Nd–Sr isotopic and petrogenetic studies of the Qianlishan granite stock, Hunan Province[J]. Mineral Deposits, 14(3): 235−242 (in Chinese with English abstract).

    [70]

    Mao Jingwen, Li Xiaofeng, Bernd Lehmann, Chenwen, Lan Xiaoming, Wei Shaoliu. 2004. 40Ar–39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance[J]. Mineral Deposits, 23(2): 164−175 (in Chinese with English abstract).

    [71]

    Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large−scale tungsten−tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 23(10): 2329−2338 (in Chinese with English abstract).

    [72]

    Mao Jingwen, Xie Guiqing, Guo Chunli, Yuan Shunda, Chen Yanbo, Chen Yuchuan. 2008. Spatial−temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510−526 (in Chinese with English abstract).

    [73]

    Mi Jiaru, Yuan Shunda, Xuan Yisa, Zhang Dongliang. 2018. Zircon U–Pb ages, Hf isotope and trace element characteristics of the granodiorite porphyry from the Baoshan–Dafang ore district, Hunan: Implications for regional metallogeny[J]. Acta Petrologica Sinica, 34(9): 2548−2564 (in Chinese with English abstract).

    [74]

    Mo Zhusun, Ye Bodan, Pan Weizu. 1980. Geology of the Nanling Mountain Granite[M]. Beijing: Geological Publishing House, 1–363 (in Chinese).

    [75]

    Peng Jiantang, Hu Ruizhong, Bi Xianwu, Dai Tongmo, Li Zhaoli, Li Xiaomin, Shuang Yan, Yuan Shunda, Liu Shirong. 2007. 40Ar/39Ar isotopic dating of tin mineralization in Furong deposit of Hunan Province and its geological significance[J]. Mineral Deposits, 26(3): 237−248 (in Chinese with English abstract).

    [76]

    Peng Nengli, Wang Xianhui, Yang Jun, Chen Di, Luo Lai, Luo Peng, Liu Tianyi. 2017. Re–Os dating of molybdenite from Sanjiaotan tungsten deposit in Chuankou area, Hunan Province, and its geological implications[J]. Mineral Deposits, 36(6): 1402−1414 (in Chinese with English abstract).

    [77]

    Qin J H, Wang D H, Li C, Chen Y C, Cai F C. 2020. The molybdenite Re–Os isotope chronology, in situ scheelite and wolframite trace elements and Sr isotope characteristics of the Chuankou tungsten ore field, South China[J]. Ore Geology Reviews, 126: 103756−103775. doi: 10.1016/j.oregeorev.2020.103756

    [78]

    Qin J H, Wang D H, Chen Y C. 2022. Geochemical and geochronological constraints on a granitoid containing the largest Indosinian tungsten (W) deposit in South China (SC): Petrogenesis and implications[J]. Minerals, 12(80): 1−33.

    [79]

    Qin Jinhua, Wang Chenghui, Chen Yuchuan, Zhao Ruyi. 2022. Mineralogical characteristics and geological significance of beryl and muscovite from Yiliu deposit in middle of Nanling metallogenic belt[J]. Mineral Deposits, 41(5): 1025−1041 (in Chinese with English abstract).

    [80]

    Qin Zhengwei, Fu Jianming, Xing Guangfu, Cheng Shunbo, Lu Youyue, Zhu Yingxue. 2022. The petrogenetic differences of the Middle–Late Jurassic W−, Sn−, Pb−Zn−Cu−bearing granites in the Nanling Range, South China[J]. Geology in China, 49(2): 518–539 (in Chinese with English abstract).

    [81]

    Quan Tiejun, Kong Hua, Wang Gao, Fei Lidong, Guo Biying, Zhao Zhiqiang. 2012. Petrogenesis of the granites in the Huangshaping area: Constraints from petrochemistry, zircon U–Pb chronology and Hf isotope[J]. Geotectonica et Metallogenia, 36(4): 597−606 (in Chinese with English abstract).

    [82]

    Rao C, Gu X, Wang R, Xia Q, Cai Y, Dong C, Hatert F, Hao Y. 2022. Chukochenite, (Li0.5Al0.5)Al2O4, a new lithium ox spinel mineral from the Xianghualing skarn, Hunan province, China. American Mineralogist[J], 107(5/6): 842–847.

    [83]

    Shan Zhibo. 2014. Zircon U–Pb Geochronology, Geochemistry and Petrogenesis of the Taocunba Granite, Northern Guangdong Province Deposit in Lianping, Northern Guangdong[D]. Naniing: Nanjing University, 1–52 (in Chinese with English abstract).

    [84]

    Shu Liangshu, Zhou Shuming, Deng Ping, Yu Xinqi. Wang Bin, Zu fuping. 2004. Geological features and tectonic evolution of Meso–Cenozoic basins in southeastern China[J]. Geological Bulletin of China, 23(9): 876−884 (in Chinese with English abstract).

    [85]

    Shu Liangshu, Zhou Shuming, Deng Ping, Yu Xinqi. 2006. Principal geological features of Nanling tectonic belt, South China[J]. Geological Review, 52(2): 251−265 (in Chinese with English abstract).

    [86]

    Sun Tao, Zhou Xinmin, Chen Peirong, Li Huimin, Zhou Hongying, Wang Zhicheng, Shen Weizhou. 2003. Genesis and tectonic significance of Mesozoic strong peraluminous granites in eastern Nanling[J]. Science in China (Series D: Earth Sciences), 33(12): 1209−1218 (in Chinese).

    [87]

    Sun Yinchao, Chen Zhenhui, Zhao Guochun, Huang Hongxin, Zeng Le, Yan Chao, Wu Shicong. 2017. 40Ar/39Ar dating of muscovite from the contact zone of granite–aplite in the Dengfuxian W–Nb–Ta deposit and its geological significance[J]. Geological Bulletin of China, 36(2): 466−476 (in Chinese with English abstract).

