Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province
-
摘要:
近年来,在汶川地震等强震区常发生一种特大的高位滑坡地质灾害,它从高陡斜坡上部位置剪出并形成凌空加速坠落,具有撞击粉碎效应和动力侵蚀效应,导致滑体解体碎化,从而转化为高速远程碎屑流滑动或泥石流流动,并铲刮下部岩土体,使体积明显增加。新磨滑坡就是这种典型,它发生于2017年6月24日,滑坡后缘高程约3450m,前缘高程约2250 m,高差1200 m,水平距离2800 m,堆积体体积达1637×104 m3,摧毁了新磨村村庄,导致83人死亡。新磨滑坡地处叠溪较场弧形构造带前弧西翼,母岩为中三叠统中厚层变砂岩夹板岩,是1933年叠溪Ms7.5级震中区(烈度X度)和汶川Ms8.0级强震区(烈度IX度),形成震裂山体。滑源区分布多组不连续结构面,将厚层块状岩体分割成碎裂块体,在高程3150~3450 m区间形成明显的压裂鼓胀区,特别是存在2组反倾节理带,具有典型的“锁固段”失稳机理。滑坡体高位剪出滑动,连续加载并堆积于斜坡体上部,体积达390×104 m3,导致残坡积岩土层失稳并转化为管道型碎屑流;碎屑流高速流滑至斜坡下部老滑坡堆积体后,因前方地形开阔、坡度变缓,转化为扩散型碎屑流散落堆积,具有“高速远程”成灾模式。据此,可建立强震山区高位滑坡的早期识别方法,当陡倾山脊存在大型岩质高位滑坡时,应当考虑冲击作用带来的动力侵蚀效应和堆积加载效应,特别是沿沟谷赋存丰富的地下水时,发生高速远程滑坡的可能性将明显增加。因此,在地质灾害调查排查中,在高位岩质滑坡剪出口下方的斜坡堆积体上的聚居区等应划定为地质灾害危险区。在强震山区地质灾害研究中,不仅应采用静力学理论分析滑坡的失稳机理,而且应采用动力学方法加强运动过程的成灾模式研究。
Abstract:In recent years, a typical type of catastrophic ridge-top (or high-position) rockslide often occur in the strong earthquakes such as the Wenchuan earthquake. It exits out from the upper part of the steep slope and forms a volley fall with impact and crushing effect and dynamic erosion effect, causing the slide body to disintegrate and fragment, which transforms into rapid and long run-out avalanche debris or debris flow, and entraining the lower part of rock and soil mass, so that the volume increased significantly. The Xinmo landslide is this typical, it occurred at Maoxian County, Sichuan Province on June 24, 2017. The elevation of the crown of the Xinmo landslide was about 3450 m and the front edge was about 2250m. The height difference of landslide was 1200m, and the horizontal distance was about 2800 m. Its volume was up to 16.37 million m3. The landslide buried the Xinmo Village, leading to the death of 83 people. The Xinmo landslide was located on the western wing of the Jiaochang arc-shaped tectonics. Its parent rocks were the medium to thick layered metamorphic sandstone intercalated with slate in the Middle Triassic. The region was not only the epicenter area of the Diexi earthquake with magnitude 7.5 in 1933 (the intensity of the earthquake was X) but also the strong earthquake-affected area of the Wenchuan Ms8.0 earthquake in 2008 (the intensity was IX). The mountains, especially the ridge-top rockmass, were fractured/cracked due to the strong earthquakes. There were multiple groups of discontinuous structural planes in the sliding source zone, and hence the thick blocky rock mass was cracked into fragmented blocks, and the bugling area was formed at the elevation varying from 3150 to 3450 meter. In particular, there were two sets of anti-dip large joints in the sliding source area, indicating a typical failure mechanism "locked-section". Rockslide with a volume of 3.9 million m3 exited and continuously accumulated at the back of previous residual landslide. The "overload effect" triggered the slope instability under the exit and transferred into long runout channeled avalanche debris. Because the terrain was wide and the slope angle gradually decreased, avalanche debris converted to diffused one and then to scattered accumulation. The Xinmo landslide presents a typical disaster mode of the rapid and long runout initialed due to rockslide at ridge-top in strong earthquake area. A new method should be established to recognize this type of landslides. Wherever there are large-scale rockslides in steep ridge-top region, the "dynamic erosion effect" and the "overloading effect" on the previous accumulation and the talus of slope due to impact processes should be considered. Especially in the place where there is abundant groundwater along the gully, the possibility of a rapid and long runout rockslide-avalanche debris will increase. Therefore, in conducting the investigation of geological disaster, the town, village or other populated areas should be zoned as risk area on the previous landslide accumulation of slope below the exit of the rockslide at the ridge-top. The authors emphasize that, in the strong earthquake mountainous regions, the static balance method for the landslide stability should be considered, and the dynamic research on the landslide runout processes and the disaster mode should be strengthened.
-
Keywords:
- ridge-top landslide /
- avalanche debris /
- strong earthquake area /
- Maoxian County
-
1. 引言
龙门市幅工作区位于海南岛中部偏东北,行政隶属海南省定安县,东经110°15′~110°30′,北纬19°20′~19°30′,东临文昌市,西接澄迈县,东南与琼海市毗邻,西南与屯昌县接壤,北隔南渡江与海口市琼山区相望。
海南省属季节性缺水地区,2005年全省大旱,造成城镇生活用水、农村灌溉用水困难,给海南造成无法估量的损失;2015年3月—6月,特别是5月下旬之后,海南西部和西南部遭受大旱,全省44条河道断流,119座水库干涸,全省13.26万人饮水困难,三亚城区供水严重不足,多地出现间歇性断水。目前海南居民生活饮用水和工业用水水源以地表水为主,而季节性干旱、突发事件引起的供水紧张是长期需要面对的问题,海南目前全省尚未建立应急供水系统,供水安全保障程度低。通过开展1∶50 000环境地质调查,在查明工作区水文地质环境地质条件的基础上,圈划出1处地下水后备水源地,有效缓解地方季节性缺水问题。
龙门市幅1∶50 000环境地质调查数据集的基本信息简介见表1。
表 1 数据库(集)元数据简表条目 描述 数据库(集)名称 海南省龙门市幅1∶50 000环境地质调查数据集 数据库(集)作者 刘凤梅,中国地质调查局武汉地质调查中心
余绍文,中国地质调查局武汉地质调查中心
张彦鹏,中国地质调查局武汉地质调查中心数据时间范围 2017年1月—2017年12月 地理区域 海南省定安县 数据格式 .xlsx 数据量 425 KB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目“琼东南经济规划建设区1∶50 000环境地质调查”(DD20160259) 语种 中文 数据库(集)组成 该数据集是由14个Excel表格组成,表格名称分别为调查点基础数据表.xlsx、机民井调查表.xlsx、泉点野外调查表.xlsx、野外调查路线表.xlsx、野外地质综合调查表.xlsx、地层岩性界线调查点记录表.xlsx、野外构造点调查表.xlsx、地表水点综合调查表.xlsx、试坑渗水试验观测记录表.xlsx、试坑渗水试验综合成果表.xlsx、野外水样采集记录表.xlsx、水质分析综合成果表.xlsx、钻孔基本情况表.xlsx和钻孔地层描述表.xlsx 2. 数据采集和处理方法
2.1 面上调查
调查采用1∶250 000地形图作为底图,手持GPS进行实地定点,对所有的调查点进行了详细的记录和描述,对1∶250 000区域地质调查的地质地貌界线进行了验证,对有偏差的地质地貌界线进行了修正,各类观测点均符合规范要求。本数据集包括机民井调查点221个,泉点21个,地表水点7个,岩性控制点77个,地层界线点77个,构造点3个,调查线路38条。在调查中,用电子水位计读取水位埋深数据,使用三角堰读取地表水、泉水流量数据,使用哈希HQ40d和manta进行现场水温、pH、电导率和氧化还原电位的测试,保证记录数据的精确。
