Advanced Search
    SONG Zhe, LI Houmin, LI Lixing, DING Jianhua, MENG Jie. Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes[J]. GEOLOGY IN CHINA, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
    Citation: SONG Zhe, LI Houmin, LI Lixing, DING Jianhua, MENG Jie. Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes[J]. GEOLOGY IN CHINA, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303

    Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes

    Funds: 

    China Geological Survey Program DD20190606

    National Natural Science Foundation of China 41672078

    National Natural Science Foundation of China 41272102

    More Information
    • Received Date: September 26, 2019
    • Revised Date: April 14, 2020
    • Available Online: September 25, 2023
    • The Heijianshan iron deposit represents a typical submarine volcanic rock-hosted deposit of the Aqishan-Yamansu ore belt in Eastern Tianshan Mountains. Abundant irregular iron-rich agglomerates are developed in the brecciated andesite lava (wall rock), and they can be subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar magnetite type, K-feldsparmagnetite type, epidote-magnetite type and quartz-magnetite type, likely representing evolving products of the magmatic-hydrothermal ore-forming process, which can constrain the ore-forming process and metallogenic environment of the Heijianshan iron deposit. Magnetite compositions of the five types of agglomerates were analyzed using electron microprobe analysis. For the purpose of obtaining precise Fe content, the content of undetermined O was added by difference method and the ZAF matrix correction was conducted. The Ti values of the five types of agglomerates display a positive relationship with the Fe values. Magnetite of the albite-magnetite type has highest Ti content, the albite-K-feldspar magnetite and the K-feldspar-magnetite types show medium Ti content, whereas the epidote-magnetite and quartz-magnetite types are characterized by the lowest Ti content. Also, the Fe content of the epidote-magnetite and the quartz-magnetite types is similar to that of the ores. These features indicate that the albite-magnetite type seems to have been the earliest crystallization product from a residual iron-rich melt, the albite-K-feldspar-magnetite and K-feldspar-magnetite types display features of magmatic-hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The Fe content of magnetite of each type of agglomerate is higher than its content of the corresponding alteration zone, suggesting a simultaneous relationship between the crystallization of iron-rich agglomerates and hydrothermal activities.

    • Barton M D. 2014. Iron Oxide (-Cu-Au-REE-P-Ag-U-Co)Systems[J]. University of Arizona. Chapter 515-541. http://cn.bing.com/academic/profile?id=8362c8dd757fbd24a9265e23f92ddb5d&encoded=0&v=paper_preview&mkt=zh-cn
      Charlier B, Grove T L. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent[J]. Contributions to Mineralogy and Petrology, 164:27-44. doi: 10.1007/s00410-012-0723-y
      Chen Jie, Duan Shigang, Zhang Zuoheng, Luo Gang, Jiang Zongsheng, Luo Wenjuan, Wang Dachuan, Zheng Renqiao. 2014.Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang:Constraints on genesis of the deposit[J]. Geology in China, 41(6):1833-1852(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c592e3c3fc18dba718dced3b07eea055&encoded=0&v=paper_preview&mkt=zh-cn
      Dare S A S, Barnes S, Beaudoin G. 2015. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LAICP-MS[J]. Mineralium Deposita, 50:607-617. doi: 10.1007/s00126-014-0560-1
      Ding Jianhua, Li Houmin, Li Lixing, Chen Jing and Deng Gang. 2017.Geological and geochemical features and genetic significant of carbonatite in Yamasu iron deposit, Xinjiang[J]. Mineral Deposits, 36(1):219-236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701014