    [88]

    Wang Qunying, Lu Yuanfa, Chen Zhenhui, Ye Shiwen, Huang Hongxin. 2015. Fluid inclusion characteristic and ore−bearing granite U–Pb age of the Dengbuxian tungsten deposit, Hunan Province[J]. South China Geology, 31(1): 77−88 (in Chinese with English abstract).

    [89]

    Wang Chenghui, Wang Denghong, Qin Jinhua, Li Jiankang, Liu Shanbao, Chen Zhenyu. 2021. Discovery of granitic pegmatite type beryllium ore deposit in middle of Nanling metallogenic belt[J]. Mineral Deposits, 40(2): 398−401 (in Chinese with English abstract).

    [90]

    Wang Denghong. 1998. Mantle Plume and Mineralization[M]. Beijing: Seismological Press, 1–160 (in Chinese).

    [91]

    Wang Denghong, Li Jiangkang, Ying Lijuan, Chen Zhenghui, Chen Yuchaun. 2007. Thinking of applying the concept of full mineralization and missing prospecting to find platinum group element deposits[J]. Journal of Mineralogy, (Z1): 460−462 (in Chinese).

    [92]

    Wang Denghong, Li Huaqin, Qin Yan, Mei Yuping, Chen Zhenhui, Qu Wenjun, Wang Yanbin, Cai Hong, Gong Shuqing, He Xiaoping. 2009. Rock−forming and ore−forming ages of the Yaogangxian tungsten deposit of Hunan Province[J]. Rock and Mineral Analysis, 28(3): 201−208 (in Chinese with English abstract).

    [93]

    Wang Denghong, Chen Zhenhui, Chen Yuchuan, Tang Juxing, Li Jiankang, Ying Lijuan, Wang Chenghui, Liu Shanbao, Li Xingli, Qin Yan, Li Huaqin, Qu Wenjun, Wang Yanbin, Chen Wen, Zhang Yan. 2010. New data of the rock−forming and ore−forming chronology for China's important mineral resources areas[J]. Acta Geologica Sinica, 84(7): 1030−1040 (in Chinese with English abstract).

    [94]

    Wang Denghong, Chen Zhenyu, Huang Fan, Wang Chenghui, Zhao Zhi, Chen Zhenhui, Zhao Zheng, Liu Xinxing. 2014. Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling region[J]. Geotectonica et Metallogenia, 38(2): 230−238 (in Chinese with English abstract).

    [95]

    Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, Yu Yang, Dai Jingjing, Tian Shihong. 2017. A preliminary review of the application of “Five levels + Basement” model for Jiajika−style rare metal deposits[J]. Earth Science Frontiers, 24(5): 1−7 (in Chinese with English abstract).

    [96]

    Wang Jun, Lai Zhongxin, Zhang Huiren, Hu Gang, Yang Kunguang. 2011. The characteristics of pluton and its tectonic environment in Xiazhuang ore−field, North Guangdong[J]. Uranium Geology, 27(3): 136−145 (in Chinese with English abstract).

    [97]

    Wang Kaixing, Chen Weifeng, Chen Peirong, Zhang Jian. 2012. LA–ICP–MS zircon geochronology, geochemistry and petrogenesis of the Yajiangqiao and Wufengxian intrusions in central Hunan[C]//Proceedings of the National Symposium on the Construction of Uranium Mining Base (Part 1): 486–494 (in Chinese with English abstract).

    [98]

    Wang Rucheng, Xie Lei, Zhu Zeyin, Hu Huan. 2018. Micas: Important indicators of granite−pegmatite−related rare−metal mineralization[J]. Acta Petrologica Sinica, 35(1): 69−75 (in Chinese with English abstract).

    [99]

    Wu Guangying. 2005. The Yanshanian Granitoids and Their Cosmical Mineralization Interaction in Poly Metallogenic Deposit−concentrated, Area in Southeastern Hunan[D]. Beijing: China University of Geosciences (Beijing), 1–218 (in Chinese with English abstract).

    [100]

    Wu Guangying, Ma Tieqiu, Bai Daoyuan, Li Jindong, Che Qinjian, Wang Xianhui. 2005. Petrological and geochemical characteristics of granodioritic crypto explosion breccia and zircon SHRIMP dating in the Baoshan area, Hunan Province[J]. Geoscience, 19(2): 198−204 (in Chinese with English abstract).

    [101]

    Wu Jiguang. 2013. LA–ICPMS U–Pb dating of zircons in dacite porphyry at North Guidong pluton in Nanling Mountain and its geological significance[J]. Uranium Geology, 29(5): 268−273,262 (in Chinese with English abstract).

    [102]

    Xiao Hongquan, Zhao Kuidong, Jiang Shaoyong, Jiang Yaohui, Ling Hongfei. 2003. Lead isotope geochemistry and ore−forming age of Jinchuantang Sn–Bi deposit in Dongpo ore field, Hunan Province[J]. Mineral Deposits, 22(3): 264−270 (in Chinese with English abstract).

    [103]

    Xie Yincai. 2013. Genesis of the Granodiorite Porphyry and Sources of Metallogenic Materials in the Baoshan Pb–Zn Polymetallic Deposit, Southern Hunan Province[D]. Nanjing: Nanjing University, 1–104 (in Chinese with English abstract).

    [104]

    Xu Xisheng, Deng Ping, O'Reilly S Y, Griffin W L, Zhou Xinmin, Tan Zhengzhong. 2003. ICPMS U–Pb dating of single−grain zircon from the Guidong complex in South China and its diagenetic significance[J]. Chinese Science Bulletin, 48(12): 1328−1334 (in Chinese with English abstract). doi: 10.1360/csb2003-48-12-1328

    [105]

    Xu Zhigang, Chen Yuchuan, Wang Denghong, Chen Zhenghui, Li Houmin. 2008. The Scheme of the Classification of the Minerogenetic Units in China[M]. Beijing: Geological Publishing House, 1–138 (in Chinese with English abstract).

    [106]

    Yao Junming, Hua Renming, Lin Jinfu. 2005. Zircon LA–ICPMS U–Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan province, China[J]. Acta Petrologica Sinica, 21(3): 688−696 (in Chinese with English abstract).