2.2 水样的采集与分析
本次工作中根据《水质采样样品的保存和管理技术规定》(HJ 493−2009)、《水质采样技术指导》(HJ 494−2009)、《生活饮用水标准检验方法水样的采集和保存》(GB/T 5750.2−2006)制定采样技术要求,并进行水样采集、保存和送样。本数据包含地下水全分析结果119个,丰水期57个,枯水期52个,钻孔水样10个。
2.3 钻孔数据采集
所实施钻孔均依据《水文地质调查规范(1∶50 000)》(DZ/T 0282−2015)、《水文水井地质钻探规程》(DZ/T 0148−2014)相关要求进行了数据记录,依据支撑地方政府脱贫攻坚需求,本数据集对钻孔重要信息进行了整理集成,形成地质钻孔基本信息表和钻孔地层描述表。本数据包括10个钻孔的基本情况表、钻孔地层描述表。
所有调查点数据均未经处理,皆为现场调查和测试分析数据采集,各调查点分布如图 1所示。
3. 数据样本描述
3.1 调查数据
龙门市幅1∶50 000环境地质调查数据集为Excel表格型数据,包括10个Excel数据文件,分别为调查点基础数据表.xlsx(表2)、机民井调查表.xlsx(表3)、泉点野外调查表.xlsx(表4)、野外调查路线表.xlsx、野外地质综合调查表.xlsx、地层岩性界线调查点记录表.xlsx、野外构造点调查表.xlsx、地表水点综合调查表.xlsx、试坑渗水试验观测记录表.xlsx、试坑渗水试验综合成果表.xlsx(其他表格内容详见数据集)(各量纲单位为:高程m,直径mm,埋深m,开采量m3/d,温度℃,电导率μS/cm,氧化还原电位mV,流量L/s)。
表 2 龙门市幅环境地质调查点基础数据集例表字段名称 实例 统一编号 1101543471929577001 路线统一编号 L1 野外编号 D2001 调查点名称 − 经度 110154347 纬度 19295770 X坐标 19422534 Y坐标 2157150 地面高程 68 m 地理位置 海南省定安县龙门镇新安村 图幅编号 龙门市幅,E49E004010 调查点类型 机民井调查点,水样采集点,地质综合调查点,水质现场测试 表 3 机民井调查表数据集例表字段名称 实例 字段名称 实例 统一编号 1102513341928262801 浊度 − 野外编号 D2096 气味 无 天气 晴 透明度 透明 经度 110251334 HCO3− − 纬度 19282628 Ca2+ − 地面高程 110 m DO 7.48 地理位置 海南省定安县黄竹镇文星堆村 EC 231.3 μs/cm 图幅编号 龙门市幅,E49E004010 Eh 268.1 mV 井口高程 110 m 井与地表水距离 − 井口直径 3 700 mm 取水设备及型号 离心泵 井底直径 3 700 mm 是否做过抽水试验 否 地下水位埋深 1 m 成井日期 1986 井的类型 民井 可能污染源类型 农田 井深 10 m 可能污染源距井距离 4 m 井壁结构 石垒 主要用途 生活用水 井淘洗情况 每年 年水位变幅 1 开采方式 间歇开采 是否饮用 是 滤管位置 − 平面位置示意图 (BLOB) 取水层位 中更新统多文组(Qp2d) 剖面示意图 (BLOB) 地下水的类型 孔隙水 备注 含水层岩性特征 玄武岩风化残积层 项目名称 琼东南经济规划建设区1∶50 000环境地质调查—龙门市幅 取样情况 未取样 调查单位 武汉地质调查中心 开采量 20 m3/d 调查工作时间 2017-7-9 水温 29.03℃ 调查人 梁昌智 pH 7.19 记录人 龚皓 味 无 审核人 余绍文 色度 − 填表时间 2017-7-9 气温 29℃ 表 4 泉点调查表数据集例表字段名称 实例 字段名称 实例 统一编号 1102034371927216601 透明度 透明 野外编号 D1023 pH 6.35 经度 110203437 取样情况 未取样 纬度 19272166 Eh 217 mV 地面高程 93.9 m DO − 地理位置 海南省定安县龙门镇土地村 电导率 86 μs/cm 泉点名称 − HCO3− − 图幅编号 龙门市幅,E49E004010 Ca2+ − 泉水类型 下降泉 周围可能的污染源 泉点周边可见丢弃的洗衣袋、报纸等生活垃圾 含水层岩性 玄武岩 含水层特征 − 主要用途 灌溉、洗涤 剖面示意图 (BLOB) 补给来源 大气降水 平面位置示意图 (BLOB) 沉淀物及气体成分 − 备注 照片编号IMG1347-1353、IMG6569-6571 天气 晴 项目名称 琼东南经济规划建设区1∶50 000环境地质调查 气温 29℃ 照片编号 IMG1347-1353、IMG6569-6571 流量测定方法 三角堰法 调查单位 武汉地质调查中心 泉的流量 0.794 L/s 调查工作时间 2017-6-8 动态变化特征 随旱雨季变化明显 调查人 梁昌智、符策伟 泉水温度 25℃ 记录人 汪夏旭 色度 − 审核人 张彦鹏 味 无 填表时间 2017-6-8 气味 无 3.2 水样采集测试数据
水样采集测试数据集主要包括2个Excel数据文件,分别为野外水样采集记录表.xlsx和水质分析综合成果表.xlsx。
野外水样采集记录表.xlsx中样品共计170个,数据内容主要包括统一编号、野外编号、经度、纬度、X坐标、Y坐标、地理位置、地面高程、图幅编号、样品编号、采样时间、样品类型、以往取样、静止水位、水温、EC、pH、色、嗅、味、透明度、化学处理方式、平面位置示意图、备注、项目名称、调查单位、采样人、记录人、审核人等29项(表5)。
表 5 水样采集数据集例表字段名称 实例 字段名称 实例 统一编号 1101531501926491801 EC 394.9 μS/cm 野外编号 D1006 pH 4.67 经度 110153150 色 无 纬度 19264918 嗅 无 X坐标 19422160 味 无 Y坐标 2151354 透明度 透明 地理位置 海南省琼海市龙门镇大船村 化学处理方式 阳离子加浓硝酸 地面高程 85 m 平面位置示意图 (BLOB) 图幅编号 龙门市幅,E49E004010 备注 − 样品编号 LM-FSH001 项目名称 琼东南经济规划建设区1∶50 000环境地质调查 采样时间 2017-9-18 调查单位 武汉地质调查中心 样品类型 地下水 采样人 张彦鹏 以往取样 无 记录人 张彦鹏 静止水位 10.69 m 审核人 余绍文 水温 26.43℃ 地下水的化学组成是地下水质量评价的重要内容,地下水无机指标是评价地下水质量的直接参数,尤其是氟离子、三氮、重金属等无机毒理指标更是在饮用水评价标准中有着严格的要求(李成柱等,2018;马洪云等,2018)。地下水全分析测试结果表.xlsx中样品共计119个,数据内容主要包括37项基本信息(统一编号、样品编号、室内编号、测试编码、水温、pH、K、Ca、Na、Mg、Sr、Ba、V、Fe、Ni、Zn、Ga、Sn、Ti、Bi、Al、Si、Cr、Cd、Sb、Ti、Mn、As、Be、B、Co、Cu、Li、Pb、F、Cl−、Br−、NO3−、PO43−、SO42−等,见表6,测试结果量纲为mg/L)。
表 6 水质分析综合成果表数据集例表字段名称 实例 字段名称 实例 统一编号 1101531501926491801 Zn 0.06 样品编号 LM-FSH001 Cd 0.00 室内编号 D1006 Mn 0.78 测试编码 FSH001 Ni 0.02 水温 26.43 Co 0.02 pH 4.67 总Cr 0.00 铍 0.00 V 0.00 K+ 33.04 Sr 0.05 Na+ 32.71 Sb 0.00 Ca2+ 5.73 Fe 0.01 Mg2+ 3.23 Tl 0.00 Cl− 55.51 Ba 0.37 SO42− 22.93 B 0.00 NO3− 44.90 Br- 0.12 F− 0.34 As 0.00 PO43− n.a. Li 0.01 TDS 252.7 Al 0.36 Cu 0.00 取样时间 2017-9-18 Pb 0.00 3.3 钻孔数据
龙门市幅钻孔数据集为Excel表格型数据,主要包括2个Excel数据文件,分别为钻孔基本情况数据集(表7)、钻孔地层描述表(表8)。
表 7 钻孔基本情况数据集例表字段名称 实例 字段名称 实例 统一编号 1101609001925173301 含水层初见水位 0.15 m 野外编号 LMSK01 成井深度 101.5 m 经度 110160900 静止水位 3.16 m 纬度 19251733 质量等级 优 X坐标 19423242 含水层特征 砂岩 Y坐标 2148525 平面位置示意图 (BLOB) 地理位置 海南省定安县龙门镇角塘村 钻孔柱状图 (BLOB) 地面高程 91 m 备注 − 图幅编号 龙门市幅,E49E004010 项目名称 琼东南经济规划建设区1∶50 000环境地质调查 孔口高程 91 m 施工单位 广东省有色金属地质局水文地质队 钻机类型 XY-1A-4 调查日期 2017-10-31 钻孔类型 水文地质钻探 机长 郑连兵 开孔日期 2017-10-31 地质编录 陈国荣 终孔日期 2017-11-18 记录人 陈国荣 井斜 0 审核人 杨俊烁 开孔直径 168 mm 填表时间 2017-11-18 终孔直径 110 mm 钻孔ID − 终孔深度 101.5 m 表 8 钻孔地层描述表字段名称 实例 统一编号 1101609001925173301 地质时代 K 地层编码 4 场地分层索引号 − 层底标高 84.5 m 层底深度 6.5 m 单层厚度 0.8 m 层底接触关系 − 层理构造 − 岩土名称 强风化砂岩 岩土颜色 上部浅紫红色,下部灰黄色 地层地质描述 细粒结构,层状构造,节理裂隙稍发育,沉积成因,由石英、长石组成,黏土胶结,粒径约0.05~1 mm,局部有水蚀痕迹,透水性一般 钻孔ID − 3.4 水化学类型分析
所采集地下水主要以浅层基岩风化层孔隙裂隙水为主,少量基岩裂隙水。地下水水化学特征主要受大气降水、岩土体组成及人类活动等多重因素的影响和控制,造成区内地下水水化学类型的复杂性和多样性。根据舒卡列夫分类,区内主要地下水化学类型如表9所示。
表 9 地下水水化学类型统计类型 数量 比例 Ca-HCO3 5 50.00% Na-HCO3 6 Ca·Na-HCO3 15 Ca·Na-HCO3·SO4 4 7.70% Na·Ca-Cl 8 42.30% Na-Cl 10 Ca-Cl 4 从表9可以看到调查区内浅层地下水总体以低矿化度为主要特征,水化学类型复杂多样。以阴离子划分地下水类型,主要包括HCO3型,HCO3·SO4型及Cl型水,以HCO3型、Cl型水为主,接近所有样品数量的92%。以阳离子划分地下水类型,包括Ca型, Na·Ca型及Na型水,以Na·Ca型、Na型水为主,占所有样品数量的75%。总体上,地下水的水化学类型以Ca·Na-HCO3型和Na-Cl型水为主。
地下水的水化学类型在区域上呈现出山地丘陵区以HCO3-Ca型水为主,靠近剥蚀波状平原区以Cl型水为主,具有明显的由山区向平原区演化的规律。同时,地下水类型分布与区域内主要村镇的分布也存在一定的相关性。
4. 数据质量控制和评估
4.1 调查点质量控制
1∶50 000龙门市幅环境地质调查,图幅面积约480 km2,完成各类调查点405个,其中以机(民)井调查点和野外地质综合调查点为主,分别为221个和77个,占调查点的55%和19%,其他调查点分别为地质界线点77个,地表水调查点7个,泉点21个,构造调查点3个,平均每百平方公里调查点约84个,达复杂地区山地丘陵地区调查点密度;调查线路间距1 000~1 200 m,达中等复杂地区要求;完成10个水文地质调查孔的抽水试验;水位统测点56个,水质分析取样点56个,满足《水文地质调查规范(1∶50 000)》(DZ/T 0282−2015)中对山地丘陵复杂地区每百平方公里水质分析点定额的要求。
4.2 样品采集测试质量控制
样品采集和送检工作严格按照《地下水污染调查规范》要求执行,样品采集点主要布置在水文地质调查点(机井、民井、集中供水水源地水源井)。采样前作好采样计划,并与承担检测任务的实验室及时做好沟通;在样品采集现场及时填写了记录表和采样标签;现场测试指标均在现场测试,样品按规范要求加相应的保护剂。
样品测试单位均具备相关测试资质的单位,根据项目需求,所有测试方法的技术参数均达到或优于相应标准。
4.3 钻孔数据质量控制
钻孔施工符合相关技术要求及项目需求,抽水试验稳定时长符合规范,抽水曲线正常,获取的各项数据真实可靠,符合工作区实际情况。
5. 结论
