The progress in the study of continental dynamics of the Tibetan Plateau
-
摘要: 近10年来,"大陆构造与动力学实验室"在青藏高原大陆动力学研究,尤其在特提斯演化和青藏高原生长方面取得若干进展,包括(1)"青藏高原——造山的高原"理念的提出;(2)青藏高原特提斯体制和构造格架的再造;(3)新特提斯蛇绿岩中原位金刚石和深地幔矿物群的重大发现;(4)新特提斯洋盆俯冲新机制的揭示;(5)印度/亚洲碰撞的早期岩浆和喜马拉雅折返中的作用;(6)喜马拉雅三维碰撞造山机制和折返全过程的初步建立;(7)青藏高原东南缘物质逃逸的新机制——"弯曲与地壳解耦"的提出;(8)青藏高原俯冲型、碰撞型及陆内型片麻岩穹窿;(9)青藏高原东缘汶川强震的构造背景和强震机制;(10)青藏高原碰撞造山成矿模式;(11)印度/亚洲碰撞过程的数值模拟。综述和集成上述成果是为了与同行们交流磋商,进一步共同发展青藏高原大陆动力学理论,向国际地学前沿的冲刺。Abstract: Based on the previously research, the research group of Key Laboratory of Continental Tectonics and Dynamics has achieved lots of great progress in the study of the continental dynamics of the Tibetan Plateau, especially in the evolution of Tethys and the growth of the Tibetan Plateau during the past decade. These achievements can be summarized as follows:(1) The Hypothesis on Tibetan Plateau as a orogenic plateau was proposed; (2) the reconstruction of the tectonic framework and the Tibetan-Tethys system; (3) the discovery of in situ diamond and deep mantle-derived mineral group in the ophiolites distributed along the Neotethyan suture zone; (4) the understanding of the subduction mechanism of the Neotethy oceanic basins; (5) the role of magmatism formed in the early stage of the Indo-Asian collision for the exhumation of Himalaya; (6) the establishment of the 3D models of the collisional orogeny and exhumation of the Himalaya; (7) the new proposal on the extrusion of the SE Tibetan Plateau:‘crustal bending and decouple’; (8) the subduction-related, collision-related and continental gneiss domes with Tibetan Plateau; (9) the tectonic setting and the Wenchuan Earthquake mechanism on the eastern margin of the Tibetan Plateau; (10) Numerical modeling of the Indo-Asian collisional process. This paper aims to communicate with and stimulate interest among global geologists to make further development in the continental dynamics of the Tibetan Plateau.
-
Keywords:
- Tibetan Plateau /
- continental dynamics /
- Tethys system /
- Indo-Asian collision
-
1. 引言
随着近些年油气勘探的逐步深入,已证实了辽西地区侏罗系北票组泥岩具有很好的生烃潜力,是该区重要油气勘探层系(李永飞等,2014;孙守亮等,2017;肖飞等,2017;赵洪伟等,2018;孙求实等,2018;张君峰等,2018;刘淼等, 2018, 2019)。北票组主要分布于辽西地区金羊盆地、北票盆地等中生代盆地,在凌源地区牛营子凹陷地表未见发育。牛营子凹陷是松辽外围南部盆地群油气基础地质调查的重点凹陷,之前的勘探目的层为中元古界高于庄组,并获得了油气发现(肖飞等,2018;Sun et al., 2019)。
牛营子凹陷位于华北地台北缘东段,是辽西凌源—宁城盆地东南部的次级凹陷,凹陷近NE走向,长约20 km,宽约6 km,面积约120 km2(孙求实等,2017;王浩等,2019)。在中生代经历了燕山期的逆冲推覆,逆冲推覆断裂大致呈15°,沿柴杖子北庄—太平杖子—牛营子方向延伸,断面倾向北西,倾角50~70°,伴有同构造沉积,形成特有的邓杖子组(J2d)碳酸质角砾岩沉积(图 1)。
图 1 牛营子凹陷地质略图1—逆断层;2—正断层;3—逆冲推覆构造;4—侵入岩;5—第四系(Q);6—白垩系义县组(K1y);7—侏罗系髫髻山组(J2t);8—侏罗系邓杖子组(J2d);9—侏罗系海房沟组(J2h);10—二叠系石盒子组(P2s);11—寒武系—奥陶系并层(∈—O);12—中新元古界并层(Pt)Figure 1. Geological sketch map of Niuyingzi depression1-Reverse fault; 2- Normal fault; 3-Thrust nappe structure; 4-Intrusive rock; 5-Quaternary; 6-Yixian Formation; 7-Tiaojishan Formation; 8-Dengzhangzi Formation; 9-Haifanggou Formation; 10-Shihezi Formation; 11-Cambrian-Ordovician; 12-Mesoproterozoic-Neoproterozoic2017年中国地质调查局沈阳地质调查中心组织实施辽凌地1井钻探,在中元古界高于庄组灰色白云质灰岩之下,井深1527.91~1722.78 m(未见底),钻遇厚层暗色优质烃源岩,岩性以泥砂互层为主,并夹少量煤线。从钻井揭示的地层发育情况来看,该套地层厚度超过195 m,其中泥岩累计总厚度102.58 m,单层厚度大于3 m的泥岩厚度为33.69 m,砂岩累计厚度92.42 m,泥地比59.79%,并见多段气测异常:该井段气测录井全烃值大于背景值2倍地层厚度为39 m;全烃最大值为10.78%。牛营子凹陷地表并未发现有可类比地层(徐刚等,2003;胡健民等,2005),该套暗色泥岩的时代存在不确定性,因此厘定该套地层成为该地区油气勘探的重要工作。
本文综合分析辽凌地1井钻孔资料,结合区域地层资料,通过岩性及孢粉组合特征的研究将该套地层厘定为早侏罗统北票组(J1b)。这一地层新发现为研究牛营子凹陷构造演化以及油气地质调查中找寻侏罗统烃源岩层提供了重要的基础地质资料。早侏罗统北票组(J1b)地层的确定,将该地区原有单一的中新元古界勘探层系拓展为中新元古界黑色碳酸盐岩地层和中生界北票组泥岩两套深部油气勘探层系。该认识对于辽西地区油气勘探工作,乃至松辽外围南部盆地群的油气勘探工作都有重要意义。
2. 钻孔剖面描述
辽凌地1井中元古界推覆体下沉积岩地层钻孔剖面描述如下(图 2):
图 2 辽凌地1井北票组综合柱状图1—砾屑白云岩;2—泥岩;3—细砂岩;4—含砾中砂岩;5—含砾粗砂岩;6—中砂岩;7—粉砂质泥岩;8—泥质粉砂岩;9—粉砂岩;10—炭质泥岩;11—含气层;12—植物叶片;13—砂质条带;14—斜层理;15—植物茎秆化石;16—水平层理;17—冲刷面;18—爬升层理;19—槽状交错层理;20—泥质条带;21—生物扰动构造;22—块状层理;23—波状层理Figure 2. Stratigraphic section of LLD1 well1-Dolorudite; 2-Mudstone; 3-Fine sandstone; 4-Conglomeratic medium sandstone; 5-Conglomeratic gritstone; 6-Medium sandstone; 7-Silty mudstone; 8-Argillaceous siltstone; 9-Siltystone; 10-Carbon mudstone; 11-Gas bearing formation; 12-Plant leaves; 13-Sandy belt; 14-Oblique bedding; 15-Fossilized plant stalks; 16-Horizontal bedding; 17-Scour surface; 18-Climb bedding; 19-Trough cross-bedding; 20-Argillaceous stripe; 21-Bioturbate structures; 22-Massive bedding; 23-Wave bedding断层下盘侏罗系地层(J)>194.87 m