    [107]

    Yao Yuan. 2013. Magnesian and Calcic Skarn Type Tin−polymetallic Mineralization in the Nanling Range: A Case Study from Hehuaping and Xitian[D]. Nanjing: Nanjing University, 1–151 (in Chinese with English abstract).

    [108]

    Yuan S D, Peng J T, Shen N P, Hu R Z, Dai T M. 2007. 40Ar–39Ar isotopic dating of the Xianghualing, Hunan, Sn–polymetallic ore field and its geological implications[J]. Acta Geologica Sinica (English Edition), 81(2): 278−286. doi: 10.1111/j.1755-6724.2007.tb00951.x

    [109]

    Yuan S D, Mao J W, Cook N J, Wang X D, Liu X F, Yuan Y B. 2015. A Late Cretaceous tin metallogenic event in Nanling W–Sn metallogenic province: Constraints from U–Pb, Ar–Ar geochronology at the Jiepailing Sn–Be–F deposit, Hunan, China[J]. Ore Geology Reviews, 65: 283−293. doi: 10.1016/j.oregeorev.2014.10.006

    [110]

    Yuan Shunda, Liu Xiaofei, Wang Xudong, Wu Shenghua, Yuan Yabing, Li Xuekai, Wang Tiezhu. 2012. Geological characteristics and 40Ar–39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province[J]. Acta Petrologica Sinica, 28(12): 3787−3797 (in Chinese with English abstract).

    [111]

    Yuan Shunda. 2017. Several crucial scientific issues related to the W–Sn metallogenesis in the Nanling Range and their implications for regional exploration: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 736–749 (in Chinese with English abstract).

    [112]

    Zeng Yunfu, Shen Qilin, Zhang Jinquan, Chi Sanchuan, Ge Chaohua, Liu Wenjun, Xu Xinhuang, et al. 1987. The Nanling Mountain Devonian stratabound deposit[M]. Beijing: Geological Publishing House (in Chinese).

    [113]

    Zhang Min, Chen Peirong, Zhang Wenlan, Chen Weifeng, Li Huimin, Zhang Mengqun. 2003. Geochemical characteristics and petrogenesis of Dadongshan granite pluton in mid Nanling Range[J]. Geochimica, (6): 529−539 (in Chinese with English abstract).

    [114]

    Zhang Rongqing, Lu Jianjun, Wang Rucheng, Yao Yuan, Ding Teng, Hu Jiabin, Zhang Huaifeng. 2016. Petrogenesis of W− and Sn−bearing granites and the mechanism of their metallogenic diversity in the Wangxianling area, southern Hunan Province[J]. Geochemica. 45(2): 105–132 (in Chinese with English abstract).

    [115]

    Zhang R Q, Lu J J, Wang R C, Yang P, Zhu J C, Yao Y A, Gao J F, Li Chao, Lei Z H, Zhang W L, Guo W M. 2015. Constraints of in situ zircon and cassiterite U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar ages on multiple generations of granitic magmatism and related W–Sn mineralization in the Wangxianling area, Nanling Range, South China[J]. Ore Geology Reviews, 65: 1021−1042. doi: 10.1016/j.oregeorev.2014.09.021

    [116]

    Zhang Shuming, Zhou Weixun, Wu Jianhua. 2002. Discrimination of volcanic rocks in Xiazhuang uranium ore−field and its comparison with volcanic rocks of the same period in adjacent areas[J]. Uranium Geology, 18(4): 202−209 (in Chinese with English abstract).

    [117]

    Zhang Xiaojun, Luo Hua, Wu Zhihua, Fan Xianwang, Xiong Jun, Yang Jie, Mou Jinyi. 2014. Rb–Sr isochron age and its geological significance of Baishaziling tin deposit in Dayishan ore field, Hunan Province[J]. Earth Science, 39(10): 1422−1432 (in Chinese with English abstract).

    [118]

    Zhao Chunlin. 1964. Liberite (Li2BeSiO4): A new lithium−beryllium silicate mineral from the Nanling Ranges, South China[J]. Acta Geologica Sinica, 44(3): 334−342 (in Chinese).

    [119]

    Zhao Ruyi, Wang Denghong, Wang Yaowu, Chen Yuchuan, Liu Wusheng, Zhang Xiong, Jiang Jinchang, Liu Zhanqing, Li Tingjic, Wang Langen, Ying Lijuan. 2020. A prospecting breakthrough and progress in the Dabaoshan porphyry copper deposit in Guangdong Province[J]. Acta Geologica Sinica, 94(1): 204−216 (in Chinese with English abstract). doi: 10.1111/1755-6724.14508

    [120]

    Zhao Zhi, Wang Denghong, Chen Zhenhui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of lon−adsorption type REE deposit in the Nanling Range[J]. Acta Geologica Sinica, 91(12): 2814−2827 (in Chinese with English abstract).

    [121]

    Zhen Shiming, Zhu Xinyou, Li Yongsheng, Du Zezhong, Gong Fanyin, Gong Xiaodong, Qi Fanyu, Jia Delong, Wang Lulin. 2012. Zircon U–Pb geochronology and Hf isotopic compositions of the monzonite, related to the Xianrenyan gold deposit in Hunan Province and its geological significances[J]. Journal of Jilin University (Earth Science Edition), 42(6): 1740−1756 (in Chinese with English abstract).

    [122]

    Zheng Jiahao, Guo Chunli. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance[J]. Acta Petrologica Sinica, 28(1): 75−90 (in Chinese with English abstract).

    [123]

    Zhou Jiyuan, Du Siqing, Wei Xiangui. 1980. Discussion on structural system and coal prospecting direction in Xinfeng bridge coalfield area, Jiangxi Province[J]. Journal of Chengdu College of Geology, (2): 28−44 (in Chinese).