本数据集包含了2017年龙门市幅1∶50 000环境地质调查的调查数据、样品采集分析数据和钻孔数据,各项工作均符合相关规范要求,获取的数据质量可靠,可以真实反映该时段龙门市幅水文地质环境地质状况,在此基础上,为地方圈定1处地下水后备水源地,可有效缓解季节性缺水问题。
致谢:感谢项目组及海南地质调查院等兄弟单位在获取野外调查数据过程中付出的辛劳和提供的帮助。感谢质量检查和野外验收专家组对调查工作提出的宝贵建议。感谢审稿人和编辑部在稿件修改过程中提出的宝贵建设性意见。
1. Introduction
The Longmen Map Sheet is located in the northeast of central Hainan and affiliated to Ding’an County, Hainan Province administratively, with the coordinates of 110°15′–110°30′ EL and 19°20′–19°30′ NL. It borders Wenchang City in the east, Chengmai County in the west, Qionghai City in the southeast and Tunchang County in the southwest. Meanwhile, it is separated from Qiongshan District, Haikou City by the Nandujiang River.
Hainan Province lies in a region sustaining seasonal shortage of water. In 2005, severe drought across the whole province triggering a shortage of water for daily usage in towns and cities and for irrigation in rural areas, causing great loss to the province. During March – June in 2015, especially from late May to June, a great drought struck the west and southwest of Hainan Province, resulting in zero flow in 44 river channels, 119 reservoirs running dry, 132 600 people suffering from shortage of drinking water, seriously insufficient water supply in the urban area of Sanya City and intermittent water supply in many areas. Currently, surface water is the main source of drinking water for the residents and the water source for industrial uses in Hainan Province and, therefore, the province suffers from the shortage of water supply arising from seasonal droughts and unforeseen events for a long term. Furthermore, there is still no emergency water supply system up to now. Therefore, the water supply security in Hainan Province is at a low degree. Through the environmental geological survey on a scale of 1∶50 000 in the Longmen Map Sheet, the hydrogeological and environmental geological conditions of the area were ascertained. Moreover, a backup groundwater source was delineated based on the survey results, effectively alleviating the seasonal water shortage in the area.
The basic information on the Dataset is shown in Table 1.
1. Metadata Table of Database (Dataset)Items Description Database (dataset) name Dataset of the Environmental Geological survey on a scale of 1∶50 000 in the Longmen Map sheet, Hainan Province Database (dataset) authors Liu Fengmei, Wuhan Center, China Geological survey
Yu shaowen, Wuhan Center, China Geological survey
Zhang Yanpeng, Wuhan Center, China Geological surveyData acquisition time January – December in 2017 Geographic area Ding’an County, Hainan Province Data format .xlsx Data size 425 KB Data service system URL http://dcc.cgs.gov.cn Fund project China Geological survey project titled “Environmental Geological survey on a scale of 1∶50 000 in the Economic Planning and Construction Zone of southeast Hainan” (DD20160259) Language Chinese Database (dataset) composition The dataset consists of 14 data tables in Excel, namely “Basic data of survey points.xlsx”, Pumping (domestic) well survey.xlsx”, “Field survey of spring points.xlsx”, “Field survey routes.xlsx”, “Field comprehensive geological survey.xlsx”, “Survey point records of stratigraphic lithologic boundary.xlsx”, “Survey of field geological structural points.xlsx”, “Comprehensive survey of surface water points.xlsx”, “Observation records of permeability test in trial pits.xlsx”, “Comprehensive results of permeability test in trial pits.xlsx”, “Records of field water sampling.xlsx”, “Comprehensive results of water quality analysis.xlsx”, “Basic information of boreholes.xlsx” and “Description of strata revealed by boreholes.xlsx”.
2. Methods for Data Acquisition and Processing
2.1 Regional Survey
A topographical map on a scale of 1∶250 000 was taken as a base map, all survey points were positioned with a portable GPS device and they were recorded and described in detail. Furthermore, the geological and topographical boundaries obtained from the regional geological survey on a scale of 1∶250 000 were verified and any with errors were all corrected. As a result, all observation points are compliant with the applicable specifications and codes. The dataset involves 221 pumping (domestic) well points, 21 spring points, 7 surface water points, 77 lithologic control points, 77 stratigraphic boundary points, 3 geological structural points and 38 survey routes. During the survey, electronic water level gauges were adopted to determine the burial depth of water level; triangular weirs were used to measure the flow of surface water and spring water; and HACH HQ40d and Eureka Manta were adopted to test the temperature, pH, electrical conductivity (EC) and oxidation-reduction potential (Eh) of water, ensuring that the data obtained are accurate.
2.2 Collection and Analysis of Water Samples
The Water Quality Sampling – Technical Regulation of Preservation and Handling of Water Samples (HJ 493–2009) , Water Quality – Guidance on Sampling Techniques (HJ 494–2009) and Standard Examination Methods for Drinking Water – Collection and Preservation of Water Samples (GB/T 5750.2–2006) were followed in order to determine the technical requirements of water sampling and the collection, preservation and presentation for testing the water samples. The Dataset contains the results of complete chemical analysis of groundwater for 119 water samples, in which 57 were taken during the wet season, 52 were collected during the dry season and 10 were obtained from boreholes.