上覆地层:中元古界高于庄组碳酸盐岩
=============断层============
27.黑色泥岩 23.54 m
26.灰色细粒石英砂岩,石英含量约95%,长石岩屑约5%。细粒结构,其中细粒约70%,细粒大小约0.2 mm, 分选中等,磨圆好。 7.26 m
25.灰黑色泥岩 14.85 m
24.灰色含砾中砂岩,砾石主要为石英,砾径大小约5 mm×6 mm,次棱角状,分选一般,局部见炭屑。 3.23 m
23.黑灰色泥岩 12.25 m
22.灰色砂质细砾岩,砾石成分主要为石英砂岩,砾石大小2~5 mm,次棱角状,分选一般,含量70%,砂质胶结,局部见少量岩屑。 8.66 m
21.黑色泥岩 5.56 m
20.灰色中粒石英长石砂岩,中细粒砂状结构,碎屑成分主要为石英,大小0.5 mm,含量约20%;长石,大小0.4~0.5 mm,含量约70%。石英、长石颗粒磨圆较好,分选一般,颗粒支撑,硅质胶结,致密坚硬。 22.08 m
19.灰黑色粉砂质泥岩,含植物碎屑。 21.61 m
18.灰色石英长石中砂岩,中粒砂状结构,粒径大小约0.4 mm,与上层渐变接触。 4.69 m
17.黑灰色粉砂质泥岩,含植物碎屑 4.2 m
16.灰色石英长石中砂岩,中粒砂状结构,粒径大小约0.4 mm。 6.49 m
15.灰黑色泥岩 3.03 m
14.灰色石英长石中砂岩 3.30 m
13.黑色炭质泥岩 4.26 m
12.灰色石英长石中砂岩,中粒砂状结构,粒径大小约0.4 mm。 4.23 m
11.黑色炭质泥岩 3.96 m
10.灰色石英长石中砂岩,中粒砂状结构,粒径大小约0.4 mm。 3.70 m
9.黑色炭质泥岩 6.74 m
8.灰色石英长石中砂岩,中粒砂状结构,粒径大小约0.4 mm。 3.88 m
7.黑色炭质泥岩,含植物碎屑。 3.81 m
6.灰色石英长石中砂岩,中粒砂状结构,粒径大小约0.4 mm。 3.85 m
5.深灰色细砂岩,砂状结构,局部含炭屑,分选好,粒径大小约0.2 mm。 4.46 m
4.深灰色石英长石中砂岩,中粒砂状结构,粒度逐渐变粗,倾角约30°,局部层理发育。 3.06 m
3.灰黑色粉砂质泥岩 5.11 m
2.深灰色粉砂岩,粉砂质结构,矿物碎屑主要为石英、长石。 3.43 m
1.灰色细砂岩,砂状结构,成分主要为石英、长石,分选好,次棱角状,粒径约0.2 mm。
未见底
3. 孢粉组合特征及时代
为了获得目的层较全面的孢粉植物群资料,对辽凌地1井中元古界推覆体下细碎屑沉积地层中进行了孢粉样品采集工作,共采集样品24件,采样间距0.2 m,样品岩性主要为灰黑色细砂岩、灰黑色粉砂岩以及含植物碎屑的黑色泥页岩,每件样品重500 g。孢粉样品经过盐酸、HF浸泡,加重液离心,显微镜下观察(丁秋红等,2003;宋之琛等,2008),经分析在24个样品中有8个样品产有孢粉,其中LD1-1542.2、LD1-1543.3、ND2-1492三个样品孢粉含量较高(>20粒),共计25个属。具体结果见表 1。
表 1 辽凌地1井孢粉化石统计表Table 1. Statistics of sporomorph in LLD1 well样品孢粉化石组合特征如下:(1)裸子植物花粉占据优势地位,其中双气囊裸子类花粉具有较高的含量,如Podocarpidites sp.,Pinuspollenites sp.,Piceites sp.等,样品中可见少量气囊发育欠佳的古老类型,如Paleoconiferus sp.;具单远极沟类的Cycadopites sp.,Monosulcites sp.含量较少;掌鳞杉科的Classopollis sp.仅在个别样品中少量出现,(2)蕨类植物孢子含量相对较低,孢子中数量较多的是Cyathidites sp.,Deltoidospora sp.,Osmundacidites sp.等,见图 3。
图 3 辽凌地1井代表性孢粉属种a—无突肋纹孢属Cicatricosisporits sp.;b—凹边孢属Converrucosisporites sp.;c—桫椤孢属Cyathidites sp.;d—三角粒面孢属Granulatisporites sp.;e—托第蕨孢属Todisporites sp.;f—波缝孢属Undulatisporites sp.;g—三角孢属Deltoidospora sp.;h—弓堤孢属Kyrtomisporis sp.;i—紫萁孢属Osmundacidites sp.;j—苏铁粉属Cycadopites sp.;k—凹边孢属Concavisporites sp.;l—单远极沟粉属Monosulcites sp.;m—皱球粉属Psophospheara sp.n—云杉粉属Piceaepollenites sp.;o—拟云杉粉属Piceites sp.;p—原始松粉属Protopinus sp.;q—克拉梭粉属Classopollis sp.;r—广口粉属Chasmatosporites sp.;s—四字粉属Quadraeculina sp.;t—罗汉松粉属Podocarpidites sp.;u—古松柏粉属Paleoconiferus sp.;v—假云杉粉属Pseudopicea sp.;w—双束松粉属Pinuspollenites sp.;x—原始云杉粉属Protopicea sp.(所有孢粉的实体化石及图片均保存于中国地质大学(武汉)地球科学学院微体古生物实验室,化石图片均放大800倍)Figure 3. The representative sporopollen of LLD1 well根据孢粉所显示出的特征看, 裸子植物花粉在样品中极为丰富,而以具囊花粉最盛,Classopollis的含量相对较少。蕨类孢子以桫椤科的Cyathidites和Deltoidospora占显著地位, 是世界各地下—中侏罗统孢粉谱的常见特点, 但通常到中侏罗世, 它们才最为繁盛。通过与东北地区早侏罗世晚期北票组Cyathidites-Cycadopites- Paleoconiferus组合及中侏罗世海房沟组Cyathidites-Cycadopites- Classopollis组合对比(王宪曾等,2000; 宋之琛等,2008),可将样品的时代确定为早侏罗世晚期—中侏罗世。
4. 岩石组合特征
参考《辽宁地质志》的地层划分以及《辽宁省岩石地层》地层资料(辽宁省地质矿产局, 1985; 辽宁省地质矿产勘查开发局, 1997),结合野外地质调查,燕辽地区区域上中生代主要有以下地层展布(图 4):下侏罗统兴隆沟组(J1x)、北票组(J1b),中侏罗统海房沟组(J2h)、邓杖子组(J2d)、髫髻山组(J2t),上侏罗统土城子组(J3t),沙河子组(J3s)。辽宁凌源地区地表出露的侏罗世地层主要有:下侏罗统水泉沟组(J1s),中侏罗统海房沟组(J2h)、邓杖子组(J2d)、髫髻山组(J2t),上侏罗统土城子组(J3t),该地区北票组时期地表地层缺失(图 4中红色区域)(张路锁等,2016)。
图 4 燕辽地区侏罗世地层对比图(徐刚等,2003)Figure 4. The Comparison of Jurassic strata in Yanshan-Liaoning area(Xu Gang et al., 2003)区域上展布的早—中侏罗世地层主要为兴隆沟组(牛营子凹陷命名为水泉沟组)、北票组和海房沟组(徐刚,2003)。兴隆沟组(J1x)以玄武岩、玄武安山岩、安山质角砾岩及集块岩为主,局部具沉积岩夹层的一套中基性火山岩地层(辽宁省地质矿产局,1985;辽宁省地质矿产勘查开发局,1997),辽凌地1井下的暗色泥岩与其区别明显。区域上北票组和海房沟组主要通过岩性组合特征区分。
为进一步确定辽凌地1井中元古界碳酸盐岩推覆体下厚层暗色泥岩地层的时代,需要与北票组和海房沟组的代表剖面进行岩性对比。笔者选择北票盆地三宝四坑剖面进行了实测(图 5为实测的岩性柱),该剖面是北票组的建组剖面,具有代表性(孙守亮,2017;孙求实,2018)。剖面描述如下:
上覆:髫髻山组(J2t)灰绿色安山质角砾凝灰熔岩
———————平行不整合——————
海房沟组(J2h) 290.72 m
18.黄褐色中—厚层粗粒长石石英砂岩 22.81 m
17.黄色泥质页岩 35.77 m
16.黄褐色中—厚层细砾复成分砾岩夹黄褐色中层中粗粒长石石英砂岩 37.03 m
15.灰色中—厚层细砾复成分砾岩 138.74 m
14.灰绿色流纹质沉凝灰岩 20.00 m
13.黄灰色厚—巨厚层中粗砾复成分砾岩 36.37 m
~~~~~~~角度不整合~~~~~~~
北票组(J1b) 767.34 m
12.黄褐色泥质页岩夹黄褐色中—厚层细砾复成分砾岩及黄褐色薄—中厚中粒长石砂岩 96.99 m
11.黄褐色薄—中厚层中细粒长石砂岩夹灰色粉砂质页岩 42.57 m
10.黄褐色页岩夹黄褐色薄—中厚层细粒长石砂岩及薄层粉砂岩 88.77 m
9.黄褐色中厚层中粒长石砂岩夹细砂质页岩 18.27 m
8.黄褐色泥质页岩 140.98 m
7.黄褐色中—厚层含砾中粗粒长石石英砂岩夹泥质页岩 24.25 m
6.黄褐色页岩夹黄褐色薄—中厚层中细粒长石砂岩 105.83 m
5.黄褐色中—厚层中细砾复成分砾岩 13.94 m
4.黄褐色中厚层中粗粒岩屑长石砂岩夹页岩 96.54 m
3.灰色泥质页岩夹煤线 39.99 m
2.黄褐色厚层中粗砾复成分砾岩 34.02 m
1.灰色、灰紫色中厚层不等粒复成分砾岩 75.19 m
——————平行不整合——————
下伏:兴隆沟组(J1x) 灰色安山岩夹灰褐色安山岩质角砾熔岩.