    [124]

    Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26−33. doi: 10.18814/epiiugs/2006/v29i1/004

    [125]

    Zhou Yun, Liang Xinquan, Liang Xirong, Wu Shi, Cong Jiangying, Wen Shunv, Cai Yongfeng. 2013. Chronology and geochemical characteristics of W–Sn A−type granite in Xitian, Hunan[J]. Geotectonica et Metallogenia, 37(3): 511−529 (in Chinese with English abstract).

    [126]

    Zou Dongfeng, Li Fanglin, Zhang Shuang, Huang Bin, Zong Keqing. 2011. Timing of No. 335 ore deposit in Xiazhuang uranium orefield, northern Guangdong Province: Evidence from LA–ICP–MS U–Pb dating of pitchblende[J]. Mineral Deposits, 30(5): 912−922 (in Chinese with English abstract).

    [127]

    Zuo Changhu, Lu Rui, Zhao Zengxia, Xu Zhaowen, Lu Jianjun, Wang Ru Cheng, Chen Jinquan. 2014. Characterization of element geochemistry, LA–ICP–MS zircon U–Pb age, and Hf isotope of granodiorite in the Shuikoushan deposit, Changning, Hunan Province[J]. Geological Review, 60(4): 811−823 (in Chinese with English abstract).

    [128] 柏道远, 陈建超, 马铁球, 王先辉. 2005. 湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境[J]. 岩石矿物学杂志, 24(4): 255−272. doi: 10.3969/j.issn.1000-6524.2005.04.002
    [129] 柏道远, 马铁球, 王先辉, 张晓阳, 陈必河. 2008. 南岭中段中生代构造−岩浆活动与成矿作用研究进展[J]. 中国地质, 35(3): 436−455. doi: 10.3969/j.issn.1000-3657.2008.03.008
    [130] 柏道远, 唐分配, 李彬, 曾广乾, 李银敏, 姜文. 2022. 湖南省成矿地质事件纲要[J]. 中国地质, 49(1): 151–180.
    [131] 伯慧, 邱开国, 陈富贵, 程星敏, 王鹤. 2016. 江西省信丰县含煤地层中推覆体的初步研究[J]. 江西煤炭科技, (4): 108−109. doi: 10.3969/j.issn.1006-2572.2016.04.042
    [132] 蔡富成, 秦锦华, 覃金宁, 姜必广, 朱成生. 2021. 湖南川口岩体型钨矿赋矿花岗岩地球化学特征及LA–ICP–MS锆石U–Pb定年[J]. 中国地质, 48(4): 1212−1224. doi: 10.12029/gc20210417
    [133] 蔡锦辉, 韦昌山, 孙明慧. 2004. 湖南骑田岭白腊水锡矿床成矿年龄讨论[J]. 地球学报, 25(2): 235−238. doi: 10.3321/j.issn:1006-3021.2004.02.027
    [134] 蔡明海, 陈开旭, 屈文俊, 刘国庆, 付建明, 印建平. 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re–Os测年[J]. 矿床地质, 25(3): 263−268. doi: 10.3969/j.issn.0258-7106.2006.03.005
    [135] 蔡明海, 张文兵, 彭振安, 刘虎, 郭腾飞, 谭泽模, 唐龙飞. 2016. 湘南荷花坪锡多金属矿床成矿年代研究[J]. 岩石学报, 32(7): 2111−2123.
    [136] 蔡杨, 马东升, 陆建军, 黄卉, 章荣清, 屈文俊. 2012. 湖南邓阜仙钨矿辉钼矿铼–锇同位素定年及硫同位素地球化学研究[J]. 岩石学报, 28(12): 3798−3808.
    [137] 陈迪, 陈焰明, 马爱军, 刘伟, 刘耀荣, 倪艳军. 2014. 湖南锡田岩体的岩浆混合成因: 岩相学、岩石地球化学和U–Pb年龄证据[J]. 中国地质, 41(1): 61−78. doi: 10.3969/j.issn.1000-3657.2014.01.005
    [138] 陈迪, 刘珏懿, 付胜云, 马铁球, 刘耀荣. 2017. 湖南邓阜仙岩体地质地球化学特征、锆石U–Pb年龄及其意义[J]. 地质通报, 36(9): 1601−1615. doi: 10.3969/j.issn.1671-2552.2017.09.012
    [139] 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 14(4): 459−473. doi: 10.3969/j.issn.1006-7493.2008.04.001
    [140] 陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景[J]. 中国科学(D辑: 地球科学), 32(4): 279−289.
    [141] 陈毓川, 裴荣富, 张宏良, 林新多, 白鸽, 李崇佑, 胡永嘉, 刘姤群, 冼柏琪. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M]. 北京: 地质出版社, 1–508.
    [142] 陈毓川, 裴荣富, 张宏良. 1990. 南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质[J]. 中国地质科学院院报, (1): 79−85.
    [143] 陈毓川, 王登红, 徐志刚, 黄凡. 2014. 华南区域成矿和中生代岩浆成矿规律概要[J]. 大地构造与成矿学, 38(2): 219−229.
    [144] 程亮开. 2018. 粤北大东山岩体加里东期花岗岩锆石U–Pb年龄及地质意义[J]. 华南地质与矿产, 34(1): 31−40.
    [145] 程顺波, 付建明, 马丽艳, 卢友月, 王晓地, 夏金龙. 2016. 南岭地区早侏罗世成矿作用—来自粤北大顶铁锡矿床LA–ICP–MS和Ar–Ar年代学证据[J]. 地质学报, 90(1): 163−176. doi: 10.3969/j.issn.0001-5717.2016.01.011
    [146] 邓平, 沈渭洲, 凌洪飞, 孙立强, 朱捌, 黄国龙, 谭正中. 2011. 粤北热水岩体SHRIMP锆石U–Pb年龄及地球化学特征研究[J]. 地质学报, 85(8): 1274−1283.
    [147] 邓湘伟, 刘继顺, 戴雪灵. 2015. 湘东锡田合江口锡钨多金属矿床地质特征及辉钼矿Re–Os同位素年龄[J]. 中国有色金属学报, 25(10): 2883−2897.
    [148] 丁兴, 陈培荣, 陈卫锋, 黄宏业, 周新民. 2005. 湖南沩山花岗岩中锆石LA–ICPMS U–Pb定年: 成岩启示和意义[J]. 中国科学(D辑: 地球科学), 35(7): 606−616.
    [149] 董超阁. 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 1–158.