2.3 Acquisition of Borehole Data
The data of boreholes were recorded in accordance with Specification for Hydrogeological Survey (1∶50 000) (DZ/T 0282–2015) and Specification for Hydrological Well Drilling (DZ/T 0148–2014) and the important data from the boreholes were collated and integrated based on the demand of local governments for poverty alleviation. As a result, the data tables of basic borehole information and the strata description revealed by boreholes were developed, in which 10 boreholes were covered.
The data of all survey points are unprocessed, which are all collected from field surveys and test analysis data. The distribution of the surveying and sampling points in the Longmen Map Sheet is shown in Fig. 1.
3. Description of Data Samples
3.1 Survey Data
The geological survey data in the Dataset contains 10 data tables in Excel, named “Basic data of survey points.xlsx” (Table 2), “Pumping (domestic) well survey.xlsx” (Table 3), “Field survey of spring points.xlsx” (Table 4), “Field survey routes.xlsx”, “Field comprehensive geological survey.xlsx”, “Survey point records of stratigraphic lithologic boundary.xlsx”, “Survey of field geological structural points.xlsx”, “Comprehensive survey of surface water points.xlsx”, “Observation records of permeability test in trial pits.xlsx” and “Comprehensive results of permeability test in trial pits.xlsx” (see the Dataset for details of other data tables; the units are as follows: elevation - m, diameter - mm, burial depth - m, recovered volume - m3/d, temperature: °C, EC (electronic conductivity) - μS/cm, Eh (oxidation-reduction potential) - mV and flow - L/s).
2. Real Example of “Basic data of survey points.xlsx” in the DatasetField name Real Example Unified No. 1101543471929577001 Unified No. of route L1 Field No. D2001 Survey point name Longitude 110154347 Latitude 19295770 Coordinate X 19422534 Coordinate Y 2157150 Ground elevation 68 m Geographical location Xin’an Village, Longmen Town, Ding’an County, Hainan Province Map Sheet No. Longmen Map Sheet, No.: E49E004010 Survey point type Pumping (domestic) well survey point, water sampling point, comprehensive geological survey point, water-quality on-site testing 3. Real Example of “Pumping (domestic) well survey.xlsx” in the DatasetField name Real Example Field name Real Example Unified No. 1102513341928262801 Turbidity − Field No. D2096 Odor Odorless Weather Sunny Transparency Transparent Longitude 110251334 HCO3− − Latitude 19282628 Ca2+ − Ground elevation 110 m DO 7.48 Geographical location Wenxingdui Village, Huangzhu Town, Ding’an County, Hainan Province EC 231.3 μS/cm Map sheet No. Longmen Map Sheet, No.: E49E004010 Eh 268.1 mV Wellhead elevation 110 m Distance from wellhead to surface water − Wellhead diameter 3 700 mm Device and model for water intaking Centrifugal pump Well bottom diameter 3 700 mm Pumping test No Burial depth of groundwater level 1 m Date of well completion 1986 Well type Domestic well Possible type of pollution source Farmland Well depth 10 m Distance from well to the possible pollution source 4 m Well wall structure Built with stones Main purposes For daily usage Elutriation type of well Yearly Annual change amplitude of water level 1 Exploitation method Intermittent exploitation Whether for drinking use Yes Location of screen pipe − Planimetric location sketch (BLOB) Water-intaking stratum Duowen Formation of Middle Pleistocene (Qp2d) Profile sketch (BLOB) Groundwater Type Pore water Remarks Lithologic feature of aquifer Basalt-weathered eluvium Project title Environmental Geological Survey on a scale of 1∶50 000 in the Economic Planning and Construction Zone in Southeast Hainan ― Longmen Map Sheet Sampling No sample taken Undertaken by Wuhan Center, China Geological Survey Exploitation volume 20 m3/d Date of survey July 9, 2017 Water temperature 29.03°C Surveyed by Liang Changzhi pH 7.19 Recorded by Gong Hao Taste Tasteless Checked by Yu Shaowen Chroma − Filled on (date) July 9, 2017 Atmospheric temperature 29°C 4. Real Example of “Field survey of spring points.xlsx” in the DatasetField name Real Example Field name Real Example Unified No. 1102034371927216601 Transparency Transparent Field No. D1023 pH 6.35 Longitude 110203437 Sampling No sample taken Latitude 19272166 Eh 217 mV Ground elevation 93.9 m DO − Geographical location Tudi Village, Longmen Town, Ding’an County, Hainan Province EC 86 μS/cm Spring point Name − HCO3− − Map sheet No. Longmen Map Sheet, No.: E49E004010 Ca2+ − Spring type Gravity spring Possible pollution sources beside the spring point Domestic waste discarded visible around the spring point, such as laundry bags and newspaper Lithology of aquifer Basalt Aquifer feature − Main purposes For irrigation and washing Profile sketch (BLOB) Source of recharge Meteoric precipitation Sketch of planimetric position (BLOB) Composition of sediments and gases − Remarks Picture numbers: IMG1347-1353 and IMG6569-6571 Weather Sunny Project title Environmental Geological Survey on a scale of 1∶50 000 in Economic Planning and Construction Zone of Southeast Hainan Atmospheric temperature 29 Picture numbers IMG1347-1353 and IMG6569-6571 Method for measuring
water flowTriangular weir Undertaken by Wuhan Center, China Geological Survey Water flow 0.794 L/s Date of survey June 8, 2017 Dynamic change feature Vary greatly between wet and dry seasons Surveyed by Liang Changzhi, Fu Cewei Water temperature 25℃ Recorded by Wang Xiaxu Chroma − Checked by Zhang Yanpeng Taste Tasteless Filled on (date) June 8, 2017 Odor Odorless 3.2 Data on Collection and Testing of Water Samples
The data of collection and testing of the water samples in the Dataset includes two data tables in Excel, named “Records of field water sampling.xlsx” and “Comprehensive results of water quality analysis.xlsx”.
“Records of field water sampling.xlsx” covers 170 samples in total and contains 29 data items in total, which are: unified No., field No., longitude, latitude, X and Y coordinates, geographical location, ground elevation, map sheet No., sample No., sampling date, sample type, previous sampling, static water level, water temperature, EC, pH, color, odor, taste, transparency, chemical treatment means, sketch of planimetric position, remarks, project title, survey entity, and the person in charge of sampling, recording and check (Table 5).
5. Real Example of “Records of field water sampling.xlsx” in the DatasetField name Real Example Field name Real Example Unified No. 1101531501926491801 EC 394.9 μS/cm Field No. D1006 pH 4.67 Longitude 110153150 Color Colorless Latitude 19264918 Odor Odorless Coordinate X 19422160 Taste Tasteless Coordinate Y 2151354 Transparency Transparent Geographical location Dachuan Village, Longmen Town, Qionghai City, Hainan Province Chemical treatment means Cation and concentrated nitric acid Ground elevation 85 m Sketch of planimetric location (BLOB) Map sheet No. Longmen Map Sheet, No.: E49E004010 Remarks Sample No. LM-FSH001 Project title Environmental Geological Survey on a Scale of 1∶50 000 in the Economic Planning and Construction Zone of Southeast Hainan Sampling date September 18, 2017 Undertaken by Wuhan Center, China Geological Survey Sample type Groundwater Sampled by Zhang Yanpeng Previous sampling No Recorded by Zhang Yanpeng Static water level 10.69 m Checked by Yu Shaowen Water temperature 26.43℃ The chemical composition of groundwater is an important part of groundwater quality evaluation. Inorganic indicators of groundwater are direct parameters for evaluating groundwater quality. In particular, inorganic toxicological indicators such as fluoride, trinitrogen, and heavy metals have strict requirements in drinking water evaluation standards (Li CZ, et al., 2018; Ma HY, et al., 2018). “Comprehensive results of water quality analysis.xlsx” covers 119 samples in total and contains 37 data items of basic information, which are: unified No., field No., indoor No., testing code, water temperature, pH, K, Ca, Na, Mg, Sr, Ba, V, Fe, Ni, Zn, Ga, Sn, Ti, Bi, Al, Si, Cr, Cd, Sb, Ti, Mn, As, Be, B, Co, Cu, Li, Pb, F, Cl−, Br−, NO3−, PO43− and SO42. See Table 6 for details. The units of the test results are mg/L).