总结北票盆地三宝四坑剖面岩性特征,结合前人研究资料(丁秋红等,2016),北票组和海房沟组岩性差异明显,北票组的岩性组合特征是以长石石英砂岩、长石砂岩和灰色灰黑色页岩为主,夹单成分或复成分砾岩及煤线的一套沉积岩层;海房沟组是不整合于北票组或其他老地层之上的灰白色黄灰色复成分砾岩夹黄灰色长石石英砂岩,局部夹炭质页岩、煤层及灰色灰绿色流纹质凝灰熔岩、凝灰岩的一套沉积组合。辽凌地1井下的这套沉积岩层以灰黑色泥页岩和中—细粒石英长石为主,局部夹薄煤层,从岩石组合特征来看,与区域上的海房沟组差异明显,与北票组具有可对比性。
5. 结论
(1)辽西地区牛营子凹陷辽凌地1井中元古界地层推覆体之下发现的暗色厚层沉积岩层,通过对岩性及孢粉组合特征的研究,证实该套地层时代为早—中侏罗世,可与辽西其他地区北票组对比。
(2)有机地球化学指标表明,该套泥岩具有有机质丰度高、生烃潜力大的特点,是值得关注的优质烃源岩,可作为该地区油气基础地质调查的新层系。这一认识为研究区域构造演化、油气地质条件提供了重要的基础地质资料。
(3)该套地层的发现和厘定,为松辽外围南部盆地群油气地质调查中找寻侏罗系烃源岩层提供了重要的基础地质资料,丰富了凌源地区的油气勘探层系:将原有单一的中新元古界勘探层系拓展为中新元古界黑色碳酸盐岩地层和中生界北票组泥岩两套深部油气勘探层系,这一新发现对于辽西地区油气勘探工作,乃至松辽外围南部盆地群的油气勘探工作都有重要意义。
-
图 1 青藏高原构造构架图(据许志琴[4]修改)
QL—祁连地体;EKL—东昆仑地体;ALT—阿尔金地体;NSG—北松潘—甘孜地体;SSG—南松潘—甘孜地体;NQT—北羌塘地体;SQT—南羌塘地体;WKL—西昆仑地体;TSH—甜水海地体;LS—拉萨地体;TC—腾冲地体;BS—保山地体;SM—思茅地体;IDC—印度支那地体;HM—喜马拉雅地体;AFH—阿富汗地体;GDS—冈底斯地体;ANMQS—阿尼马卿缝合带;JSJS—金沙江缝合带;LSS—龙木错—双湖缝合带;BG—NJ—班公湖—怒江缝合带;IYS—印度—雅鲁藏布江缝合带;ALTF—阿尔金断裂;XSHF—鲜水河断裂;ALS—RRF —哀牢山—红河断裂;LCJF—澜沧江断裂;GLGF—高黎贡断裂;JLF—嘉黎断裂;SGF—实皆断裂;MBT—主边界冲断裂;MFT—主前锋逆冲断裂;KKF—喀喇昆仑断裂;CMF—恰曼断裂
Figure 1. Tectonic framework of the Tibetan Plateau and surrounding regions(modified after Xu [4])
QL-Qilian terrane;EKL-East Kunlun terrane;ALT-Altin terrane;NSG-North Songpan-Ganze terrane;SSG-South Songpan-Ganze terrane;NQT-North Qiangtang terrane;SQT-South Qiangtang terrane;WKL-West Kunlun terrane;TSH-Tianshuihan terrane;LS-Lhasa terrane;TC-Tengchong terrane;BS-Baoshan terrane;SM-Simao terrane;IDC-Indochine terrane;HM-Himalaya terrane;AFH-Afghanistan terrane;GDS-Gangdese terrane;ANMQS-Anyemaqen suture zone;JSJS-Jingshajiang suture zone;LSS-Lonhmucuo-Shuanghu suture zone;BG-NJ-Banggonghu-Nujiang suture zone;IYS-Indus-Yaluzangbujiang sutire zone;ALTF-Altyn-Tagh Fault;XSHF-Xiangshuihe Fault;ALS-RRF-Alaoshan-Red River Fault;LCJF-Langcangjiang Fault;GLGF-Gaoligong Fault;JLF-Jiali Fault;SGF-Sagaing Fault;MBT-Main Bounded Thrust;MFT-Main Frontal Fault;KKF-Karakunrun Fault;CMF-Chaman Fault
图 3 祁连—阿尔金早古生代变质作用年代格架图
NQL—北祁连地体;QLB—祁连地块;NQD—北柴达木地体;NAT—北阿尔金缝合带;SAT—南阿尔金缝合带;CAB—中阿尔金地块
Figure 3. Schematic tectonic map of the Qilian-Altun Early Paleozoic orogen showing metamorphism age
NQL-North Qilian terrane;QLB-Qilian block;NQD-North Qaidam terrane;NAT-North Altin suture zone;SAT-South Altun suture zone;CAB-Central Altin terrane
图 4 青藏高原古特提斯构造格架图[28]
显示青藏高原古特提斯体系由东基墨里(淡绿色)和西华夏陆块组成(深绿色)EKL—ANMQS—东昆仑—阿尼玛卿缝合带;WKLS—西昆仑缝合带;LTS—理塘复合带;JSJ—ALS—SMS—金沙江—哀牢山—松马缝合带;LS —CM—龙木措/双湖—沧宁/孟良缝合带;JH—NU—SKS—景洪—Nan Uttaradit —Sra Kaeo缝合带;BNS—班公湖—怒江缝合带;SQH—JLS—狮泉河—嘉里缝合带;SDS—松多缝合带;ITS—印度斯—雅鲁藏布缝合带;WQL—西秦岭缝合带;BHDA—布尔汗布达弧地体;YDA—义敦岛弧;LC—ST—CBA—临沧—Sukhothai—Chanthaburi弧地体;KHA—科希斯坦弧地体;LDA—拉达克弧地体;WQL—西秦岭地体;ALTF:阿尔金断裂;NQLT—北祁连逆冲断裂;LMST—龙门山逆冲断裂;RRF—红河断裂;KKF—喀喇昆仑断裂;MFT—主前锋逆冲断裂;SGF—实皆断裂;GLGF—高黎贡断裂
Figure 4. Schematic tectonic map showing the Palaeo-Tethys system and geochrological data of the East Cimmerides and West Cathaysides in Tibet[28]
EKL-ANMQS-East Kunlun suture zone;WKLS-West Kunlun suture zone;LTS-Litang suture zone;JSJ-ALS-SMS-Jingshajiang—Ailaoshan-Songma suture zone;LS -CM-Lingmucuo-Shuanghu-Channing-Mengliang suture zone;JH-NU-SKS-Jinghong-Nan Uttaradit-Sra Kaeo suture zone;BNS-banggonghu-Nujiang sutire zone;SQH-JLS-Shiquanghe-Jiali suture zone;SDS-Songduo suture zone;ITS-Indus-Yaluzangbujiang suture zone;WQL-West Qiling suture zone;BHDA-Bulhanbuda arc terrane;YDA-Yidun arc;LC-ST-CBA-Lingcang-Sukhothai-Chanthaburi terrane);KHA-Kohistan arc terrane;LDA-Ladakh arc terrane;WQL-West Kunlun terrane;ALTF-Altyn Tagh Fault;NQLT-North Qilian Thrust;LMST-Longmenshan Thrust;RRF-Red River Fault;KKF-Karakunrun Fault;MFT-Main Frontal Fault;SGF-Sigaing Fault;GLGF-Gaoligong Fault
图 19 喜马拉雅造山带地质简图(改自[117, 104, 118])
GHC—高喜马拉雅结晶岩系;LH—低喜马拉雅;SH—次喜马拉雅;TH—特提斯喜马拉雅;LHCN—低喜马拉雅结晶岩片;ITSZ—印度—雅鲁藏布缝合带;GCT—大反冲断裂;KF—喀喇昆仑断裂;MBT—主边界断裂;MCT—主中央冲断裂;MFT—主前缘冲断裂;MKT—喀喇昆仑主冲带;STD-藏南拆离系;References for the STD: Khula Kangri[85, 86],Wagye La [93],Dinggye [94],Rongbuk,Nyalam [89, 94],Everest [91],Shisha-Pangma[90],Manaslu [87],Annapurna Range [88],and Gurla Mandhata [92]; References for the MCT from east to west: Arunachal Himalaya [6],Bhutan [103],Sikkim [119],Kathmandu nappe [120, 121],Annapurna Range[88]
Figure 19. Simplified geological map of the Himalayan orogen(modified after references [117, 104, 118])
GHC-Great Himalaya Complex;LH-Lesser Himalaya;SH-Subhimalaya;TH-Tethys-Himalaya;LHCN-Lesser Himalaya Complex;ITSZ-Indus-Yaluzangbu suture zone;GCT-Great Couter Thrust;KF-Karakunlun Fault;MBT-Main Bonded Thrust;MCT-Main Central Thrust;MFT-Main Frontal Thrust;MKT-Main Karakunlun Thrust;STD-South Tibet Detachment;References for the STD: Khula Kangri[85, 86],Wagye La [93],Dinggye [94],Rongbuk,Nyalam [89, 94],Everest [91],Shisha-Pangma[90],Manaslu [87],Annapurna Range [88],and Gurla Mandhata [92].References for the MCT from east to west: Arunachal Himalaya [6],Bhutan [103],Sikkim [119],Kathmandu nappe [120, 121],Annapurna Range[88]
图 20 高喜马拉雅三维挤出模式
TH—特提斯—喜马拉雅地体;GHC—高喜马拉雅地体;LH—低喜马拉雅地体;STD—藏南拆离系;MCT—主中逆冲断裂;GHD—高喜马拉雅拆离系;GHT-高喜马拉雅逆冲系;Indian middle-lower crust -印度中下地壳;Indian lithospheric mantle-印度岩石圈地幔
Figure 20. Three dimensional extrusion model for Great Himalaya
TH-Himalaya terrane; GHC- Great Himalaya terrane; LH-Lesser Himalaya terrane; STD-South Tibet Detachment; MCT-Main Central Thrust GHD-Great Himalaya Detachment;GHT-Great Himalaya Thrust
图 22 青藏高原三江地区腾冲地体的构造图(a)及剖面图(e,f)(据Xu[28])
a据云南省地质局1: 250,000潞西地区地质图(2008)修正;b、cd为东河拆离剪切带中的面理和拉伸线理投影图。YJSZ—盈江走滑剪切带;LHSZ—梁河走滑剪切带;GLGSZ—高黎贡走滑剪切带;SDSZ—苏典走滑剪切带;NBSZ-拉邦走滑剪切带。①—苏典(Sudian)花岗岩体;②—盈江(Yingjiang)花岗岩体;③—古永(Guyong)花岗岩体;④—东河(Donghe)花岗岩体。构造图显示来自前人和笔者的U-Pb年龄。东河拆离剪切带的面理和线理下半球投影:b—北龙陵地区;c—西芒市地区;d—北瑞丽地区;e—NW向剖面AA’;f—NE向剖面BB;①—苏典片麻岩穹隆;②—盈江片麻岩穹隆;③—贵永片麻岩穹隆;④—东河片麻岩穹隆
Figure 22. Simplified geological map(a)and geological section(e,f)of the Tengchong Terrane in western Yunnan Province with geochronological dataa
a Simplified geological map modified after the 1: 250,000 Geological Map of Luxi Region by Geological Survey of Yunnan Province (2008); b,c,d Lower hemisphere projection of the foliation and stretching lineation of the Donghe Detachment; YJSZ-Yingjiang strike-slip shear zone; LHSZLianghe strike-slip shear zone; GLGSZ-Gaoligong strike-slip shear zone; SDSZ-Sudian strike-slip shear zone; NBSZ-Naban strike-slip shear zone; ①-Sudian granite pluton;②-Yingjiang granite pluton; ③-Guyong granite pluton;④-Donghe granite pluton. Sample locations are labeled by the first two numbers in a sample number. U-Pb zircon ages from previous studies and this study. Lower hemisphere projection of the foliation and stretching lineation of the Donghe Detachment from: b-the northern Longling area, (c-the western Mangshi area, and d-the northern Ruili area, e-NW-trending cross-section AA′ and f-NE-trending cross-section BB′ in the southern Tengchong Terrane. ①-Sudian gneiss dome; ②-Yingjiang gneiss dome; ③-Guyong gneiss dome; ④-Donghe gneiss dome
图 23 腾冲地体的弯曲模式(据Xu[28])
五角星表示东构造结在41 Ma的位置,腾冲地体围绕原东构造结沿着右行走滑断裂顺时针旋转,这些走滑断裂将腾冲地体分割成若干的平行板片,并围绕原始东构造结形成垂直倾伏的褶皱,形成腾冲地体的弯曲模式
Figure 23. A bending model of the Tengchong Terrane(after Xu[28])