      Duan Chao, Li Yanhe, Mao Jingwen, Hou Kejun, Yuan Shunda. 2012.Zircon trace element characteristics of intrusions in the Washan iron deposit of Ningwu volcanic basin and their geological significance[J]. Geology in China, 39(6):1874-1884(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206030
      Duan Shigang, Zhang Zuoheng, Wei Mengyuan, Tian Jingquan, Jiang Zongsheng, Li Fengming, Zhao Jun, Wang Houfang. 2014.Geochemistry and zircon U-Pb geochronology of the diorite associated with the Wuling iron deposit in Western Tianshan Mountains, Xinjiang[J]. Geology in China, 41(6):1757-1770(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406001
      Duchesne J C, Shumlyanskyy L, Charlier B. 2006. The Fedorivka layered intrusion (Korosten Pluton, Ukraine):an example of highly differentiated ferrobasaltic evolution[J]. Lithos, 89:353-376. doi: 10.1016/j.lithos.2006.01.003
      Dupuis C, Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 46:319-335. doi: 10.1007/s00126-011-0334-y
      Fang Weixuan, Huang Zhuanying, Tang Hongfeng, Gao Zhenquan. 2006. Lithofacies, geological and geochemical characteristics and tectonic setting of Late Carboniferous volcanic-sedimentary rocks in the Kumtag-Shaquanzi area, east Tianshan[J]. Geology in China, 33(3):529-544(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200603009
      Feng Jing, Xu Shiqi, Tian Jiangtao, Yang Zaifeng, Gao Yongfeng. 2009. Study on metallogenic regularity of marine volcanic-type iron ore of east Tianshan of Xinjiang and methods discuss[J]. Xinjiang Geology, 27(4):330-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200904006
      Fenner C N. 1929. The crystallization of basalt[J]. American Journal of Science, 18:225-253. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx201802006
      Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type[J]. Economic Geology, 73 (4):478-485. doi: 10.2113/gsecongeo.73.4.478
      Gleason J D, Marikos M A, Barton M D, Johnson D A. 2000.Neodymium isotopic study of rare earth element sources (Fe-PREE) systemsand mobility in hydrothermal Fe oxide[J]. Geochimica et Cosmochimica Acta, 64:1059-1068. doi: 10.1016/S0016-7037(99)00325-7
      Hildebrand R S. 1986. Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada[J]. Economic Geology, 81:640-659. doi: 10.2113/gsecongeo.81.3.640
      Hou Tong, Zhang Zhaochong, Du Yangsong. 2010. Deep ore magmahydrothermal system of Zhonggu ore field in southern part of Ningwu Basin[J]. Earth Science Frontiers, 17(1):186-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001018.htm
      Hou Tong, Zhang Zhaochong, Pirajno F, Santosh M, Encarnacion J, Liu Junlai, Zhao Zhidan, Zhang Lijian. 2014a. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China:An overview[J]. Ore Geol. Rev., 57:498-517. doi: 10.1016/j.oregeorev.2013.08.007
      Hou Tong, Zhang Zhaochong, Santosh M, Encarnacion J, Zhu Jiang, Luo Wenjuan. 2014b. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China:Constraints on the metallogenesis[J]. Ore Geol. Rev., 56:487-502. doi: 10.1016/j.oregeorev.2013.03.008
      Huang Xiaowen, Qi Liang, Meng Yumiao. 2013. Trace element and REE geochemistry of minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-)Fe deposits, eastern Tianshan Mountains[J]. Mineral Deposits, 32(6):1188-1210(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201306007
      Huang Xiaowen, Qi Liang, Wang Yichang, Liu Yingying. 2014. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Sci. China (Earth Sci.), 57:267-277. doi: 10.1007/s11430-013-4660-z
      Jang Y D, Naslund H R, McBirney A R. 2001. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization:Iron enrichment revisited[J]. Earth and Planetary Science Letter, 189:189-196. doi: 10.1016/S0012-821X(01)00366-1
      Jiang Hongjun, Han Jinsheng, Chen Huayong, Zheng Yi, Zhang Weifeng, Lu Wanjian, Deng Gang, Tan Zhixiong. 2018.Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe-Cu deposit, eastern Tianshan:implications for ore genesis and deposit type[J]. Ore Geol. Rev, 200:385-400. https://www.sciencedirect.com/science/article/pii/S0169136816301135