6. Real Example of “Comprehensive results of water quality analysis.xlsx” in the DatasetField name Real Example Field name Real Example Unified No. 1101531501926491801 Zn 0.06 Sample No. LM-FSH001 Cd 0.00 Indoor No. D1006 Mn 0.78 Testing code FSH001 Ni 0.02 Water temperature 26.43 Co 0.02 pH 4.67 Total Cr 0.00 Be 0.00 V 0.00 K+ 33.04 Sr 0.05 Na+ 32.71 Sb 0.00 Ca2+ 5.73 Fe 0.01 Mg2+ 3.23 Tl 0.00 Cl− 55.51 Ba 0.37 SO42− 22.93 B 0.00 NO3− 44.90 Br- 0.12 F− 0.34 As 0.00 PO43− n.a. Li 0.01 TDS 252.7 Al 0.36 Cu 0.00 Sampling date Septemper 18, 2017 Pb 0.00 3.3 Data of Boreholes
The data of boreholes in the Dataset mainly include two data tables in Excel, named “Basic information of boreholes.xlsx” (Table 7) and “Description of strata revealed by boreholes.xlsx” (Table 8).
7. An Example of “Basic information of boreholes.xlsx” in the DatasetField name Real Example Field name Real Example Unified No. 1101609001925173301 Initial water level of aquifer 0.15 m Field No. LMSK01 Well depth 101.5 m Longitude 110160900 Static water level 3.16 m Latitude 19251733 Quality grade Excellent Coordinate X 19423242 Aquifer feature Sandstone Coordinate Y 2148525 Sketch of planimetric location (BLOB) Geographical location Jiaotang Village, Longmen Town, Ding’an County, Hainan Province Borehole histogram (BLOB) Ground elevation 91 m Remarks - Map sheet No. Longmen Map Sheet, No.: E49E004010 Project name Environmental Geological Survey on a Scale of 1∶50 000 in the Economic Planning and Construction Zone of Southeast Hainan Borehole head elevation 91 m Constructed by Hydrogeological Team from the Guangdong Geological Bureau of Nonferrous Metals Drilling rig type XY-1A-4 Date of survey October 31, 2017 Borehole type Hydrogeological drilling Drilling foreman Zheng Lianbing Start date of drilling October 31, 2017 Person in charge of geological logging Chen Guorong End date of drilling November 18, 2017 Recorded by Chen Guorong Well deviation 0 Checked by Yang Junshuo Open hole diameter 168 mm Filled on (date) November 18, 2017 Final hole diameter 110 mm Borehole ID - Final hole depth 101.5 m 8. An Example of “Description of strata revealed by boreholes.xlsx” in the DatasetField name Example Unified No. 1101609001925173301 Geological age K Stratum code 4 Index of site-based layer − Elevation of stratum bottom 84.5 m Depth of stratum bottom 6.5 m Thickness of a single layer 0.8 m Contact relation at stratum bottom − Bedding structure − Name of rock or soil Strongly weathered sandstone Color of rock or soil Lightly purplish-red in the upper part and grayish-yellow in the lower part Stratigraphic geological description Fine-grained and laminar structure, joints and fissures slightly developed, sedimentogenesis, composed of quartz and feldspar, cemented by clay, particle size: about 0.05–1 mm, signs of water erosion locally visible, water permeability: medium Borehole ID − 3.4 Analysis of hydrochemical types
The groundwater collected is mainly pore fissure water in shallow bedrock weathering layer, and a small amount of bedrock fissure water. The groundwater hydrochemical characteristics are mainly affected and controlled by multiple factors such as atmospheric precipitation, rock and soil composition, and human activities, resulting in the complexity and diversity of groundwater hydrochemical types in the survey area. According to Shukarev classification, the main groundwater chemical types in the area are shown in Table 9.
9. Summary Table of the groundwater hydrochemical types in the survey areaGroundwater hydrochemical type Number of samples Percentage Ca-HCO3 5 50.00% Na-HCO3 6 Ca·Na-HCO3 15 Ca·Na -HCO3·SO4 4 7.70% Na·Ca-Cl 8 42.30% Na-Cl 10 Ca-Cl 4 As seen from Table 9, the shallow groundwater in the survey area is generally characterized by low salinity, with complex and diverse hydrochemical types. In terms of dividing groundwater types by anions, it mainly includes HCO3-type, HCO3 · SO4-type and Cl-type water, and is characterized by HCO3-type and Cl-type water, which is close to 92% of all samples. In terms of dividing groundwater types by anions, the groundwater types are divided into Ca-type, Na·Ca-type, and Na-type, with Na·Ca-type and Na-type oriented, accounting for 75% of all samples. In general, the hydrochemical types of groundwater are mainly the Ca·Na-HCO3-type and Na-Cl-type water.
The distributed hydrochemical type of the groundwater in the region shows that there is mainly HCO3-Ca-type water in mountainous and hilly areas, and Cl-type water in the eroded plain area, which reveals a clear evolution law from mountainous to plain areas. Meanwhile, there is a certain correlation between the distribution of the groundwater types and the major villages and towns in the the survey area.
4. Data Quality Control and Assessment
4.1 Quality Control of Survey Points
The environmental geological survey on a scale of 1∶50 000 in the Longmen Map Sheet covers 405 various survey points, primarily including 221 pumping (domestic) well survey points and 77 comprehensive geological survey points in the field, accounting for 55% and 19% of the total survey point number respectively. In addition, there are 77 geological boundary points, 7 surface water survey points, 21 spring points and 3 geological structural survey points. Therefore, there are about 84 survey points per 100 km2 on average, since the Longmen Map Sheet covers an area of about 480 km2, reaching the survey point density in complex mountainous and hilly areas. The interval between routines is 1000−1200 m, compliant with the relevant requirements for medium complex areas. Pumping tests were carried out in 10 hydrogeological survey boreholes. Furthermore, there are 56 points where the water level will be simultaneously measured and 56 points from which water samples were taken for water-quality analysis; thereby meeting the quota requirement for water-quality analysis point number per 100 km2 in complex mountainous and hilly areas specified in Specification for Hydrogeological Survey (1∶50 000) (DZ/T 0282-2015).
4.2 Quality Control of Collection and Testing of Water Samples
Water samples were taken and presented for tests in strict accordance with Specifications for Geological Survey and Assessment of Groundwater Pollution and the water samples were predominantly taken from hydrogeological survey points (such as pumping wells, domestic wells and wells in the water sources for concentrated water supply). A sampling plan was prepared before sampling and timely communication was made with labs undertaking the tests. At the same time, data tables of records and sampling labels were filled in a timely manner at each sampling site. All on-site testing indices were tested in the field and proper protective agents were added into the samples as required in the applicable specifications.
The samples were tested in qualified entities. As required by the environmental geological survey on a scale of 1∶50 000 in the Longmen Map Sheet, technical parameters of all measuring methods met or exceeded the applicable standards.
4.3 Quality Control of Borehole Data
The boreholes were drilled in accordance with relevant technical specifications and the needs of the environmental geological survey on a scale of 1∶50 000 in the Longmen Map Sheet. The stable state of the pumping tests was maintained for a period as required by related specifications and normal pumping curves were obtained. Therefore, various data obtained are true, credible and consistent with the actual conditions in the Longmen Map Sheet.
5. Conclusion
This Dataset contains the survey data, sampling information and analytical results of the water samples and borehole data obtained from the environmental geological survey on a scale of 1∶50 000 in the Longmen Map Sheet in 2017. All the work in the survey such as sampling, testing and drilling were conducted according to the relevant specifications. The data obtained are credible and can faithfully reflect the hydrogeological and environmental geological conditions in the Longmen Map Sheet. Moreover, based on this, a backup groundwater source was delineated and this will effectively alleviate the seasonal water shortage in the area.
Acknowledgments: Thanks to the project team and the Hainan Geological Survey and other organizations for their hard work and assistance in obtaining field survey data. Thanks to the quality inspection and field acceptance expert group for their valuable suggestions on the investigation. We would like to extend our sincere appreciation to the reviewers and the editors for their valuable constructive opinions on the revision of this paper.