A star indicates the position of the proto-eastern Himalayan syntaxis at 41 Ma. Clockwise rotation of the Tengchong Terrane around protoeastern Himalayan syntaxis was achieved by the dextral movement along strike-slip shear zones, which separated the Tengchong Terrane into several parallel crustal slices and formed vertically plunging folds around the proto-eastern Himalayan syntaxis
图 24 松潘—甘孜造山带西南部雅江地区三叠纪西康群中的片麻岩穹隆分布图(据许志琴[133])
1—夕线石带;2—十字石带;3—红柱石带4—石榴石带;5—黑云母带;6—绢云母-绿泥石带
Figure 24. The distribution of the gneiss domes of the Xikang Group in the Yajiang region(after Xu[133])
1-Sillimalite zone;2-Granatite zone;3-Andalusite zone;4-Garnet zone;5-Biotite zone;6-Sericite-Chlorite zone
图 26 帕米尔片麻岩穹隆群分布图(据文献[139-143])
位于中帕米尔的穹隆:①Yazgulom穹隆,②Sarez穹隆,③Muskol穹隆,④Shortpat穹隆;位于南帕米尔的穹隆:⑤Sarez穹隆;位于北帕米尔的穹隆:⑥空喀山(Kongur)穹隆⑦Kurgovat穹隆MPT—主帕米尔逆冲断裂;KDS—库地缝合带;KLS—昆仑缝合带;JSS—金沙江缝合带;IYS—印度斯—雅江缝合带;BGS—班公湖—怒江缝合带;KKF—喀喇昆仑断裂;MKT—主喀喇昆仑逆冲断裂;CMT—恰曼断裂;STD—藏南拆离系;MCT—主中冲断裂;MBT—主边冲断裂
Figure 26. Tectonic map of the western end of the Himalayan—Tibetan orogen showing distribution of gneiss domes(modified after references [139-143])
MPT-Main Pamir Thrust; KDS-Kudi suture zone; KLS-Kunlun suture zone; JSS-Jingshajiang suture zone;IYS-Indus-Yaluzangbujian suture zone; BGS-Banggonghu-Nujiang suture zone; KKF-Karakurun Fault; MKT-Main Karakunrun Thrust; CMT-Chaman Fault; STD-South Tibet Detachment; MCT-Main Central Thrust; MBT-Main Bounded Thrust
图 27 空喀山片麻岩穹隆剖面图
KP—空喀山花岗岩体;KG—空喀山花岗片麻岩;KM—空喀山变质岩;KDS—库地始特提斯缝合带;EKT—东空喀山逆冲断裂;WKD-西空喀山拆离断裂
Figure 27. Cross-section of the Kongur gneiss dome(after 1: 250,000 Geological Map ofWest Kunlun)
KP-Kongur granite;KG-Kongur granitic gneiss; KM-Kongur metamorphic rocks;KDS-Kudi Proto-Tethys suture zone; EKT-East Kongur Thrust; WKD-West Kongur Detachment
图 28 汶川地震断裂科学钻探(WFSD-1)岩心剖面以及地震主滑移带特征(据Li[145])
a—WFSD-1剖面图,汶川地震同震破裂带中的主滑移带(红线,在岩心589.2 m深处)斜切映秀—北川断裂带;b—岩心589.2 m深处发育汶川地震擦痕的断层泥表面,反光度较高;c—主滑移带局部扫描电镜背散射图像,显示其厚度约为200 μm,局部富含石墨;d—透射电镜图像显示纳米级石墨颗粒
Figure 28. Petrological profile of the Scientific Drilling on theWenchuan Earthquake Fault(WFSD-1)and characteristics of seismic principal slip zone (modified after Li[145])
a-Sketch profile of the WFSD-1,theWenchuan earthquake PSZ cuts across the Yingxiu—Beichuan fault obliquely;b-Drilling core from 589.2 m-depth shows slickensides with high reflection;c-SEM-BSE image shows thatWenchuan earthquake PSZ is about 200 μm-thick and is locally rich in graphite; d TEM image shows nanometer graphite particles
图 29 摩擦实验中变形断层泥的显微构造特征和断裂主滑移带(PSZ)的矿物特征(据Kuo[146])
A—汶川地震断裂主滑移带高反光度表面发育擦痕,其方向与旋转运动方向相同;B— SEM-BSE图片中细粒化主滑移带(PSZ)厚度25~125μm,右下插图显示细小石墨颗粒;C—原位同步辐射XRD谱图显示主滑移带矿物变化
Figure 29. Microstructural characteristics of experimentally deformed black gouges and mineral characteristics of the principal slip zone(PSZ)(after Kuo[146])
A-Photograph of highly reflective surface of the principal slip zone(PSZ)lined by slickenlines and grooves that trackthe rotary motion of the gouge holder;B-SEM-BSE images show fine-grained PSZ of 25-125 μm thick.Inset backscattered SEM image shows detail of small graphite particles;C-Mineralogical changes within the experimental PSZ determined by in situ synchrotron X-ray analyses
图 30 汶川地震断裂科学钻探WFSD-1钻孔内长期温度测温数据(据Li[145])
A-汶川地震断裂科学钻探WFSD-1钻孔及长期测温设备;B-21条长期测温剖面(已扣除地温梯度0.02℃/m);C-0.02 ℃的残余热;D-WFSD-1钻孔中跨断层温度异常的最大振幅估算的断裂有效同震摩擦系数(μ=0.02)
Figure 30. Long-time temperature measurement in the Scientific Drilling on theWenchuan Earthquake Fault(WFSD-1)(modifield after Li[145])
A-WFSD-1 drill hole and long-term temperature measurement device;B-Complete data set focused on 350-800 m-depth;C-Close-up of the 589 m zone from the high-precision stop-go logs with arbitrary zeros;(d)-Predicted maximum amplitude of the temperature anomaly for the fault in the WFSD-1 drill hole with representative effective coseismic coefficients of friction
图 31 汶川地震断裂科学钻探WFSD-1水文地质参数随时间变化图(据Xue[147])
A-渗透率和导水系数;B-储水系数;黑色的小圆点代表没有约束的换算值,红色的点代表将S值固定在平均值后换算的结果,图A中黑色点完全覆盖了红点;垂向虚线代表选区的地震事件,造成渗透率的快速上升
Figure 31. Hydrogeologic properties of the well-aquifer system over time from the Scientific Drilling on theWenchuan Earthquake Fault(WFSD-1)(After Xue[147])
A-Permeability and transmissivity;B-Storage coefficient.The black dots denote an unconstrained inversion;the red dots are the results of inversion with the storage coefficient fixed to a single value.Because the two separate inversions have identical results for transmissivity,the red dots cover the black dots in A.The vertical dashed lines show the time of the selected teleseismic events,which correspond to sudden increases in permeability
图 33 拉萨冈底斯地体中新世花岗岩Nd和Hf同位素初始值在不同经度上的分布特征,由图可见含矿岩体具有高Nd和Hf同位素初始值(据Hou[151])
Figure 33. The єNd and єHf isotopic characteristics in difference longitudes of the Miocene granite from the Gandise belt,Lhasa terrane.The ore bearing granites have high єNd and єHf isotopic data,which are shown in the figure(modified after Hou[151])
图 34 拉萨地体中新生代岩浆岩Hf同位素特征及矿床分布(据Hou[151])
BNSZ—班公湖—怒江缝合带;IYZSZ—雅鲁藏布江缝合带;NLS—北拉萨;CLS—中拉萨;SLS—南拉萨;Inferred basement fault —推测基底断裂
Figure 34. the єHf isotopic data of the Mesozoic and Cenozoic magmatic rocks and related deposit distribution in the Lhasa terrane (modified after Hou[151])
BNSZ-Bangong Co-Nujiang River Suture Zone;IYZSZ-Indus Yarlung Zangbo Suture Zone;NLS-North Lhasa;CLS-Central Lhasa;SLS-South Lhasa
图 36 大陆板块俯冲角度对高压-超高压变质岩石形成和折返的控制作用
a—高角度大陆板块深俯冲伴随着超高压变质岩石的形成和折返;b—低角度大陆板块平俯冲模型中超高压岩石无法折返,只有高压岩石折返至地表
Figure 36. Constraints of continental subduction angle on the formation and exhumation of HP-UHP metamorphic rocks
a-he formation and exhumation of UHP rocks in the steep continental subduction channel;b-n the flat continental subduction model,only HP rocks can exhume to the surface;while UHP rocks are absent
图 37 大洋俯冲和大陆碰撞沿走向转换的三维数值模型(据Li[154])
a~b—大洋俯冲一侧的演化特征;c—大陆碰撞一侧的演化特征;d—等效粘滞系数面揭示洋-陆转换会聚深部结构的差异性及地幔流动
Figure 37. Three-dimensional numerical model of the along-strike transition between oceanic subduction and continental collision(after Li[154])
a-b-Model evolution viewed from the oceanic subduction side;c-Model evolution viewed from the continental collision side;d- Iso-viscosity surface reveals the contrasting deep structures between the oceanic subduction and continental collision,as well as the characteristics of deep mantle flow
表 1 蛇绿岩型金刚石与其他类型金刚石的对比
Table 1 Comparison between ophiolite-type diamonds and other type diamonds
类型 蛇绿岩型金刚石 金伯利岩型金刚石 超高压变质型金刚石 赋存岩石 蛇绿岩中的地幔橄榄岩和铬铁矿 来自地幔的金伯利岩 榴辉岩和片麻岩等地壳岩石中 粒径大小 0.2~0.4 mm 宝石级(多为mm级以上) < 0.01 mm 包裹体类型 Ni—Mn—Co合金,Mn撤榄石, Mn石權石,Mn尖晶石 Mg石權石,Mg橄榄石,硫化物, 铬尖晶石等 与金刚石相伴的矿物有镁方解石, 黑云母等壳源矿物 C同位素δ13C) -18~-28 -5~-10 -7~-15 产出构造背景 大洋岩石圈 大陆内部 板块俯冲带 -
[1] 许志琴, 杨经绥, 李海兵, 等. 造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京:地质出版社, 2007:1-458. Xu Zhiqin, Yang Jingsui, Li Haibing, et al. Orogenic Plateau-terrane Ammalgatation, Collisional Orogeny and Uplifting of the Qinghai-Tibet Plateau[M]. Beijing:Geological Publishing House, 2007:1-458(in Chinese with English abstract). [2] Tapponnier P G, Peltzer, Armijo R. On the mechanics of the collision between India and Asia[C]//Coward M P,Riess A C. Collision Tectonics. Geo. Soc. Spec. Publ. London, 1986, 19:115-157.
[3] Molnar P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications[J]. Phil. Trans. R. Soc. Lond, 1988, A326:33-88.