      Knipping J L, Bilenker L D, Simon A C, Reich M, Barra F, Deditius A P, Wälle M, Heinrich C A, Holtz F, Munizaga R. 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 171:15-38. doi: 10.1016/j.gca.2015.08.010
      Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 39(3):559-580(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201203001
      Li Houmin, Li Lixing, Yang Xiuqing, Cheng Yanbo. 2015a. Types and geological characteristics of iron deposits in China[J]. Journal of Asian Earth Sciences, 103:2-22. doi: 10.1016/j.jseaes.2014.11.003
      Li Houmin, Ding Jianhua, Zhang Zhaochong, Li Lixing, Chen Jing, Yao Tong. 2015b. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China:Constraints on metallogenesis[J]. Journal of Asian Earth Sciences, 113:1068-1081. doi: 10.1016/j.jseaes.2015.06.026
      Li Houmin, Li Lixing, Ding Jianhua, Li Yanhe, Song Zhe, Meng Jie, Ma Yubo. 2018. Occurrence of the Iron-rich melt in the Heijianshan Iron deposit, Eastern Tianshan, NW China:Insights into the origin of volcanic rock-hosted Iron deposits[J]. Acta Geologica Sinica (English Edition), 92(2):666-681. doi: 10.1111/1755-6724.13548
      Li Xiaolinbin, Gong Xiaoping, Ma Huadong, Han Qiong, Song Xianglong, Xie Lei, Feng Jun, Wang Jianshe. 2014. Geochemical characteristics and petrogenic age of volcanic rocks in the Shikebutai iron deposit of West Tianshan Mountains[J]. Geology in China, 41(6):1791-1804(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406003
      Love G. 1993 X-ray absorption correction[C]//Scott V D, Love G (eds.). Quantitative Electron-Probe Microanalysis. Ellis Horwood Ltd Press (Chichester, UK), 163-192.
      Luo Ting, Liao Qun'an, Chen Jiping, Zhang Xionghua, Guo Dongbao, Hu Zhaochu. 2012. LA-ICP-MS zircon U-Pb dating of the volcanic rocks from Yamansu Formation in the Eastern Tianshan, and its geological significance[J]. Earth Science——Journal of China University of Geosciences, 37(6):1338-1352(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024
      Mao Jingwen, Goldfarb R J, Wang Yitian, Hart C J, Wang Zhiliang, Yang Jianmin. 2005. Late Paleozoic base and precious metal deposits, east Tianshan, Xinjing, China:Characteristics and geodynamic setting[J]. Episodes, 28:23-35. doi: 10.18814/epiiugs/2005/v28i1/003
      Nadoll P, Angerer T, Mauk J L, French D, Walshe J. 2014. The chemistry of hydrothermal magnetite:a review[J]. Ore Geology Reviews, 61:1-32. doi: 10.1016/j.oregeorev.2013.12.013
      Naslund H R. 1983. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts[J]. American Journal of Science, 283:1034-1059. doi: 10.2475/ajs.283.10.1034
      Naslund H R, Henriquez F, Nystroem J O, Vivallo W, Dobbs F M. 2002. Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal Cordillera[C]//Porter T M (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective: Adelaide, Australia. PGC Publishing.
      Nyström J O, Henriquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden:Ore textures and magnetite geochemistry[J]. Economic Geology, 89:820-839. doi: 10.2113/gsecongeo.89.4.820
      Park C F. 1961. A magnetite "flow"in northern Chile[J]. Economic Geology, 56:431-441. doi: 10.2113/gsecongeo.56.2.431
      Philpotts A R. 1982. Compositions of immiscible liquids in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 80:201-218. doi: 10.1007/BF00371350
      Porter T M. 2002. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Australian Mineral Foundation[M]. PGC Publishing, Adelaide. 2, 153-161.
      Qin Kezhang, Peng Xiaoming, San Jinzhu, Xu Xingwang, Fang Tonghui, Wang Shulai, Yu Haifeng. 2003. Types of major ore deposits, division of metallogenic belts in Eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization[J]. Xinjiang Geology, 21(2):143-150(in Chinese with English abstract).
      Reed S J B. 1993. Electron Microprobe Analysis[M]. Cambridge University Press (Cambridge, UK), 260.