    [150] 董少花, 毕献武, 胡瑞忠, 陈佑纬. 2014. 湖南瑶岗仙复式花岗岩岩石成因及与钨成矿关系[J]. 岩石学报, 30(9): 2749−2765.
    [151] 付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2004. 湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义[J]. 中国地质, 31(1): 96−100. doi: 10.3969/j.issn.1000-3657.2004.01.014
    [152] 付建明, 程顺波, 卢友月, 伍式崇, 马丽艳, 陈希清. 2012. 湖南锡田云英岩−石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U–Pb定年[J]. 地质与勘探, 48(2): 313−320.
    [153] 高剑峰, 凌洪飞, 沈渭洲, 陆建军, 张敏, 黄国龙, 谭正中. 2005. 粤西连阳复式岩体的地球化学特征及其成因研究[J]. 岩石学报, 21(6): 1645−1656. doi: 10.3321/j.issn:1000-0569.2005.06.012
    [154] 顾雄飞, 丁奎首, 徐英年. 1976. 南岭石—一种新的亚砷酸盐矿物[J]. 地球化学, (2): 107−112. doi: 10.3321/j.issn:0379-1726.1976.02.004
    [155] 郭爱民, 陈必河, 陈剑锋, 杜云, 郑正福, 周超, 田磊, 樊晖. 2017. 湖南塔山花岗岩SHRIMP锆石U–Pb年龄及其地质意义[J]. 地质通报, 36(Z1): 459−465.
    [156] 何德宝. 2017. 粤北下庄矿田不同类型铀矿床成矿机制对比研究[D]. 北京: 核工业北京地质研究院, 1–82.
    [157] 黄崇轲, 朱裕生, 张忠伟. 1997. 南岭银矿[M]. 北京: 地质出版社, 1–293.
    [158] 黄会清, 李献华, 李武显, 刘颖. 2008. 南岭大东山花岗岩的形成时代与成因—SHRIMP锆石U–Pb年龄、元素和Sr–Nd–Hf同位素地球化学[J]. 高校地质学报, 14(3): 317−333. doi: 10.3969/j.issn.1006-7493.2008.03.004
    [159] 黄蕴慧, 杜绍华. 1986. 我国第一个新矿物—香花石的发现及研究(1958)[J]. 中国地质科学院矿床地质研究所文集, (18): 1.
    [160] 贾大成, 胡瑞忠, 谢桂青. 2002. 湘东北中生代基性岩脉微量元素地球化学特征及岩石成因[J]. 地质地球化学, 30(3): 33−39.
    [161] 贾小辉, 王晓地, 杨文强, 牛志军. 2014. 桂北圆石山早侏罗世A型花岗岩的岩石成因及意义[J]. 地球科学(中国地质大学学报), 39(1): 21−36.
    [162] 来守华. 2014. 湖南香花岭锡多金属矿床成矿作用研究[D]. 北京: 中国地质大学(北京), 1–142.
    [163] 黎彤, 袁怀雨, 吴胜昔. 1998. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J]. 大地构造与成矿学, 22(1): 29−34.
    [164] 李红艳, 毛景文, 孙亚利, 邹晓秋, 何红蓼, 杜安道. 1996. 柿竹园钨多金属矿床的Re–Os同位素等时线年龄研究[J]. 地质论评, 42(3): 261−267. doi: 10.3321/j.issn:0371-5736.1996.03.011
    [165] 李华芹, 路远发, 王登红, 陈毓川, 杨红梅, 郭敬, 谢才富, 梅玉萍, 马丽艳. 2006. 湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义[J]. 地质论评, 52(1): 113−121. doi: 10.3321/j.issn:0371-5736.2006.01.015
    [166] 李建华, 张岳桥, 徐先兵, 李海龙, 董树文, 李廷栋. 2014. 湖南白马山龙潭超单元、瓦屋塘花岗岩锆石SHRIMP U–Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 44(1): 158−175.
    [167] 李赛, 段先哲, 牛苏娟, 李南, 孙浩然, 吴鹏, 戴浩鐘, 郭聪, 丁心科. 2022. 华南中生代玄武岩地球化学特征及其地球动力学意义[J]. 地质与勘探, 58(5): 1001−1015. doi: 10.12134/j.dzykt.2022.05.008
    [168] 李顺庭, 王京彬, 祝新友, 李超. 2011. 湖南瑶岗仙钨多金属矿床辉钼矿Re–Os同位素定年和硫同位素分析及其地质意义[J]. 现代地质, 25(2): 228−235. doi: 10.3969/j.issn.1000-8527.2011.02.005
    [169] 李顺庭, 祝新友, 王京彬, 王艳丽, 程细音, 蒋斌斌. 2015. 瑶岗仙复式岩体地质地球化学特征及其与成矿的关系[J]. 矿产勘查, 6(4): 347−355. doi: 10.3969/j.issn.1674-7801.2015.04.002
    [170] 李勇, 张岳桥, 苏金宝, 李建华, 董树文. 2015. 湖南大义山、塔山岩体锆石U–Pb年龄及其构造意义[J]. 地球学报, 36(3): 303−312. doi: 10.3975/cagsb.2015.03.05
    [171] 李永胜, 甄世民, 公凡影, 杜泽忠, 贾德龙. 2015. 湖南水口山铅锌金银矿田鸭公塘3号岩体地质及地球化学特征[J]. 矿物学报, 35(S1): 708−709.
    [172] 李振红. 2020. 南岭中段(湖南段)上地幔−下地壳对燕山期成矿花岗岩的约束[J]. 国土资源导刊, 17(1): 27−33. doi: 10.3969/j.issn.1672-5603.2020.01.006
    [173] 李子颖, 黄志章, 李秀珍. 2011. 南岭贵东岩浆岩与铀成矿作用[M]. 北京: 地质出版社, 1–292.
    [174] 梁新权, 李献华, 丘元禧, 杨东生. 2005. 华南印支期碰撞造山—十万大山盆地构造和沉积学证据[J]. 大地构造与成矿学, 29(1): 99−112. doi: 10.3969/j.issn.1001-1552.2005.01.014
    [175] 廖森, 邹振威, 谢刚. 2017. 信丰大桥煤田地质构造特征[J]. 资源信息与工程, 32(6): 55−56. doi: 10.3969/j.issn.2095-5391.2017.06.026
    [176] 廖煜钟. 2019. 千里山花岗岩及其与柿竹园矿田矿化分带的成因联系[D]. 北京: 中国地质大学(北京), 1–197.
    [177] 林坤, 李海东, 刘斌, 龙自强, 吴建勇. 2021. 粤北河口岩体次英安斑岩锆石U–Pb年代学和Hf同位素特征及其地质意义[J]. 地质与勘探, 57(2): 392−401. doi: 10.12134/j.dzykt.2021.02.014
    [178] 林小明, 李宏卫, 黄建桦, 娄峰. 2016. 广东连平大顶铁矿区石背岩体LA–ICP–MS锆石U–Pb年龄及地质意义[J]. 中山大学学报(自然科学版), 55(1): 131−136.
    [179] 刘畅, 田建吉, 何德宝, 王文全, 李君阳, 刘威. 2022. 湖南水口山铅锌多金属矿田中铀的赋存状态及其共生矿物组合[J]. 地质与勘探, 58(1): 1−11. doi: 10.12134/j.dzykt.2022.01.001
    [180] 刘国庆, 伍式崇, 杜安道, 付建明, 杨晓君, 汤质华, 魏君奇. 2008. 湘东锡田钨锡矿区成岩成矿时代研究[J]. 大地构造与成矿学, 32(1): 63−71. doi: 10.3969/j.issn.1001-1552.2008.01.009