[4] 许志琴, 李海兵, 唐哲民,等. 大型走滑断裂对青藏高原地体构架的改造[J].岩石学报,2011, 27(11):3157-3170. Xu Zhiqin, Li Haibing, Tang Zhemin, et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J]. Acta Petrologica Sinica,2011, 27(11):3157-3170(in Chinese with English abstract). [5] Molnar P, Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision[J]. Science, 1975, 189:419-426.
[6] Yin A. Cenozoic tectonic evolution of Asia:A preliminary synthesis. Tectonophysics[J]. 2010, 488:293-325.
[7] Nabelek J, Hetenyi G, Vergne J, et al. Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment[J]. Science, 2009, 325:1371-1374.
[8] Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia[J]. Geophys, Res. Lett., 1993,20:895-898.
[9] Sengör A M C,Natal'in B A. Paleotectonic of Asia:Fragments of a synthesis[C]//Yin A, Harrison M (eds.). The Tectonic Evolution of Asia. Cambridge:Cambridge University Press, 1996:486-640.
[10] Gehrels G E, Yin A, Wang X F. Detrital-zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 2003,115(7):881-896.
[11] Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):323-333.
[12] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.
[13] Sengör A M C. The Palaeo-Tethyan suture:A line of demarcation between two fundamentally different architectural styles in the structure of Asia[J]. Island Arc, 1992, 1(1):78-91.
[14] Sengör A M C, Natal'in B A, Burtman U S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307.
[15] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164(10):31-47.
[16] Sengör A M C. East Asian tectonic collage[J]. Nature, 1987, 318(6041):16-17.
[17] Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):379-413.
[18] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
[19] Wan Y S, Zhang J X, Yang J S, et al. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance[J]. Journal of Asian Earth Sciences, 2006, 28(2/3):174-184.
[20] Tung K A, Yang H J, Yang H Y, et al. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 2007, 52(11):2687-2701.
[21] Tung K A, Yang H Y, Liu D Y, et al. The Neoproterozoic granitoids from the Qilian block, NW China:Evidence for a link between the Qilian and South China blocks[J]. Precambrian Research, 2013, 235:163-189.
[22] Yu S Y, Zhang J X, Li H K, et al. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane:New evidence for deep continental subduction[J]. Gondwana Research, 2013, 23(3):901-919.
[23] Wang C, Liu L, Yang WQ, et al. Provenance and ages of the Altyn Complex in Altyn Tagh:Implications for the early Neoproterozoic evolution of northwestern China[J]. Precambrian Research, 2013, 230:193-208
[24] Gehrels G E, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011,30(5):TC5016.
[25] Metcalfe I. Gondwana dispersion and Asian accretion:tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:133.
[26] Yan Z, Aitchson J, Fu C L, et al. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic microcontinental fragments accreted to the northern Proto-Tethyan margin[J]. Precambrian Research, 2015, 266:65-85.
[27] Ueno K, Wang Y, Wang X. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China:An overview[J]. The Island Arc, 2003, 12:145-161.
[28] Xu Z Q, Wang Q, Cai Z H, et al. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene:Insights from coeval mid-crustal detachments and strike-slip shear zones[J]. Tectonophysics, 2015,665:127-148.
[29] Cawood P A, Kröner A. Earth Accretionary Systems in Space and Time[M]. Geological Society of London Special Publication, 2009, 318:1-36.
[30] Cawood P A, Kröner A, Collins, et al. Accretionary orogens through Earth history[M]. Geological Society of London, 2009.
[31] Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth Planet Science Letters, 1973, 19:218-224.
[32] Ernst W G. Alpine and Pacific styles of Phanerozoic mountain building:Subduction-zone petrogenesis of continental crust[J]. Terra Nova, 2005, 17:165-188.
[33] Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J]. Geology, 2006, 34:961-964.
[34] Brown M. Metamorphic patterns in orogenic systems and the geological record[C]//Cawood P A, Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London Special Publications, 2009,318:37-74.
[35] Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia:significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam[J]. Geology, 2001, 29:211-214.
[36] Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 2002, 20:551-566.
[37] Metcalfe I. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19:3-21.
[38] Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:the Korean Peninsula in context[J]. Gondwana Research, 2006, 9:24-46.
[39] Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.
[40] Lepvrier C, Maluski H. L'orogenese Trisique Indosinienne en Asia de l'Est[J]. Editorial Comptes Rendu Geoscience, 2008, 340:75-82.
[41] Feng Q, Liu B. A new Early Devonian radiolarian genus from western Yunnan[J]. Science in China (Series B), 1993, 36:242-248.
[42] Feng Q L, Ye M. Permian radiolarian sedimentary assemblage and paleoecology in south and southwest China[C]//Long Xiangfu (ed.). Devonian to Triassic Tethys in Western Yunnan, China. China University of Geosciences Press,Wuhan, 1996, 106-112.
[43] Feng Q, Zhang Z. Early Carboniferous radiolarians from West Yunnan[J]. Acta Micropalaeontologica Sinica, 1997, 14:79-92.
[44] Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia:new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340:166-179.
[45] Kapp P, Yin A, Craig E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28:19-22.
[46] Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet:Lateral variation and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123:585-600.
[47] Zhai Q G, Zhang, R Y, Jahn, B M,et al. Triassic eclogites from central Qiangtang, northern Tibet, China:Petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125:173-189.
[48] Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences 2009, 34:76-89.
[49] Yang J S, Robinson P T, Dilek Y. Diamonds in ophiolites[J]. Elements, 2014, 10:127-130.
[50] Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromiites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015, 27:459-485.
[51] Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015,27:686-700.
[52] Yang J S, Dobrzhinetskaya L, Bai W J, et al. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 2007,35(10):875-878.
[53] Dobrzhinetskaya L F,Yang J S, Green H W, et al. Qingsongite, natural cubic boron nitride:The first boron mineral from the Earth's mantle[J]. American Mineralogist, 2014, 99:764-772.
[54] Yamamoto S, Komiya T, Hirose K, et al. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 2009, 109(3):314-322.
[55] Liou J G, Tsujimori T, Yang J, et al. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:A review[J]. Journal of Asian Earth Sciences, 2014, 96:386-420.
[56] Coleman R G. The ophiolite concept evolves[J]. Element, 2014, 10(2):82-84.
[57] Howell D, GriffinW L, Yang J, et al. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 2015, 430:284-295.
[58] Zhang Z M, Zhao G C, Santosh M, et al. Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 2010, 28:719-733
[59] Dong X, Zhang Z M, Santosh M. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism[J]. Journal of Geology, 2010, 118:677-690.
[60] Zhang Z M, Zhao G C, Santosh M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17:615-631.
[61] Sisson V B, Hollister L S, Onstott T C. Petrologic and age constraints on the origin of a low-pressure/high-temperature metamorphic complex, southern Alaska[J]. Journal of Geophysical Research, 1989, 94:4392-4410.
[62] Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction:examples from southern Alaska and western California[J]. Tectonophysics, 2009, 464:118-136.
[63] Santosh M, Kusky T, Wang L. Supercontinent cycles, extreme metamorphic processes and changing fluid regimes[J]. International Geology Review, 2011, 53:1403-1423.
[64] Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian suture in Gondwana:pacific type orogeny in southern India?[J] Gondwana Research, 2009, 16:321-341.
[65] Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68:173-196.
[66] Mo X X, Dong G C, Zhao Z D, et al. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution[J]. Geological Journal of China University, 2005, 11:281-290(in Chinese with English abstract).
[67] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011,301:241-255.
[68] Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications[J]. Lithos, 2008,105:1-11.
[69] Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252:191-201.
[70] Bourgois J, Martin H, Lagabrielle Y, et al. Subduction-erosion related to ridge-trench collision:Taitao Peninsula, Chile margin triple junction area[J]. Geology, 1996, 24:723-726.
[71] Guivel C, Lagabrielle Y, Bourgois J, et al. New geochemical constraints for the origin of ridge subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP141 on the Taitao Ridge)[J]. Tectonophysics, 1999, 311:83-111.
[72] Thorkelson D J, Breitsprecher K. Partial melting of slab window margins:genesis of adakitic and non-adakitic magmas[J]. Lithos, 2005, 79:25-41.
[73] Sakaguchi A. High paleo-geothermal gradient with ridge subduction beneath Cretaceous Shimanto accretionary prism, southwest Japan[J]. Geology, 1996,24:795-798.
[74] Ujiie K. Off-scraping accretionary process under the subduction of young oceanic crust:the Shimanto belt of Okinawa Island, Ryukyu Arc[J]. Tectonics, 1997, 16:305-322.
[75] Osozawa S, Takeuchi H, Koitabashi T. Formation of the Yakuno ophiolite:accretionary subduction under medium-pressure-type metamorphic conditions[J]. Tectonophysics, 2004,393:197-219.
[76] Zhang Z M, Shen K, Santosh M, et al. High density carbonic fluids in a slab window:Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet[J]. Journal of Asian Earth Sciences, 2011,42:515-524.
[77] Matthews K J, Seton M, Muller R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth and Planetary Science Letters, 2012,355:283-298.
[78] Coulon C, Maluski H, Bollinger C et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986,79:281-302.
[79] Lee H Y, Chung S L, Lo C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477:20-35.
[80] Guo L, Zhang H F, Harris N, et al. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis:Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex[J]. Gondwana Research, 2012, 21:100-111.
[81] Chung S L, Liu DY, Ji J Q, et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31:1021-1024.
[82] Zhang Z M, Dong X, Xiang H, et al. Building of the Deep Gangdese Arc, South Tibet:Paleocene Plutonism and Granulite-Facies Metamorphism[J]. Journal of Petrology, 2013, 54:2547-2580.
[83] Zhang Z M, Dong X, Xiang H, et al. Metagabbros of the Gangdese arc root, south Tibet:Implications for the growth of continental crust[J]. Geochimica et Cosmochimica Acta, 2014, 143:268-284.
[84] Searle M P, Elliott J R, Phillips R J, et al. Crustal-lithospheric structure and continental extrusion of Tibet[J]. Journal of the Geological Society, 2011, 168(3):633-672.
[85] Edwards M A, Kidd W S F, Li J X, et al. Multi-stage development of the southern Tibet detachment system near Khula Kangri——New data from Gonto La[J]. Tectonophysics, 1996, 260:1-19.
[86] Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the High Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J]. Geology, 1997, 25:543-546.