      Rhodes A L, Oreskes N, Sheets S. 1999. Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile[J]. Soc. Econ. Geol. Spec. Publ., 7:299-332. http://cn.bing.com/academic/profile?id=10cfc5d71dc40bbbdd76334d8627bd53&encoded=0&v=paper_preview&mkt=zh-cn
      Sillitoe R H, Burrows D R. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile[J]. Economic Geology, 97:1101-1109. http://cn.bing.com/academic/profile?id=96d032a9b70002f6dd387b2209e6926c&encoded=0&v=paper_preview&mkt=zh-cn
      Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yueheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Sanjeewa P K.Malaviarachchi. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Res., 20:516-531. doi: 10.1016/j.gr.2010.11.015
      Tornos F, Velasco F, Morata D, Barra F, Rojo M. 2011. The magmatic hydrothermal evolution of the El Laco as tracked by melt inclusions and isotope data[C]//Barra F, Reich M F T (eds.).Proceedings of the 11th Biennial SGA Meeting. Antofagasta, Chile, 443-445.
      Tornos F, Velasco F, Hanchar J M. 2016. Iron oxide melts, magmatic magnetite and superheated magmatic-hydrothermal systems:The El Laco deposit, Chile[J]. Geology, 44(6):427-430. doi: 10.1130/G37705.1
      Van Baalen M R. 1993. Titanium mobility in metamorphic systems:A review[J]. Chemical Geology, 110:233-249. doi: 10.1016/0009-2541(93)90256-I
      Veksler I V. 2009. Extreme iron enrichment and liquid immiscibility in mafic intrusions:Experimental evidence revisited[J]. Lithos, 111:72-82. doi: 10.1016/j.lithos.2008.10.003
      Velasco F, Tornos F, Hanchar J M. 2016. Immiscible iron-and silicarich melts and magnetite geochemistry at El Laco volcano(northern Chile):Evidence for a magmatic origin for the magnetite deposits[J]. Ore Geology Reviews, 79:346-366. doi: 10.1016/j.oregeorev.2016.06.007
      Wang Dachuan, Jia Jindian, Duan Shigang, Zhang Zuoheng, Jiang Zongsheng, Chen Jie. 2014. Mineralogy and stable isotopic characteristics of the Tiemulike iron deposit in West Tianshan Mountains[J]. Geology in China, 41(6):1853-1872(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406007
      Wang Guocan, Zhang Meng, Zhang Xionghua, Liao Qun'an, Wang Wei, Tian Jinming, Xuan Zeyou. 2019. Significant Paleozoic tectonic events in the northern part of the east Tianshan Mountains, Xinjiang and their implications for the evolution of CAOB:New evidence from 1:50000 geological survey of Banfanggou and Xiaoliugou sheets[J]. Geology in China, 46(5):954-976(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201905003
      Wang Tiezhu, Che Linrui, Yu Jinjie, Lu Bangcheng. 2014. Electron microprobe analysis and REE geochemical characteristics of minerals from the Meishan iron deposit in Nanjing-Wuhu area, Eastern China[J]. Geology in China, 41(6):1964-1985(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406013
      Williams P J, Barton M D, Johnson D A, Fontbote L, de Haller A, Mark G, Oliver N H S, Marschik R. 2005. Iron Oxide CopperGold Deposits: Geology, Space-time Distribution and Possible Modes of Origin[J]. Economic Geology 100th Anniversary Volume SEG, Denver, 371-405.
      Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, Sun Shu, Li Jiliang. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. Am. J. Sci., 304:370-395. doi: 10.2475/ajs.304.4.370
      Xinjiang Uygur Autonomous Region Geological Survey (abv.XUARGS), 2003. Report for Target Selection and Potential Resources in Caixiashan-Jintan in the Eastern Tianshan, Xinjiang[R]. 1-187 (in Chinese).