致谢: 张勤教授和赵超英教授提供了InSAR解译成果,赵永教授提供了滑坡地震记录成果,审稿专家和编辑老师对文章提出了宝贵的意见和建议,在此一并表示衷心感谢! -
表 1 茂县新磨滑坡物源和堆积分区
Table 1 Zoning of material sources and accumulation of the Xinmo landslide, Maoxian County
-
Catane S G, Cabria H B, Jr C P T, Jr R M S, Zarco M A H, Pioquinto W C.2007.Catastrophic rockslide-debris avalanche at St.Bernard, Southern Leyte, Philippines[J].Landslides, 4(1):85-90. doi: 10.1007/s10346-006-0050-3
Chen Zuyu, Meng Xingmin, Yin Yueping, Dijkstra T, Winter M, Wasowski J.2016.Landslide research in China[J].Quarterly Journal of Engineering Geology & Hydrogeology, 49(1-4):qjegh2016-100. https://www.researchgate.net/.../310757610_Landslide_Research_in_China
Fan Xuanmei, Xu Qiang, Scaringi G, Dai Lanxin, Li Weile, Dong Xiujun, Zhu Xing, Pei Xiangjun, Dai Keren, Havenith HansBalder.2017.Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China[J].Landslides, online DOI 10.1007/s10346-017-0907-7. doi: 10.1007/s10346-017-0907-7
Huang Runqiu, Li Weile.2011.Formation, distribution and risk control of landslides in China[J].Journal of Rock Mechanics and Geotechnical Engineering, 3(2):97-116. doi: 10.3724/SP.J.1235.2011.00097
Hungr O, McDougall S.2009.Two numerical models for landslide dynamic analysis[J].Comput Geosci, 35(5):978-92. doi: 10.1016/j.cageo.2007.12.003
Sassa K, He B, Dang K, Nagai O, Takara K.2014.Plenary:progress in landslide dynamics[C]//Sassa K, Canuti P, Yin Y P (editors) Landslide science for a safer geoenvironment.Switzerland:Springer International Publishing; 37-67.
Scheidegger A E.1973.On the prediction of the reach and velocity of catastrophic landslides[J].Rock Mech Rock Eng, 5:11-40. doi: 10.1007/BF01301796
Su Lijun, Hu K H, Zhang W F, Wang J, Lei Y, Zhang CL, Cui P, Alessandro Pasuto, Zheng QH.2017.Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China[J].Journal of Mountain Science, 14(9):1689-1700. doi: 10.1007/s11629-017-4609-3
Wen Mingsheng, Chen Hongqi, Zhang Mingzhi, Chu Hongliang, Wang Wenpei, Zhang Nan, Huang Zhe.2017.Characteristics and formation mechanism analysis of the "6·24" catastrophic landslide of the June 24 of 2017, at Maoxian, Sichuan[J].Chinese Journal of Geological Hazards and Control, 28(3):1-7(in Chinese with English abstract). doi: 10.1007/s11069-017-3026-9
Xu Qiang, Li Weile, Dong Xiujun, Xiao Xianxuan, Fan Xuanmei, PeiXiangjun.The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan:characteristics and failure mechanism., 2017, 36(11):2612-2628. https://www.researchgate.net/publication/320318336_Failure...
Xu Qiang, Li Weile, Dong Xiujun, Xiao Xianxuan, Fan Xuanmei, Pei Xiangjun.2018.The Xinmocun Landslide on June 24, 2017 in Diexi, Maoxian, Sichuan:Characteristics and Failure Mechanism[J].Chinese Journal of Rock Mechanics and Engineering, (in Press). doi: 10.1007/s11069-017-3026-9
Xu Qiang, Zhang S, Li WL.2011.Spatial distribution of large-scale landslides induced by the 5.12 Wenchuan earthquake[J].Journal of Mountain Science, 8(2):246-260. doi: 10.1007/s11629-011-2105-8
Xu Xiangning, Wang Lansheng.2012.Mountain hazard caused by earthquake in Songping branch, the Upper Min River and its controlling[J], The Chinese Journal of Geological Hazard and Control, 13(2):31-35(in Chinese with English abstract).
Yin Yueping, Zheng Wamo, Li Xiaochun.2011a.Catastropic landslides associated with the M8.0 Wenchuan earthuqake[J].Bulletin of engineering Geology & the Environment, 70(1):15-32. doi: 10.1007/s10064-010-0334-7
Yin Yueping, Sun Ping, Zhu Jiliang, Yang Shengyun.2011b.Research on catastrophic rock avalanche at Guanling, Guizhou, China[J].Landslides, 8(4):517-525. doi: 10.1007/s10346-011-0266-8
Yin Yueping, Cheng Yuliang, Liang Jingtao, Wang Wenpei.2016.Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J].Landslides, 13(1):9-23. doi: 10.1007/s10346-015-0554-9
Yin Yueping, Wang Wenpei, Zhang Nan, Yan Jingkai, Wei Yunjie.2017.The June 2017 Maoxian Landslide:Geological Disaster in An Earthquake Area after the Wenchuan Ms8.0 Earthquake[J].Sci China Tech.Sci., 2017, 60:doi: 10.1007/s11431-017-9148-2.
Zhang Ming, McSaveney M J.2017.Rock avalanche deposits store quantitative evidence on internal shear during runout[J].Geophysical Research Letters, 44:doi: 10.1002/2017GL073774.
Zhang Yongshuang, Cheng Yuliang, Yin Yueping, Lan Hengxing.2014.High-position debris flow:a long-term active geohazard after the wenchuan earthquake.Engineering Geology, 180(180):45-54. https://www.sciencedirect.com/science/article/pii/S0013795214001227
Zhao Yong.2017.Analysis of movement process of Maoxian landslide, Sichuan[R].Beijing:China Earthquake Networks Center (in Chinese).