[87] Harrison T M, Grove M, McKeegan K D, et al. Origin and episodic emplacement of the Manaslu Intrusive Complex, Central Himalaya[J]. J. Petrol, 1999, 40:3-19.
[88] Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas[J]. Tectonics, 1996, 15:1264-1291.
[89] Schärer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet[J]. Earth and Planetary Science Letters, 1986, 77:35-48.
[90] Searle M P, Whitehouse M J. Shisha Pangma leucogranite, South Tibetan Himalaya; field relations, geochemistry, age, origin, and emplacement[J]. Journal of Geology, 1997, 105(3):295-317.
[91] Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28:403-406.
[92] Wang Y C, Bin, X Zhang Y Q, et al. U-Pb SHRIMP zircon ages of the GUohuonongba tourmaline two-mica granite in Pulan, southwest Tibet[J]. Geotectonia et Metallogenia, 2005, 29:517-521.
[93] Wu C K D, Nelson G, Wortman S, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89-90°E)[J]. Tectonics, 1998, 17:28-45.
[94] Xu R H. Age and geochemistry of granites and metamorphic rocks in south-central Xizang (Tibet)[M]//Igneous and Metamorphic Rocks of the Tibetan Plateau. Chinese Academy of Geological Sciences. Science Press, 1990, 287-302.
[95] Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes:melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303:251-266.
[96] Zeng, L S, Chen Z Y, Chen J. Metamorphic solid salt (KCl-NaCl) in quartzo-feldspathic polyphase inclusions in the Sulu ultrahighpressure eclogite[J]. Chinese Science Bulletin, 2013, 58(8):931-937.
[97] Zeng L S, Gao L E, Tang S H, et al. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 2014, 412:SP412-8.
[98] Gao L E, Zeng L S. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimica et Cosmochimica Acta, 2014, 130:136-155.
[99] Burchfiel B C, Royden L H. North-south extension within the convergent Himalayan region[J]. Geology, 1985, 13:679-682.
[100] Grujic D, Casey M, Davidson C, et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan:evidence from quartz micro-fabrics[J]. Tectonophysics, 1996, 260:21-43.
[101] Beaumont C, Jamieson G A, Nguy M H, et al. Himalaya tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414:738-742.
[102] Hodges K V, Hurtado J M, Whipple K X, et al. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J], Tectonics, 2001, 20:799-809.
[103] Grujic D, Hollister L S, Parrish R R. Himalayan metamorphic sequence as an orogenic channel:insight from Bhutan[J]. Earth Planetary Science Letters, 2002, 198(s 1-2):177-191.
[104] Yin A, Dubey C S, Kelty T K, et al. Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen[J]. Current Science, 2006, 90:195-206.
[105] Webb AA G, Yin A, Harrison T M, et al. The leading edge of the Greater Himalayan Crystallines revealed in the NW Indian Himalaya:Implications for the evolution of the Himalayan Orogen[J]. Geology, 2007, 35:955-958.
[106] Webb A A G, Yin A, Harrison T M, et al. Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen[J]. Geosphere, 2011, 7:1013-1061.
[107] 许志琴,王勤,曾令森,等. 高喜马拉雅的三维挤出模式[J]. 中国地质,2013, 40(3):671-68. Xu Zhiqin, Wang Qin, Zeng Lingsen, et al. Three-dimensional extrusion model of the Great Himalaya slice[J]. Geology in China, 2013, 40(3):671-68(in Chinese with English abstract). [108] Xu Z Q, Wang Q, Arnaud P, et al. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 2013, 32(2):191-215.
[109] Brun J P, Burg J P, Ming C C, et al. Strain trajectories above the Main Central Thrust (Himalaya) in southern Tibet[J]. Nature, 1985, 313:388-390.
[110] 许志琴, 杨经绥, 李化启,等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(6):1697-1709. Xu Zhiqin,Yang Jingsui,Li Huaqi,et al. Indosinian collisionorogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica,28(6):1697-1709(in Chinese with English abstract). [111] Pêcher A. The contact between the Higher Himalaya crystallines and the Tibetan sedimentary series:Miocene large scale dextral shearing[J]. Tectonics, 1991,10:587-598.
[112] Coleman M E. Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas[J]. Geological Society of America Bulletin, 1996, 108(12):1594-1607.
[113] Pêcher A, Scaillet B. La structure du haut Himalaya au Garhwal[J]. Eclogae Geologicae Helvetiae, 1989, 82(2):655-668.
[114] Murphy M A, Yin A, Kapp P, et al. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet:Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 2002, 114(4):428-447.
[115] Wang Y, Li Q, Qu G S. 40Ar/39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan Detachment System, Nyalam area, southern Tibet[C]//Law R D, et al(eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol. Soc., London, Spec. Pub., 2006, 268:327-354.
[116] Aikman A B, Harrison T M, Ding L. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth Planetary Science Letters, 2008, 274:14-23.
[117] Dipietro J A, Pogue K R. Tectonostratigraphic subdivisions of the Himalaya:A view from the west[J]. Tectonics, 2004, 23(5):271-297.
[118] Pêcher A, Seeber L, Guillot S, et al. Stress field evolution in the northwest Himalayan syntaxis, northern Pakistan[J]. Tectonics, 2008, 27(6):178-196.
[119] Harris N B W, Caddick M, Kosler J, et al. The pressuretemperature-time path of migmatites from the Sikkim Himalaya[J]. Journal of Metamorphic Geology, 2004, 22(3):249-264.
[120] Metcalfe R P, Metcalfe R P. Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya[J]. Geological Society of London Special Publications, 1993, 74(1):485-509.
[121] Stephenson B J, Searle M P, Waters D J, et al. Structure of the Main Central Thrust Zone and Extrusion of the High Himalayan Deep Crustal Wedge, Kishtwar-Zanskar Himalaya[J]. Journal of the Geological Society, 2001, 158(4):637-652.
[122] Zeng L S, Liu J, Gao L E, et al. Early Oligocene crustal anatexis in the Yardoi gneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 2009, 54, 104-112.
[123] Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India——Asia collision-An experimental approach[J]. Journal of Geophysical Research Atmospheres, 1988, 931(B12):15085-15117.
[124] Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau.[J]. Science, 2008, 321(5892):1054-1058.
[125] Zhang P Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9):809-812.
[126] Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research Solid Earth, 2001, 106(B4):6683-6732.
[127] Clark M K, Royden L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703.
[128] Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan Province, China:Quaternary geology, slip rates, and seismic hazard[J]. Geological Society of America Bulletin, 1984, 95(6):686-700.
[129] Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(s 1-4):3-10.
[130] Chung S L, Lee T Y, Lo C H, et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone.[J]. Geology, 1997, 25(4):311-314.
[131] Ratschbacher L, Frisch W, Chen C, et al. Cenozoic deformation, rotation, and stress patterns in eastern Tibet and western Sichuan, China[C]//Yin A, Harrison T M (eds.). The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 1996:227-249.
[132] Wang E, Wang E. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Geological Society of America, 1998.
[133] 许志琴,侯立伟,王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京:地质出版社, 1992. Xu Zhiqin, Hou Liwei, Wang Zhongxiu, et al. Orogenic Processes of the Songpan GarZi Orogenic Belt, China[M]. Beijing:Geological Publishing House, 1992(in Chinese). [134] Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and Large-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters, 1981, 52(2):355-371.
[135] Burtman V S, Molnar P. Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir[J]. Special Paper of the Geological Society of America, 1993, 281.
[136] Treloar P J, Izatt C N, Izatt C N. Tectonics of the Himalayan collision between the Indian Plate and the Afghan Block:a synthesis[J]. Geological Society of London Special Publications, 1993, 74(1):69-87.
[137] Brunel M, Arnaud N, Tapponnier P, et al. Kongur Shan normal fault:Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir)[J]. Geology, 1994, 22(8):707-710.
[138] Strecker M R, Frisch W, Hamburger M W, et al. Quaternary Deformation in the Eastern Pamirs, Tajikistan and Kyrgyzstan[J]. Tectonics, 1995, 14(5):1061-1079.
[139] Rumelhart P E, An Y, Cowgill E, et al. Cenozoic vertical-axis rotation of the Altyn Tagh fault system[J]. Geology, 1999, 27(9):480.
[140] Schneider D A, Edwards M A, Kidd W S F, et al. Tectonics of Nanga Parbat, western Himalaya:Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure[J]. Geology, 1999, 27(11):999-1002.
[141] Schmidt J, Hacker B R, Ratschbacher L, et al. Cenozoic deep crust in the Pamir[J]. Earth and Planetary Science Letters, 2011, 312:411-421.
[142] Robinson A C, Ducea M, Lapen T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics, 2012, 31(2):531-535.
[143] Zhang Z M, Zhao G C, Santosh M, et al. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 2010, 28(7):719-733.
[144] Zhang Z, Dong X, Xiang H, et al. Building of the Deep Gangdese Arc, South Tibet:Paleocene Plutonism and Granulite-Facies Metamorphism[J]. Journal of Petrology, 2013, 54(12):2547-2580.
[145] Li H, Xue L, Brodsky E E, et al. Long-term temperature records following the Mw 7.9 Wenchuan (China) earthquake are consistent with low friction[J]. Geology, 2015, 43(2):163-166.
[146] Kuo L W, Li H, Smith S A F, et al. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake[J]. Geology, 2014, 42(1):47-50.
[147] Xue L, Li H B, Brodsky E E, et al. Continuous Permeability Measurements Record Healing inside the Wenchuan Earthquake Fault Zone[J]. Science, 2013, 340:1555-1559.
[148] Hou Z, Yang Z, Qu X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(s 1-3):25-51.
[149] Hou Z, Zheng Y, Yang Z, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2012, 48(2):173-192.
[150] Hou Z, Yang Z, Lu Y, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3):247-250.
[151] Hou Z, Liu Y, Tian S, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5.
[152] Hou Z, Zhang H, Pan X, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust:examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1):21-45.
[153] Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction:Contrasting modes for the formation and exhumation of high-to ultrahigh-pressure rocks in continental collision zones[J]. Earth & Planetary Science Letters, 2011, 301(s 1-2):65-77.
[154] Li Z H, Xu Z, Gerya T, et al. Collision of continental corner from 3-D numerical modeling[J]. Earth & Planetary Science Letters, 2013, 380:98-111.