      Xu Lulu, Chai Fengmei, Li Qiang, Zeng Hong, Geng Xinxia, Xia Fang, DengGang. 2014.Geochemistry and zircon U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu deposit in east Tianshan mountains and their geological significance[J]. Geology in China, 41(6):1771-1790 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406002
      Xu Shiqi, Zhao Tongyang, Feng Jing, Gao Yongfeng, Tian Jiangtao, Yang Zaifeng, Liu Dequan. 2011. Study on regional metallogenic regularity of marine volcanic type iron ore in the east Tianshan of Xinjiang[J]. Xinjiang Geology, 29(2):173-177 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201102012.htm
      Yang Shuiyuan, Zhang Ruoxi, Jiang Shaoyong, Xie Jing. 2017.Electron Probe Microanalysis of variable oxidation state oxides: protocol and Pitfalls[J]. Geostandards and Geoanalytical Research.
      Zeng Hong, Chai Fengmei, Zhou Gang, Geng Xinxia, Li Qiang, Meng Qingpeng, Xu Lulu. 2014. Mineralogy of skarn and magnetite of the Yamansu iron deposit and its geological significance[J]. Geology in China 41(6):1914-1928 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406010
      Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xueyan, Wang Meng. 2014. Spatiotemporal distribution and tectonic settings of the major iron deposits in China:an overview[J]. Ore Geol. Rev., 57:247-263. doi: 10.1016/j.oregeorev.2013.08.021
      Zhang Zhaochong, Chai Fengmei, Xie Qiuhong. 2016. Highangle subduction in a thermal structure with warm mantlecool crust:formation of submarine volcanic-hosted iron deposits[J]. Geology in China, 43(2):367-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201602001.htm
      Zhang Zhenliang, Feng Xuanjie, Gao Yongwei, Wang Zhihua, Dong Fuchen, Tan Wenjuan. 2015. A tentative discussion on the genetic type and ore-forming process of main late Paleozoic magnetite deposits in West Tianshan Mountains, Xinjiang[J]. Geology in China, 42 (2):737-758 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503025
      Zhang Weifeng, Chen Huayong, Han Jinsheng, Zhao Liandang, Huang Jianhan, Yang Juntao, Yan Xuelu. 2016. Geochronology and geochemistry of igneous rocks in the Bailingshan area:Implications for the tectonic setting of late Paleozoic magmatism and iron skarn mineralization in the eastern Tianshan, NW China[J]. Gondwana Res., 38:40-59. doi: 10.1016/j.gr.2015.10.011
      Zhao Hongjun, Chen Xiufa, He Xuezhou, Zhang Xinyuan, Zhang Chao, Wang Liangliang, Chen Yuming, Chen Xifeng, Lu Minjie, Zhou Shangguo, Huang Feixin, Yao Chunyan, Yang Yanchen. 2018. A study of genetic type characteristics and important distribution zones of global iron deposits[J]. Geology in China, 45(5):890-919 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201805003
      Zhao Liandang, Chen Huayong, Zhang Li, Li Dengfeng, Zhang Weifeng, Wang Chengming, Yang Juntao, Yan Xuelu. 2017.Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:Metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geol. Rev., 91:110-132. doi: 10.1016/j.oregeorev.2017.10.014