    [181] 刘晓菲. 2014. 湖南金船塘锡铋矿床地质地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京), 1–80.
    [182] 卢友月, 付建明, 程顺波, 马丽艳, 张鲲. 2013. 湘南界牌岭锡多金属矿床含矿花岗斑岩SHRIMP锆石U–Pb年代学研究[J]. 华南地质与矿产, 29(3): 199−206.
    [183] 路远发, 马丽艳, 屈文俊, 梅玉萍, 陈希清. 2006. 湖南宝山铜−钼多金属矿床成岩成矿的U–Pb和Re–Os同位素定年研究[J]. 岩石学报, 22(10): 2483−2492. doi: 10.3321/j.issn:1000-0569.2006.10.009
    [184] 马丽艳, 路远发, 梅玉萍, 陈希清, 杨红梅. 2005. 湖南芙蓉锡矿田Rb–Sr同位素年龄及其地质意义[J]. 地球学报, 26(S1): 143−145.
    [185] 马丽艳, 路远发, 屈文俊, 付建明. 2007. 湖南黄沙坪铅锌多金属矿床的Re–Os同位素等时线年龄及其地质意义[J]. 矿床地质, 26(4): 425−431. doi: 10.3969/j.issn.0258-7106.2007.04.006
    [186] 马丽艳, 路远发, 付建明, 陈希清, 程顺波. 2010. 湖南东坡矿田金船塘、红旗岭锡多金属矿床Rb–Sr、Sm–Nd同位素年代学研究[J]. 华南地质与矿产, 26(4): 23−29.
    [187] 马丽艳, 刘树生, 付建明, 程顺波, 卢友月, 梅玉萍. 2016. 湖南塔山、阳明山花岗岩的岩石成因: 来自锆石U–Pb年龄、地球化学及Sr–Nd同位素证据[J]. 地质学报, 90(2): 284−303. doi: 10.3969/j.issn.0001-5717.2016.02.007
    [188] 马铁球, 柏道远, 邝军, 王先辉. 2005. 湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义[J]. 地质通报, 24(5): 415−419. doi: 10.3969/j.issn.1671-2552.2005.05.004
    [189] 马星华, 陈斌, 王志强, 高林, 孙克克. 2014. 南岭连阳复式岩体成因: 锆石U–Pb年代学、地球化学和Nd–Hf同位素约束[J]. 地学前缘, 21(6): 264−280.
    [190] 毛景文, 李红艳, 裴荣富. 1995. 湖南千里山花岗岩体的Nd–Sr同位素及岩石成因研究[J]. 矿床地质, 14(3): 235−242.
    [191] 毛景文, 李晓峰, Bernd Lehmann, 陈文, 蓝晓明, 魏绍六. 2004. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar–39Ar年龄及其地球动力学意义[J]. 矿床地质, 23(2): 164−175. doi: 10.3969/j.issn.0258-7106.2004.02.005
    [192] 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329−2338. doi: 10.3969/j.issn.1000-0569.2007.10.002
    [193] 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510−526. doi: 10.3969/j.issn.1006-7493.2008.04.005
    [194] 弥佳茹, 袁顺达, 轩一撒, 张东亮. 2018. 湖南宝山—大坊矿区成矿花岗闪长斑岩的锆石U–Pb年龄、Hf同位素及微量元素组成对区域成矿作用的指示[J]. 岩石学报, 34(9): 2548−2564.
    [195] 莫柱孙, 叶伯丹, 潘维祖. 1980. 南岭花岗岩地质学[M]. 北京: 地质出版社, 1–363.
    [196] 彭建堂, 胡瑞忠, 毕献武, 戴橦谟, 李兆丽, 李晓敏, 双燕, 袁顺达, 刘世荣. 2007. 湖南芙蓉锡矿床40Ar–39Ar同位素年龄及地质意义[J]. 矿床地质, 26(3): 237−248. doi: 10.3969/j.issn.0258-7106.2007.03.001
    [197] 彭能立, 王先辉, 杨俊, 陈迪, 罗来, 罗鹏, 刘天一. 2017. 湖南川口三角潭钨矿床中辉钼矿Re–Os同位素定年及其地质意义[J]. 矿床地质, 36(6): 1402−1414.
    [198] 秦锦华, 王成辉, 陈毓川, 赵如意. 2022. 南岭中段一六矿床绿柱石和白云母矿物学特征及其地质意义[J]. 矿床地质, 41(5): 1025−1041.
    [199] 秦拯纬, 付建明, 邢光福, 程顺波, 卢友月, 祝颖雪. 2022. 南岭成矿带中—晚侏罗世成钨、成锡、成铅锌(铜)花岗岩的差异性研究[J]. 中国地质, 49(2): 518–539.
    [200] 全铁军, 孔华, 王高, 费利东, 郭碧莹, 赵志强. 2012. 黄沙坪矿区花岗岩岩石地球化学、U–Pb年代学及Hf同位素制约[J]. 大地构造与成矿学, 36(4): 597−606.
    [201] 单芝波. 2014. 粤北桃村坝花岗岩锆石U–Pb年代学、地球化学及成因研究[D]. 南京: 南京大学, 1–52.
    [202] 舒良树, 周新民, 邓平, 余心起, 王彬, 祖辅平. 2004. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 23(9): 876−884.
    [203] 舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征[J]. 地质论评, 52(2): 251−265.
    [204] 孙涛, 周新民, 陈培荣, 李惠民, 周红英, 王志成, 沈渭洲. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义[J]. 中国科学(D辑: 地球科学), 33(12): 1209−1218.
    [205] 孙颖超, 陈郑辉, 赵国春, 黄鸿新, 曾乐, 晏超, 伍式崇. 2017. 湖南邓阜仙钨铌钽矿花岗细晶岩接触带白云母40Ar/39Ar年龄及其地质意义[J]. 地质通报, 36(2): 466−476. doi: 10.3969/j.issn.1671-2552.2017.02.028
    [206] 汪群英, 路远发, 陈郑辉, 叶诗文, 黄鸿新. 2015. 湖南邓埠仙钨矿流体包裹体特征及含矿岩体U–Pb年龄[J]. 华南地质与矿产, 31(1): 77−88.
    [207] 王成辉, 王登红, 秦锦华, 李建康, 刘善宝, 陈振宇. 2021. 南岭成矿带中亚带发现花岗伟晶岩型铍矿[J]. 矿床地质, 40(2): 398−401.
    [208] 王登红. 1998. 地幔柱及其成矿作用[M]. 北京: 地震出版社, 1–160.
    [209] 王登红, 李建康, 应立娟, 陈郑辉, 陈毓川. 2007. 对运用全位成矿与缺位找矿理念寻找铂族元素矿床的思考[J]. 矿物学报, (Z1): 460−462.
    [210] 王登红, 李华芹, 秦燕, 梅玉萍, 陈郑辉, 屈文俊, 王彦斌, 蔡红, 龚述清, 何晓平. 2009. 湖南瑶岗仙钨矿成岩成矿作用年代学研究[J]. 岩矿测试, 28(3): 201−208.
    [211] 王登红, 陈郑辉, 陈毓川, 唐菊兴, 李建康, 应立娟, 王成辉, 刘善宝, 李立兴, 秦燕, 李华芹, 屈文俊, 王彦斌, 陈文, 张彦. 2010. 我国重要矿产地成岩成矿年代学研究新数据[J]. 地质学报, 84(7): 1030−1040.