[155] Li Z H, Liu M Q, Gerya T. Material transportation and fluidmelt activity in the subduction channel:Numerical modeling[J]. Science China (Earth Science), 2015, 58(08):1-18.
[156] Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation[J]. Science China Earth Sciences, 2014, 57(1):47-69.
[157] Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science, 1996, 274(5293):1684-1688.
[158] Thomas J. Owens, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 1997, 387(6628).
[159] Roecker S W. Velocity structure of the Pamir-Hindu Kush Region:Possible evidence of subducted crust[J]. Journal of Geophysical Research Atmospheres, 1982, 87(B2):945-959.
[160] Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth & Planetary Science Letters, 2007, 259(1/2):212-225.
[161] Mukherjee B K, Sachan H K, Ogasawara Y, et al. Carbonate-Bearing UHPM Rocks from the Tso-Morari Region, Ladakh, India:Petrological Implications[J]. International Geology Review, 2003, 2003(1):49-69.
-
期刊类型引用(90)
1. 彭世利,彭头平,范蔚茗,刘用民,武利民. 滇西保山地块西缘象达岩基晚白垩世花岗岩成因及其大地构造意义. 大地构造与成矿学. 2025(01): 178-196 . 百度学术
2. 荆林海,李光明,丁海峰,赵洁,李金祥,张夏楠. 班怒带中西段斑岩铜矿遥感选区、地质评价与重大发现. 岩石学报. 2025(02): 362-382 . 百度学术
3. 王立成,吴驰华,张华,龚大兴. 青藏高原周缘中-新生代钾盐矿床研究进展、问题及展望. 岩石学报. 2025(03): 1014-1042 . 百度学术
4. 曾旭,付锁堂,王波,龙国徽,吴志雄,崔海栋,王琛茜. 柴达木盆地古近系下干柴沟组上段碎屑锆石U-Pb测年及盆山耦合探讨. 地质学报. 2024(01): 79-105 . 百度学术
5. 铁永波,张宪政,曹佳文,秦雅东,王立朝,董英,郭富赟,郭兆成,白永健,冉涛,侯圣山,王涛,高波,卢佳燕,李光辉,宁志杰,向炳霖,孙才. 积石山Ms6.2级和泸定Ms6.8级地震地质灾害发育规律对比. 成都理工大学学报(自然科学版). 2024(01): 9-21+59 . 百度学术
6. 高利娥,曾令森,赵令浩,严立龙,李广旭,王亚莹,王海涛,王睿. 喜马拉雅造山带聂拉木地区渐新世深熔作用的厘定. 岩石学报. 2024(05): 1565-1586 . 百度学术
7. FAN Pengxiao,YU Changqing,WANG Ruixue,ZENG Xiangzhi,QU Chen,ZHANG Yue. Three-Dimensional Density Distribution and Seismic Activity along the Guxiang–Tongmai Segment of the Jiali Fault, Tibet. Acta Geologica Sinica(English Edition). 2024(02): 454-467 . 必应学术
8. 张照伟,钱兵,王亚磊,李文渊. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨. 中国地质. 2024(02): 371-384 . 本站查看
9. 陈国超,张晓飞,裴先治,裴磊,李佐臣,刘成军,李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义. 地学前缘. 2024(03): 1-19 . 百度学术
10. 刘朵,杨成业,李玉彬,央宗,张金树,张根,李若铭. 喜马拉雅东部库曲淡色花岗岩的成因及其稀有金属成矿意义:来自年代学、地球化学及Nd-Hf同位素的证据. 地质科学. 2024(05): 1326-1341 . 百度学术
11. 白世俊,李军乔,刘欣,吕博文. 青藏高原蕨麻的分子谱系地理学研究. 草业学报. 2024(11): 84-105 . 百度学术
12. 薛飞,谭红兵,张西营,苏金宝. 西藏富稀有金属元素地热泉物源、富集过程和资源效应. 中国科学:地球科学. 2024(11): 3513-3537 . 百度学术
13. Fei XUE,Hongbing TAN,Xiying ZHANG,Jinbao SU. Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China. Science China Earth Sciences. 2024(11): 3476-3499 . 必应学术
14. 范鹏啸,于常青,王瑞雪,曾祥芝,李卫强,张玥,雷晨露. 西藏波密地区深部密度结构与地震活动的关系. 地质学报. 2024(10): 3047-3061 . 百度学术
15. 孙林龙,董有浦,吴中海,张世涛,李立,刘志明. 基于河流地貌指数的澜沧江断裂南段构造活动性研究. 地质科学. 2024(06): 1543-1561 . 百度学术
16. 邱志毅,李舢,戴梦,崔祥蝶,邓敏. 松潘-甘孜造山带三叠纪花岗岩地球化学特征及其对锂的成矿意义. 岩石学报. 2024(12): 3876-3890 . 百度学术
17. 程谦恭,王玉峰,林棋文,冯止依,明杰,何可. 喜马拉雅造山带高速远程滑坡动力学机理研究的思考. 地质学报. 2024(11): 3238-3254 . 百度学术
18. 张予杰,翟庆国,张以春,刘一鸣,曾孝文,安显银,刘石磊. 藏北日土地区南羌塘地块晚石炭—早二叠世海相裂谷盆地沉积序列:冈瓦纳大陆北缘初始裂解的沉积响应. 沉积与特提斯地质. 2024(04): 773-795 . 百度学术
19. 吴宇琴,吴珊珊,周思远,李凤英,赵育飞. 川滇地区壳幔方位各向异性研究. 大地测量与地球动力学. 2023(01): 89-94 . 百度学术
20. 李柯然,杨迪,夏舜,宋金民,刘芳,杨雄. 碳酸盐岩钙同位素化学分离方法改进及其在青藏高原地质样品中的应用前景. 中国无机分析化学. 2023(01): 44-53 . 百度学术
21. 冯怀伟,许淑梅,王大华,肖永军,张关龙,曾治平,王千军,王金铎. 柴北缘东段及周缘侏罗系发育特征及其对构造活动的响应. 地质论评. 2023(01): 148-163 . 百度学术
22. 杨明桂,姚悦,熊燃,王光辉,胡青华,徐梅桂. 元古代华南洋的轮廓. 地质力学学报. 2023(01): 1-20 . 百度学术
23. 金文正,白万奎,王俊鹏,叶治续. 川西北碧口地块中新生代隆升及构造扩展特征. 华南地质. 2023(01): 24-36 . 百度学术
24. 田振东,冷成彪,郭剑衡,张兴春,田丰,马荣林. 藏东义敦地体早古生代构造格局:来自碎屑锆石U-Pb-Hf同位素的约束. 地质学报. 2023(04): 1088-1105 . 百度学术
25. 邱江涛,孙建宝. InSAR揭示的青藏高原近期正断型地震形变特征与指示意义. 地球与行星物理论评(中英文). 2023(06): 600-611 . 百度学术
26. 高建国. 锆石Hf同位素填图对东昆仑造山带地壳性质和成矿潜力的约束. 地质找矿论丛. 2023(02): 242-248 . 百度学术
27. 刘健,于强,王猛,焦建刚,陈长发,马云飞. 金川铜镍硫化物矿床晚中生代以来抬升冷却事件的磷灰石裂变径迹约束. 大地构造与成矿学. 2023(03): 618-630 . 百度学术
28. 张朝锋,张玲娟,强利刚,冯博,张胜龙. 青海省曲麻莱县活塔加查岩浆岩年代学、地球化学特征及地质意义. 东华理工大学学报(自然科学版). 2023(03): 201-210 . 百度学术
29. Shengxian LIANG,Xuben WANG,Zhengwei XU,Yanpei DAI,Yonghua WANG,Jing GUO,Yanjie JIAO,Fu LI. Steep subduction of the Indian continental mantle lithosphere beneath the eastern Himalaya revealed by gravity anomalies. Science China(Earth Sciences). 2023(09): 1994-2010 . 必应学术
30. 梁生贤,王绪本,徐铮伟,代堰锫,王永华,郭镜,焦彦杰,李富. 重力异常揭示印度大陆地幔岩石圈在喜马拉雅东部之下陡俯冲. 中国科学:地球科学. 2023(09): 2018-2034 . 百度学术
31. 金文正,白万奎,叶治续. 碧口地块东-北缘中、新生代构造隆升及演化:来自磷灰石和锆石裂变径迹的证据. 地质学刊. 2023(03): 231-241 . 百度学术
32. 谢和平,张茹,张泽天,高明忠,李存宝,何志强,李聪,刘涛. 深地科学与深地工程技术探索与思考. 煤炭学报. 2023(11): 3959-3978 . 百度学术
33. 吴浩,徐祖阳,严维兵,郝宇杰,刘海永. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征:对新特提斯洋板片断离的指示. 中国地质. 2023(06): 1804-1816 . 本站查看
34. 周荣军,梁明剑. 四川活断层探测新进展. 震灾防御技术. 2023(04): 663-672 . 百度学术
35. 党亚民,程传录,杨强,蒋光伟,孙洋洋. 珠峰及周边地区强震影响垂直形变特征研究. 武汉大学学报(信息科学版). 2022(01): 26-35 . 百度学术
36. 李发桥,唐菊兴,张静,宋扬,李海峰,林彬,王楠. 西藏改则地区沙木罗组中早白垩世晚期闪长玢岩的发现:班公湖-怒江特提斯洋北向俯冲板片折返事件的响应. 岩石学报. 2022(01): 185-208 . 百度学术
37. 米玛普尺,格桑拉姆,张旭东,央宗,保穷. 西藏自治区天然集料路用性能空间分布系统的设计与实现. 公路. 2022(02): 195-200 . 百度学术
38. 范堡程,张晶,孟广路,薛仲凯,吴欢欢,曹积飞,刘明义,洪俊,唐卫东,刘天航,MиpзoeB TaBφик,Xacaзoдa Caóзaли. 帕米尔构造结锂矿资源潜力评价——基于1:100万地球化学调查. 西北地质. 2022(01): 156-166 . 百度学术