温铭生, 陈红旗, 张鸣之, 褚宏亮, 王文沛, 张楠, 黄喆.2017.四川茂县"6.24"特大滑坡特征与成因机制分析[J].中国地质灾害与防治学报, 28(3):1-7. 许强, 李为乐, 董秀军, 肖先煊, 范宣梅, 裴向军.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11):2612-2628. http://www.cnki.com.cn/Journal/B-B3-YSLX-2017-11.htm 许强, 李为乐, 董秀军, 肖先煊, 范宣梅, 裴向军.2018.四川茂县叠溪镇新磨村滑坡特征与成因机理初步研究[J].岩石力学与工程学报, (待刊). http://bianke.cnki.net/Home/Corpus/14112.html 许向宁, 王兰生.2002.岷江上游松坪沟地震山地灾害与生态环境保护[J].中国地质灾害与防治学报, 13(2):31-35. http://www.cqvip.com/QK/98314X/200202/6521123.html 赵永. 2017. 四川6. 24茂县滑坡过程分析[R]. 北京: 中国地震台网中心. -
期刊类型引用(90)
1. 彭世利,彭头平,范蔚茗,刘用民,武利民. 滇西保山地块西缘象达岩基晚白垩世花岗岩成因及其大地构造意义. 大地构造与成矿学. 2025(01): 178-196 . 百度学术
2. 荆林海,李光明,丁海峰,赵洁,李金祥,张夏楠. 班怒带中西段斑岩铜矿遥感选区、地质评价与重大发现. 岩石学报. 2025(02): 362-382 . 百度学术
3. 王立成,吴驰华,张华,龚大兴. 青藏高原周缘中-新生代钾盐矿床研究进展、问题及展望. 岩石学报. 2025(03): 1014-1042 . 百度学术
4. 曾旭,付锁堂,王波,龙国徽,吴志雄,崔海栋,王琛茜. 柴达木盆地古近系下干柴沟组上段碎屑锆石U-Pb测年及盆山耦合探讨. 地质学报. 2024(01): 79-105 . 百度学术
5. 铁永波,张宪政,曹佳文,秦雅东,王立朝,董英,郭富赟,郭兆成,白永健,冉涛,侯圣山,王涛,高波,卢佳燕,李光辉,宁志杰,向炳霖,孙才. 积石山Ms6.2级和泸定Ms6.8级地震地质灾害发育规律对比. 成都理工大学学报(自然科学版). 2024(01): 9-21+59 . 百度学术
6. 高利娥,曾令森,赵令浩,严立龙,李广旭,王亚莹,王海涛,王睿. 喜马拉雅造山带聂拉木地区渐新世深熔作用的厘定. 岩石学报. 2024(05): 1565-1586 . 百度学术
7. FAN Pengxiao,YU Changqing,WANG Ruixue,ZENG Xiangzhi,QU Chen,ZHANG Yue. Three-Dimensional Density Distribution and Seismic Activity along the Guxiang–Tongmai Segment of the Jiali Fault, Tibet. Acta Geologica Sinica(English Edition). 2024(02): 454-467 . 必应学术
8. 张照伟,钱兵,王亚磊,李文渊. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨. 中国地质. 2024(02): 371-384 . 本站查看
9. 陈国超,张晓飞,裴先治,裴磊,李佐臣,刘成军,李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义. 地学前缘. 2024(03): 1-19 . 百度学术
10. 刘朵,杨成业,李玉彬,央宗,张金树,张根,李若铭. 喜马拉雅东部库曲淡色花岗岩的成因及其稀有金属成矿意义:来自年代学、地球化学及Nd-Hf同位素的证据. 地质科学. 2024(05): 1326-1341 . 百度学术
11. 白世俊,李军乔,刘欣,吕博文. 青藏高原蕨麻的分子谱系地理学研究. 草业学报. 2024(11): 84-105 . 百度学术
12. 薛飞,谭红兵,张西营,苏金宝. 西藏富稀有金属元素地热泉物源、富集过程和资源效应. 中国科学:地球科学. 2024(11): 3513-3537 . 百度学术
13. Fei XUE,Hongbing TAN,Xiying ZHANG,Jinbao SU. Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China. Science China Earth Sciences. 2024(11): 3476-3499 . 必应学术
14. 范鹏啸,于常青,王瑞雪,曾祥芝,李卫强,张玥,雷晨露. 西藏波密地区深部密度结构与地震活动的关系. 地质学报. 2024(10): 3047-3061 . 百度学术
15. 孙林龙,董有浦,吴中海,张世涛,李立,刘志明. 基于河流地貌指数的澜沧江断裂南段构造活动性研究. 地质科学. 2024(06): 1543-1561 . 百度学术
16. 邱志毅,李舢,戴梦,崔祥蝶,邓敏. 松潘-甘孜造山带三叠纪花岗岩地球化学特征及其对锂的成矿意义. 岩石学报. 2024(12): 3876-3890 . 百度学术
17. 程谦恭,王玉峰,林棋文,冯止依,明杰,何可. 喜马拉雅造山带高速远程滑坡动力学机理研究的思考. 地质学报. 2024(11): 3238-3254 . 百度学术
18. 张予杰,翟庆国,张以春,刘一鸣,曾孝文,安显银,刘石磊. 藏北日土地区南羌塘地块晚石炭—早二叠世海相裂谷盆地沉积序列:冈瓦纳大陆北缘初始裂解的沉积响应. 沉积与特提斯地质. 2024(04): 773-795 . 百度学术
19. 吴宇琴,吴珊珊,周思远,李凤英,赵育飞. 川滇地区壳幔方位各向异性研究. 大地测量与地球动力学. 2023(01): 89-94 . 百度学术
20. 李柯然,杨迪,夏舜,宋金民,刘芳,杨雄. 碳酸盐岩钙同位素化学分离方法改进及其在青藏高原地质样品中的应用前景. 中国无机分析化学. 2023(01): 44-53 . 百度学术
21. 冯怀伟,许淑梅,王大华,肖永军,张关龙,曾治平,王千军,王金铎. 柴北缘东段及周缘侏罗系发育特征及其对构造活动的响应. 地质论评. 2023(01): 148-163 . 百度学术
22. 杨明桂,姚悦,熊燃,王光辉,胡青华,徐梅桂. 元古代华南洋的轮廓. 地质力学学报. 2023(01): 1-20 . 百度学术
23. 金文正,白万奎,王俊鹏,叶治续. 川西北碧口地块中新生代隆升及构造扩展特征. 华南地质. 2023(01): 24-36 . 百度学术
24. 田振东,冷成彪,郭剑衡,张兴春,田丰,马荣林. 藏东义敦地体早古生代构造格局:来自碎屑锆石U-Pb-Hf同位素的约束. 地质学报. 2023(04): 1088-1105 . 百度学术
25. 邱江涛,孙建宝. InSAR揭示的青藏高原近期正断型地震形变特征与指示意义. 地球与行星物理论评(中英文). 2023(06): 600-611 . 百度学术
26. 高建国. 锆石Hf同位素填图对东昆仑造山带地壳性质和成矿潜力的约束. 地质找矿论丛. 2023(02): 242-248 . 百度学术
27. 刘健,于强,王猛,焦建刚,陈长发,马云飞. 金川铜镍硫化物矿床晚中生代以来抬升冷却事件的磷灰石裂变径迹约束. 大地构造与成矿学. 2023(03): 618-630 . 百度学术
28. 张朝锋,张玲娟,强利刚,冯博,张胜龙. 青海省曲麻莱县活塔加查岩浆岩年代学、地球化学特征及地质意义. 东华理工大学学报(自然科学版). 2023(03): 201-210 . 百度学术
29. Shengxian LIANG,Xuben WANG,Zhengwei XU,Yanpei DAI,Yonghua WANG,Jing GUO,Yanjie JIAO,Fu LI. Steep subduction of the Indian continental mantle lithosphere beneath the eastern Himalaya revealed by gravity anomalies. Science China(Earth Sciences). 2023(09): 1994-2010 . 必应学术
30. 梁生贤,王绪本,徐铮伟,代堰锫,王永华,郭镜,焦彦杰,李富. 重力异常揭示印度大陆地幔岩石圈在喜马拉雅东部之下陡俯冲. 中国科学:地球科学. 2023(09): 2018-2034 . 百度学术
31. 金文正,白万奎,叶治续. 碧口地块东-北缘中、新生代构造隆升及演化:来自磷灰石和锆石裂变径迹的证据. 地质学刊. 2023(03): 231-241 . 百度学术
32. 谢和平,张茹,张泽天,高明忠,李存宝,何志强,李聪,刘涛. 深地科学与深地工程技术探索与思考. 煤炭学报. 2023(11): 3959-3978 . 百度学术
33. 吴浩,徐祖阳,严维兵,郝宇杰,刘海永. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征:对新特提斯洋板片断离的指示. 中国地质. 2023(06): 1804-1816 . 本站查看
34. 周荣军,梁明剑. 四川活断层探测新进展. 震灾防御技术. 2023(04): 663-672 . 百度学术
35. 党亚民,程传录,杨强,蒋光伟,孙洋洋. 珠峰及周边地区强震影响垂直形变特征研究. 武汉大学学报(信息科学版). 2022(01): 26-35 . 百度学术
36. 李发桥,唐菊兴,张静,宋扬,李海峰,林彬,王楠. 西藏改则地区沙木罗组中早白垩世晚期闪长玢岩的发现:班公湖-怒江特提斯洋北向俯冲板片折返事件的响应. 岩石学报. 2022(01): 185-208 . 百度学术
37. 米玛普尺,格桑拉姆,张旭东,央宗,保穷. 西藏自治区天然集料路用性能空间分布系统的设计与实现. 公路. 2022(02): 195-200 . 百度学术
38. 范堡程,张晶,孟广路,薛仲凯,吴欢欢,曹积飞,刘明义,洪俊,唐卫东,刘天航,MиpзoeB TaBφик,Xacaзoдa Caóзaли. 帕米尔构造结锂矿资源潜力评价——基于1:100万地球化学调查. 西北地质. 2022(01): 156-166 . 百度学术
39. 赵荣涛,赵文津,刘志伟,宋洋,陈昌昕. 东昆仑深部结构地震探测研究现状与展望. 地球学报. 2022(02): 189-201 . 百度学术
40. 张忠炜,张聪,秦雪晴,赵晓轩,申婷婷,邱添,杜瑾雪. 拉萨地块松多高压变质带不同类型榴辉岩的变质演化过程及其限定方法探讨. 地质论评. 2022(04): 1202-1215 . 百度学术
41. 李心怡,高原. 三江侧向碰撞带地质构造与岩石圈各向异性. 地球物理学进展. 2022(04): 1431-1447 . 百度学术