    [212] 王登红, 陈振宇, 黄凡, 王成辉, 赵芝, 陈郑辉, 赵正, 刘新星. 2014. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 38(2): 230−238.
    [213] 王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−7.
    [214] 王军, 赖中信, 张辉仁, 胡刚, 杨坤光. 2011. 粤北下庄铀矿田岩体地球化学特征及其构造环境[J]. 铀矿地质, 27(3): 136−145. doi: 10.3969/j.issn.1000-0658.2011.03.002
    [215] 王凯兴, 陈卫锋, 陈培荣, 章健. 2012. 湖南中部地区丫江桥和五峰仙岩体地球LA–ICP–MS锆石年代学、地球化学及岩石成因研究[C]//全国铀矿大基地建设学术研讨会论文集(上): 486–494.
    [216] 王汝成, 谢磊, 诸泽颖, 胡欢. 2018. 云母: 花岗岩—伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1): 69−75.
    [217] 伍光英. 2005. 湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用[D]. 北京: 中国地质大学(北京), 1–218.
    [218] 伍光英, 马铁球, 柏道远, 李金冬, 车勤建, 王先辉. 2005. 湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年[J]. 现代地质, 19(2): 198−204. doi: 10.3969/j.issn.1000-8527.2005.02.006
    [219] 吴继光. 2013. 南岭贵东岩体北部英安斑岩锆石LA–ICPMS U–Pb年龄及其地质意义[J]. 铀矿地质, 29(5): 268−273, 262. doi: 10.3969/j.issn.1000-0658.2013.05.003
    [220] 肖红全, 赵葵东, 蒋少涌, 姜耀辉, 凌洪飞. 2003. 湖南东坡矿田金船塘锡铋矿床铅同位素地球化学及成矿年龄[J]. 矿床地质, 22(3): 264−270. doi: 10.3969/j.issn.0258-7106.2003.03.007
    [221] 谢银财. 2013. 湘南宝山铅锌多金属矿区花岗闪长斑岩成因及成矿物质来源研究[D]. 南京: 南京大学, 1–104.
    [222] 徐夕生, 邓平, O'Reilly S Y, Griffin W L, 周新民, 谭正中. 2003. 华南贵东杂岩体单颗粒锆石激光探针ICPMS U–Pb定年及其成岩意义[J]. 科学通报, 48(12): 1328−1334. doi: 10.3321/j.issn:0023-074X.2003.12.020
    [223] 徐志刚, 陈毓川, 王登红, 陈郑辉, 李厚民. 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社, 1–138.
    [224] 姚军明, 华仁民, 林锦富. 2005. 湘东南黄沙坪花岗岩LA–ICPMS锆石U–Pb定年及岩石地球化学特征[J]. 岩石学报, 21(3): 688−696. doi: 10.3321/j.issn:1000-0569.2005.03.010
    [225] 姚远. 2013. 南岭镁质及钙质矽卡岩型锡多金属成矿作用研究[D]. 南京: 南京大学, 1–151.
    [226] 袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李雪凯, 王铁柱. 2012. 湘南红旗岭锡多金属矿床地质特征及Ar–Ar同位素年代学研究[J]. 岩石学报, 28(12): 3787−3797.
    [227] 袁顺达. 2017. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J]. 矿物岩石地球化学通报, 36(5): 736−749. doi: 10.3969/j.issn.1007-2802.2017.05.004
    [228] 曾允孚, 沈德麒, 张锦泉, 池三川, 葛朝华, 刘文均, 徐新煌, 等. 1987. 南岭泥盆系层控矿床[M]. 北京: 地质出版社.
    [229] 张敏, 陈培荣, 张文兰, 陈卫锋, 李惠民, 张孟群. 2003. 南岭中段大东山花岗岩体的地球化学特征和成因[J]. 地球化学, (6): 529−539. doi: 10.3321/j.issn:0379-1726.2003.06.003
    [230] 章荣清, 陆建军, 王汝成, 姚远, 丁腾, 胡加斌. 2016. 湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制[J]. 地球化学, 45(2): 105−132. doi: 10.3969/j.issn.0379-1726.2016.02.001
    [231] 张树明, 周维勋, 巫建华. 2002. 下庄铀矿田火山岩的厘定及与周边同期火山岩的对比[J]. 铀矿地质, 18(4): 202−209. doi: 10.3969/j.issn.1000-0658.2002.04.002
    [232] 张晓军, 罗华, 吴志华, 范先旺, 熊俊, 杨杰, 牟金燚. 2014. 湖南大义山矿田白沙子岭锡矿床Rb–Sr同位素等时线年龄及其地质意义[J]. 地球科学(中国地质大学学报), 39(10): 1422−1432.
    [233] 赵春林. 1964. 锂铍石—一个新的富锂、铍矿物[J]. 地质学报, 44(3): 334−342.
    [234] 赵如意, 王登红, 王要武, 陈毓川, 刘武生, 张熊, 蒋金昌, 刘战庆, 李挺杰, 王兰根, 应立娟. 2020. 广东省大宝山斑岩型铜矿床勘查突破及其区域找矿意义[J]. 地质学报, 94(1): 204−216.
    [235] 赵芝, 王登红, 陈郑辉, 陈振宇. 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报, 91(12): 2814−2827. doi: 10.3969/j.issn.0001-5717.2017.12.016
    [236] 甄世民, 祝新友, 李永胜, 杜泽忠, 公凡影, 巩小栋, 齐钒宇, 贾德龙, 王璐琳. 2012. 湖南仙人岩与金矿床有关的二长岩锆石U–Pb年龄、Hf同位素及地质意义[J]. 吉林大学学报(地球科学版), 42(6): 1740−1756.
    [237] 郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U–Pb年代学、地球化学、锆石Hf同位素特征及其地质意义[J]. 岩石学报, 28(1): 75−90.
    [238] 周济元, 杜思清, 魏显贵. 1980. 江西信丰大桥煤田地区构造体系及找煤方向的探讨[J]. 成都地质学院学报, (2): 28−44.
    [239] 周云, 梁新权, 梁细荣, 伍式, 崇蒋英, 温淑女, 蔡永丰. 2013. 湖南锡田含W–Sn A型花岗岩年代学与地球化学特征[J]. 大地构造与成矿学, 37(3): 511−529. doi: 10.3969/j.issn.1001-1552.2013.03.015
    [240] 邹东风, 李方林, 张爽, 黄彬, 宗克清. 2011. 粤北下庄335矿床成矿时代的厘定—来自LA–ICP–MS沥青铀矿U–Pb年龄的制约[J]. 矿床地质, 30(5): 912−922. doi: 10.3969/j.issn.0258-7106.2011.05.012
    [241] 左昌虎, 路睿, 赵增霞, 徐兆文, 陆建军, 王汝成, 陈进全. 2014. 湖南常宁水口山Pb–Zn矿区花岗闪长岩元素地球化学, LA–ICP–MS锆石U–Pb年龄和Hf同位素特征[J]. 地质论评, 60(4): 811−823.
  • 期刊类型引用(6)