39. 赵荣涛,赵文津,刘志伟,宋洋,陈昌昕. 东昆仑深部结构地震探测研究现状与展望. 地球学报. 2022(02): 189-201 . 百度学术
40. 张忠炜,张聪,秦雪晴,赵晓轩,申婷婷,邱添,杜瑾雪. 拉萨地块松多高压变质带不同类型榴辉岩的变质演化过程及其限定方法探讨. 地质论评. 2022(04): 1202-1215 . 百度学术
41. 李心怡,高原. 三江侧向碰撞带地质构造与岩石圈各向异性. 地球物理学进展. 2022(04): 1431-1447 . 百度学术
42. 杨成业,冯佳佳,李玉彬,张金树,张根,夏洋洋. 西藏林周地区始新世托龙Ⅰ型花岗岩对印度-欧亚板块碰撞时限的制约. 岩石矿物学杂志. 2022(06): 1080-1096 . 百度学术
43. 马绪宣,许志琴,刘飞,赵中宝,李海兵. 大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例. 地质学报. 2021(01): 107-123 . 百度学术
44. 朱文斌,王玺,葛荣峰. 地体的单向和多向聚合与离散. 地质学报. 2021(01): 124-138 . 百度学术
45. 张照伟,钱兵,王亚磊,李文渊. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力. 西北地质. 2021(01): 82-99 . 百度学术
46. 赵远方,公王斌,江万,陈龙耀,仇度伟. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质. 2021(01): 220-233 . 百度学术
47. 尹福光,唐渊,徐波. 西南三江地区新生代走滑造山. 沉积与特提斯地质. 2021(01): 1-14 . 百度学术
48. 黄周传,吉聪,吴寒婷,石宇通,耿嘉琪,徐弥坚,韩存瑞,徐鸣洁,王良书. 青藏高原东南缘地壳结构与变形机制研究进展. 地球与行星物理论评. 2021(03): 291-307 . 百度学术
49. 吴纪修,尹浩,张恒春,孙华峰,袁维,曹龙龙,李鑫淼,施山山,王文,薛倩冰,梁楠. 水平定向勘察技术在长大隧道勘察中的应用现状与展望. 钻探工程. 2021(05): 1-8 . 百度学术
50. 尹福光,潘桂棠,孙志明. 西南三江构造体系及演化、成因. 沉积与特提斯地质. 2021(02): 265-282 . 百度学术
51. 侯增谦,许博,郑远川,郑洪伟,张洪瑞. 地幔通道流:青藏高原大规模生长的深部机制. 科学通报. 2021(21): 2671-2690 . 百度学术
52. 耿爽,王林,田勤俭,徐岳仁,李文巧,袁兆德. 2020年新疆于田M_S6.4地震发震构造研究. 地震. 2021(02): 1-13 . 百度学术
53. 杨万志,田江涛,郭秀玮. 喀喇昆仑岔路口地区麦美奇质岩石的发现及其构造意义:岩石学、矿物学和地球化学证据. 世界地质. 2021(03): 511-524 . 百度学术
54. 刘飞,李观龙,薄容众,杨经绥. 班公湖-怒江洋的扩张脊俯冲:宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征. 地质通报. 2021(08): 1247-1264 . 百度学术
55. 黄亮,浦涛,刘军平,王晓林,刘小春,熊波,宋冬虎. 滇西漕涧地区崇山杂岩带始新世花岗岩的发现及其地质意义. 地球学报. 2021(05): 579-592 . 百度学术
56. 曾先进,王明,范建军,罗安波,曾孝文,李航,申迪. 拉萨-羌塘板块碰撞——来自西藏阿索晚白垩世红层的约束. 地质通报. 2021(09): 1428-1442 . 百度学术
57. 吴昊,翟庆国,胡培远,唐跃,朱志才,王伟,谢超明,强巴扎西. 西藏班戈北部早白垩世火山岩:班公湖—怒江洋闭合的岩浆记录. 中国地质. 2021(05): 1623-1638 . 本站查看
58. 张照伟,王亚磊,邵继,李文渊. 东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征. 矿床地质. 2021(06): 1230-1247 . 百度学术
59. 张辉善,计文化,马中平,高晓峰,孙超,洪俊,吕鹏瑞. 甜水海地块寒武纪安山岩的地球化学和年代学研究:对西昆仑-喀喇昆仑造山带原特提斯洋演化的启示. 岩石学报. 2020(01): 257-278 . 百度学术
60. 丁枫,高建国,徐琨智. 西藏南部绒布地区基性岩脉岩石地球化学、年代学特征及地质意义. 岩石学报. 2020(02): 391-408 . 百度学术
61. 王伟超,文怀军,王宏宇,苏延鹤,张少林,张文龙. 青海地区煤盆地生态地质勘查分区分析研究. 中国煤炭地质. 2020(02): 8-12 . 百度学术
62. 张璋,周诗,耿全如,彭智敏,关俊雷. 狮泉河蛇绿混杂岩带早侏罗世辉长岩锆石年代学及地质意义. 科学技术与工程. 2020(19): 7579-7588 . 百度学术
63. 张建珍,高莲凤,张振国,李广栋,范建军,潘志龙,贠杰,李强,张涛. 西藏日土早白垩世高镁流纹质岩石时代、地球化学特征及地质意义. 地球科学. 2020(08): 2868-2881 . 百度学术
64. 文宝萍,曾启强,闫天玺,王凡,关丽春,张毅,朱雷. 青藏高原东南部大型岩质高速远程崩滑启动地质力学模式初探. 工程科学与技术. 2020(05): 38-49 . 百度学术
65. 瞿辰,刘晓宇,于常青,胥颐,杨文采. 青藏高原S波和泊松比的层析成像. 地球物理学报. 2020(10): 3640-3652 . 百度学术
66. 张照伟,钱兵,王亚磊,李文渊,张江伟,尤敏鑫. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质. 2020(03): 153-168 . 百度学术
67. Jianbo ZHOU. Accretionary complex: Geological records from oceanic subduction to continental deep subduction. Science China(Earth Sciences). 2020(12): 1868-1883 . 必应学术
68. 周建波. 增生杂岩:从大洋俯冲到大陆深俯冲的地质记录. 中国科学:地球科学. 2020(12): 1709-1726 . 百度学术
69. 唐菊兴. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展. 岩石学报. 2019(03): 617-624 . 百度学术
70. 宋扬,曾庆高,刘海永,刘治博,李海峰,德西央宗. 班公湖-怒江洋形成演化新视角:兼论西藏中部古-新特提斯转换. 岩石学报. 2019(03): 625-641 . 百度学术
71. 陈建生,李平,王涛,詹泸成,严嘉恒. 青藏高原东缘水库绕坝基渗流化学溶蚀研究. 岩土工程学报. 2019(04): 610-616 . 百度学术
72. 周亚楠,邵瑞琦,姜南,高扬,于亮,吴汉宁. 拉萨地块保吉地区晚侏罗世——早白垩世地层磁组构特征. 地质通报. 2019(04): 522-535 . 百度学术
73. 刘传正,吕杰堂,童立强,陈红旗,刘秋强,肖锐铧,涂杰楠. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质. 2019(02): 219-234 . 本站查看
74. 王林,田勤俭,李文巧,赵妍,徐岳仁. 2017年西藏米林M_S6.9地震发震构造初探. 地球物理学报. 2019(07): 2549-2566 . 百度学术
75. 赵一霖,刘健,姜科庆,祝明伟. 喀喇昆仑断裂北段晚第四纪活动特征及其构造意义. 地球学报. 2019(04): 601-613 . 百度学术
76. 刘飞,牛晓露,连东洋,冯光英,赵慧. 西藏仲巴地体中433Ma伸展热事件:波库二云母花岗岩锆石年代学、地球化学和Hf同位素制约. 地质学报. 2019(10): 2556-2574 . 百度学术
77. 张林奎,李光明,曹华文,张志,付建刚,夏祥标,董随亮,梁维,黄勇. 藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示. 中国地质. 2019(06): 1312-1335 . 本站查看
78. 符海明,徐喆,陆仙花,余少文. 尼泊尔的地质与矿产. 东华理工大学学报(自然科学版). 2019(04): 301-310 . 百度学术
79. 程晨,夏斌,郑浩,袁亚娟,殷征欣,陆野,徐迟,张霄. 西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义. 地球科学. 2018(04): 975-990 . 百度学术
80. 李睿华,欧阳荷根,赵财胜,宋林山,徐汉梁. 南疆斯如依迭尔铜多金属矿床的地质特征及其成矿时代. 地质学报. 2018(07): 1447-1457 . 百度学术
81. 王涛,张静,佟子达,李腾建. 滇西莲花山富碱斑岩体LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义. 现代地质. 2018(03): 438-452 . 百度学术
82. 王力圆,高顺宝,郑有业,李伟良,毛荣威,黄亮亮. 西藏冈底斯确角弄岩体年代学、地球化学及成矿意义. 地质学报. 2017(04): 822-835 . 百度学术
83. 王振涛. 青藏高原的地质特征与形成演化. 科技导报. 2017(06): 51-58 . 百度学术
84. 李洪梁,李光明,李应栩,董随亮,卿成实,付建刚,刘洪,黄瀚霄. 藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征. 矿物学报. 2017(06): 684-696 . 百度学术
85. 马涛,张健,王晓青,黄登鹏,李进喜,李斌,刘渭. 西藏萨嘎二叠纪OIB型火山岩岩石地球化学特征及成因分析. 西北地质. 2017(03): 22-35 . 百度学术
86. 杨利荣,岳乐平,王洪亮,张睿,郭怀军,朱小辉,张云翔,弓虎军. 祁连山及邻区第四纪地层区划与沉积序列. 中国地质. 2016(03): 1041-1054 . 本站查看
87. 刘磊,邵龙义,黄继,李猛,张玉法,苏时才. 西藏措勤盆地川巴地区下白垩统沉积相及含煤性研究. 中国地质. 2016(03): 1016-1025 . 本站查看
88. 唐渊,王冬兵,廖世勇,王保弟,尹福光,王立全. 滇西高黎贡变质岩带南段淡色花岗岩脉年代学特征及构造意义. 岩石学报. 2016(08): 2347-2366 . 百度学术
89. 马士委,许志琴,张忠坤,马元,赵中宝,庞雪,赵孝武,王慧. 藏南甲玛铜多金属矿床构造变形及其对成矿的制约. 岩石学报. 2016(12): 3781-3799 . 百度学术
90. 陈威威,何碧竹,许志琴,蔡志慧,焦存礼,肖中尧,余腾孝,余卓颖. 裂变径迹方法约束的塘古兹巴斯坳陷中-新生代热演化史——来自青藏高原构造运动的响应. 岩石学报. 2016(12): 3817-3834 . 百度学术
其他类型引用(99)