42. 杨成业,冯佳佳,李玉彬,张金树,张根,夏洋洋. 西藏林周地区始新世托龙Ⅰ型花岗岩对印度-欧亚板块碰撞时限的制约. 岩石矿物学杂志. 2022(06): 1080-1096 . 百度学术
43. 马绪宣,许志琴,刘飞,赵中宝,李海兵. 大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例. 地质学报. 2021(01): 107-123 . 百度学术
44. 朱文斌,王玺,葛荣峰. 地体的单向和多向聚合与离散. 地质学报. 2021(01): 124-138 . 百度学术
45. 张照伟,钱兵,王亚磊,李文渊. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力. 西北地质. 2021(01): 82-99 . 百度学术
46. 赵远方,公王斌,江万,陈龙耀,仇度伟. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质. 2021(01): 220-233 . 百度学术
47. 尹福光,唐渊,徐波. 西南三江地区新生代走滑造山. 沉积与特提斯地质. 2021(01): 1-14 . 百度学术
48. 黄周传,吉聪,吴寒婷,石宇通,耿嘉琪,徐弥坚,韩存瑞,徐鸣洁,王良书. 青藏高原东南缘地壳结构与变形机制研究进展. 地球与行星物理论评. 2021(03): 291-307 . 百度学术
49. 吴纪修,尹浩,张恒春,孙华峰,袁维,曹龙龙,李鑫淼,施山山,王文,薛倩冰,梁楠. 水平定向勘察技术在长大隧道勘察中的应用现状与展望. 钻探工程. 2021(05): 1-8 . 百度学术
50. 尹福光,潘桂棠,孙志明. 西南三江构造体系及演化、成因. 沉积与特提斯地质. 2021(02): 265-282 . 百度学术
51. 侯增谦,许博,郑远川,郑洪伟,张洪瑞. 地幔通道流:青藏高原大规模生长的深部机制. 科学通报. 2021(21): 2671-2690 . 百度学术
52. 耿爽,王林,田勤俭,徐岳仁,李文巧,袁兆德. 2020年新疆于田M_S6.4地震发震构造研究. 地震. 2021(02): 1-13 . 百度学术
53. 杨万志,田江涛,郭秀玮. 喀喇昆仑岔路口地区麦美奇质岩石的发现及其构造意义:岩石学、矿物学和地球化学证据. 世界地质. 2021(03): 511-524 . 百度学术
54. 刘飞,李观龙,薄容众,杨经绥. 班公湖-怒江洋的扩张脊俯冲:宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征. 地质通报. 2021(08): 1247-1264 . 百度学术
55. 黄亮,浦涛,刘军平,王晓林,刘小春,熊波,宋冬虎. 滇西漕涧地区崇山杂岩带始新世花岗岩的发现及其地质意义. 地球学报. 2021(05): 579-592 . 百度学术
56. 曾先进,王明,范建军,罗安波,曾孝文,李航,申迪. 拉萨-羌塘板块碰撞——来自西藏阿索晚白垩世红层的约束. 地质通报. 2021(09): 1428-1442 . 百度学术
57. 吴昊,翟庆国,胡培远,唐跃,朱志才,王伟,谢超明,强巴扎西. 西藏班戈北部早白垩世火山岩:班公湖—怒江洋闭合的岩浆记录. 中国地质. 2021(05): 1623-1638 . 本站查看
58. 张照伟,王亚磊,邵继,李文渊. 东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征. 矿床地质. 2021(06): 1230-1247 . 百度学术
59. 张辉善,计文化,马中平,高晓峰,孙超,洪俊,吕鹏瑞. 甜水海地块寒武纪安山岩的地球化学和年代学研究:对西昆仑-喀喇昆仑造山带原特提斯洋演化的启示. 岩石学报. 2020(01): 257-278 . 百度学术
60. 丁枫,高建国,徐琨智. 西藏南部绒布地区基性岩脉岩石地球化学、年代学特征及地质意义. 岩石学报. 2020(02): 391-408 . 百度学术
61. 王伟超,文怀军,王宏宇,苏延鹤,张少林,张文龙. 青海地区煤盆地生态地质勘查分区分析研究. 中国煤炭地质. 2020(02): 8-12 . 百度学术
62. 张璋,周诗,耿全如,彭智敏,关俊雷. 狮泉河蛇绿混杂岩带早侏罗世辉长岩锆石年代学及地质意义. 科学技术与工程. 2020(19): 7579-7588 . 百度学术
63. 张建珍,高莲凤,张振国,李广栋,范建军,潘志龙,贠杰,李强,张涛. 西藏日土早白垩世高镁流纹质岩石时代、地球化学特征及地质意义. 地球科学. 2020(08): 2868-2881 . 百度学术
64. 文宝萍,曾启强,闫天玺,王凡,关丽春,张毅,朱雷. 青藏高原东南部大型岩质高速远程崩滑启动地质力学模式初探. 工程科学与技术. 2020(05): 38-49 . 百度学术
65. 瞿辰,刘晓宇,于常青,胥颐,杨文采. 青藏高原S波和泊松比的层析成像. 地球物理学报. 2020(10): 3640-3652 . 百度学术
66. 张照伟,钱兵,王亚磊,李文渊,张江伟,尤敏鑫. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质. 2020(03): 153-168 . 百度学术
67. Jianbo ZHOU. Accretionary complex: Geological records from oceanic subduction to continental deep subduction. Science China(Earth Sciences). 2020(12): 1868-1883 . 必应学术
68. 周建波. 增生杂岩:从大洋俯冲到大陆深俯冲的地质记录. 中国科学:地球科学. 2020(12): 1709-1726 . 百度学术
69. 唐菊兴. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展. 岩石学报. 2019(03): 617-624 . 百度学术
70. 宋扬,曾庆高,刘海永,刘治博,李海峰,德西央宗. 班公湖-怒江洋形成演化新视角:兼论西藏中部古-新特提斯转换. 岩石学报. 2019(03): 625-641 . 百度学术
71. 陈建生,李平,王涛,詹泸成,严嘉恒. 青藏高原东缘水库绕坝基渗流化学溶蚀研究. 岩土工程学报. 2019(04): 610-616 . 百度学术
72. 周亚楠,邵瑞琦,姜南,高扬,于亮,吴汉宁. 拉萨地块保吉地区晚侏罗世——早白垩世地层磁组构特征. 地质通报. 2019(04): 522-535 . 百度学术
73. 刘传正,吕杰堂,童立强,陈红旗,刘秋强,肖锐铧,涂杰楠. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质. 2019(02): 219-234 . 本站查看
74. 王林,田勤俭,李文巧,赵妍,徐岳仁. 2017年西藏米林M_S6.9地震发震构造初探. 地球物理学报. 2019(07): 2549-2566 . 百度学术
75. 赵一霖,刘健,姜科庆,祝明伟. 喀喇昆仑断裂北段晚第四纪活动特征及其构造意义. 地球学报. 2019(04): 601-613 . 百度学术
76. 刘飞,牛晓露,连东洋,冯光英,赵慧. 西藏仲巴地体中433Ma伸展热事件:波库二云母花岗岩锆石年代学、地球化学和Hf同位素制约. 地质学报. 2019(10): 2556-2574 . 百度学术
77. 张林奎,李光明,曹华文,张志,付建刚,夏祥标,董随亮,梁维,黄勇. 藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示. 中国地质. 2019(06): 1312-1335 . 本站查看
78. 符海明,徐喆,陆仙花,余少文. 尼泊尔的地质与矿产. 东华理工大学学报(自然科学版). 2019(04): 301-310 . 百度学术
79. 程晨,夏斌,郑浩,袁亚娟,殷征欣,陆野,徐迟,张霄. 西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义. 地球科学. 2018(04): 975-990 . 百度学术
80. 李睿华,欧阳荷根,赵财胜,宋林山,徐汉梁. 南疆斯如依迭尔铜多金属矿床的地质特征及其成矿时代. 地质学报. 2018(07): 1447-1457 . 百度学术
81. 王涛,张静,佟子达,李腾建. 滇西莲花山富碱斑岩体LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义. 现代地质. 2018(03): 438-452 . 百度学术
82. 王力圆,高顺宝,郑有业,李伟良,毛荣威,黄亮亮. 西藏冈底斯确角弄岩体年代学、地球化学及成矿意义. 地质学报. 2017(04): 822-835 . 百度学术
83. 王振涛. 青藏高原的地质特征与形成演化. 科技导报. 2017(06): 51-58 . 百度学术
84. 李洪梁,李光明,李应栩,董随亮,卿成实,付建刚,刘洪,黄瀚霄. 藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征. 矿物学报. 2017(06): 684-696 . 百度学术
85. 马涛,张健,王晓青,黄登鹏,李进喜,李斌,刘渭. 西藏萨嘎二叠纪OIB型火山岩岩石地球化学特征及成因分析. 西北地质. 2017(03): 22-35 . 百度学术
86. 杨利荣,岳乐平,王洪亮,张睿,郭怀军,朱小辉,张云翔,弓虎军. 祁连山及邻区第四纪地层区划与沉积序列. 中国地质. 2016(03): 1041-1054 . 本站查看
87. 刘磊,邵龙义,黄继,李猛,张玉法,苏时才. 西藏措勤盆地川巴地区下白垩统沉积相及含煤性研究. 中国地质. 2016(03): 1016-1025 . 本站查看
88. 唐渊,王冬兵,廖世勇,王保弟,尹福光,王立全. 滇西高黎贡变质岩带南段淡色花岗岩脉年代学特征及构造意义. 岩石学报. 2016(08): 2347-2366 . 百度学术
89. 马士委,许志琴,张忠坤,马元,赵中宝,庞雪,赵孝武,王慧. 藏南甲玛铜多金属矿床构造变形及其对成矿的制约. 岩石学报. 2016(12): 3781-3799 . 百度学术
90. 陈威威,何碧竹,许志琴,蔡志慧,焦存礼,肖中尧,余腾孝,余卓颖. 裂变径迹方法约束的塘古兹巴斯坳陷中-新生代热演化史——来自青藏高原构造运动的响应. 岩石学报. 2016(12): 3817-3834 . 百度学术
其他类型引用(99)