    1. 王卓群,陈扣平,吴吉春,王保战,柳旭. 太湖周边地下水中高硝酸盐负荷促进反硝化功能菌群富集. 中国环境科学. 2025(01): 477-486 . 百度学术
    2. 李丽君,李旭光. 西辽河平原浅层地下水中“三氮”分布特征及健康风险评价. 地质与资源. 2024(01): 90-97 . 百度学术
    3. 杨开丽,刘淑亮,万惠芸,阎琨,陶昱君,王洪松. 基于氮氧同位素和MixSIAR模型的烟台北部地表水硝酸盐来源分析. 中国地质. 2024(06): 2066-2076 . 本站查看
    4. 蒋宗妤,马圣祥,刘莹,马兴冠. 复杂地貌地区地下水硝酸盐生态及健康风险评价. 给水排水. 2024(S1): 7-11 . 百度学术
    5. 许飞青,李潇,李凯,于喆,郭亚杉,赵志强. 随机森林回归模型在地下水水质评价的新应用. 地质与勘探. 2023(02): 408-417 . 百度学术
    6. 王国华,张妍,缑倩倩,张仲伍,孙九林. 黑河流域中游绿洲边缘地表水和地下水水化学特征分析. 地理科学. 2022(10): 1818-1828 . 百度学术

    其他类型引用(5)

图(9)  /  表(4)
计量
  • 文章访问数:  9043
  • HTML全文浏览量:  724
  • PDF下载量:  1288
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-08-03
  • 网络出版日期:  2024-02-03
  • 刊出日期:  2024-07-24

目录

/

返回文章
返回
x 关闭 永久关闭