      Zhao Liandang, Chen Huayong, Zhang Li, Li Dengfeng, Zhang Weifeng, Wang Chengming, Yang Juntao, Yan Xuelu. 2016.Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geol. Rev., 100:422-440. https://www.sciencedirect.com/science/article/pii/S0169136816301342
      Zhao Liandang, Chen Huayong, Zhang Li, Zhang Zengjie, Li Dengfeng, Zhang Weifeng, Lu Wanjian, Yang Jun and Yan Xuelu. 2017. H-O isotope characteristics and geological significance of Heijianshan Fe-Cu (-Au) deposit in eastern Tianshan, Xinjiang[J]. Mineral Deposits, 36(1):38-56 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201701003.htm
      陈杰, 段士刚, 张作衡, 罗刚, 蒋宗胜, 骆文娟, 王大川, 郑仁乔.2014.新疆西天山式可布台铁矿地质、矿物化学和S同位素特征及其对矿床成因的约束[J].中国地质, 41(6):1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006
      丁建华, 李厚民, 李立兴, 陈靖, 邓刚.2017.新疆雅满苏铁矿区碳酸盐岩地质地球化学特征及其对矿床成因的制约[J].矿床地质, 36(1):219-236. http://d.old.wanfangdata.com.cn/Periodical/kcdz201701014
      段超, 李延河, 毛景文, 侯可军, 袁顺达. 2012.宁芜火山岩盆地凹山铁矿床侵入岩锆石微量元素特征及其地质意义[J].中国地质, 39(6):1874-1884. doi: 10.3969/j.issn.1000-3657.2012.06.030
      段士刚, 张作衡, 魏梦元, 田敬佺, 蒋宗胜, 李凤鸣, 赵军, 王厚方.2014.新疆西天山雾岭铁矿闪长岩地球化学及锆石U-Pb年代学[J].中国地质, 39(6):1757-1770. doi: 10.3969/j.issn.1000-3657.2014.06.001
      方维萱, 黄转盈, 唐红峰, 高珍权.2006.东天山库姆塔格-沙泉子晚石炭世火山-沉积岩相学地质地球化学特征与构造环境[J].中国地质, 33(3):529-544. doi: 10.3969/j.issn.1000-3657.2006.03.009
      冯京, 徐仕琪, 田江涛, 杨在峰, 高永峰.2009.东天山海相火山岩型铁矿成矿规律研究方法[J].新疆地质, 27(4):330-336. doi: 10.3969/j.issn.1000-8845.2009.04.006
      侯通, 张招崇, 杜杨松.2010.宁芜南段钟姑矿田的深部矿浆-热液系统[J].地学前缘, 17(1):186-194. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001015
      黄小文, 漆亮, 孟郁苗.2013.东天山黑峰山、双峰山及沙泉子(铜)铁矿床的矿物微量和稀土元素地球化学特征[J].矿床地质, 32(6):1188-1210. doi: 10.3969/j.issn.0258-7106.2013.06.007
      李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军.2012.中国铁矿成矿规律及重点矿集区资源潜力分析[J].中国地质, 39(3):559-580. doi: 10.3969/j.issn.1000-3657.2012.03.001
      李厚民, 丁建华, 李立兴, 姚通.2014.东天山雅满苏铁矿床矽卡岩成因及矿床成因类型[J].地质学报, 88(12):2477-2489. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412024
      李潇林斌, 弓小平, 马华东, 韩琼, 宋相龙, 谢磊, 凤骏, 王建设. 2014.西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义[J].中国地质, 39(6):1791-1804. doi: 10.3969/j.issn.1000-3657.2014.06.003
      罗婷, 廖群安, 陈继平, 张雄华, 郭东宝, 胡兆初. 2012.东天山雅满苏组火山岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].地球科学——中国地质大学学报, 37(6):1338-1352. http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024
      秦克章, 彭晓明, 三金柱, 徐兴旺, 方同辉, 王书来, 于海峰.2003.东天山主要矿床类型、成矿区带划分与成矿远景区优选[J].新疆地质, 21(2):143-150. doi: 10.3969/j.issn.1000-8845.2003.02.001
      王大川, 贾金典, 段士刚, 张作衡, 蒋宗胜, 陈杰. 2014.西天山铁木里克铁矿床矿物学及稳定同位素特征[J].中国地质, 41(6):1853-1872. doi: 10.3969/j.issn.1000-3657.2014.06.007
      王国灿, 张孟, 张雄华, 廖群安, 王玮, 田锦明, 玄泽悠.2019.东天山北部古生代重大构造事件及其对中亚造山带演化的启示:基于1:5万板房沟幅和小柳沟幅地质调查新证据[J].中国地质, 46(5):954-976. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190502&flag=1
      王铁柱, 车林睿, 余金杰, 陆邦成.2014.宁芜地区梅山铁矿床矿物的电子探针分析和稀土元素地球化学特征[J].中国地质, 41(6):1964-1985. doi: 10.3969/j.issn.1000-3657.2014.06.013
      吴昌志, 张遵忠, Khin Zaw, Fernando Della-pasque, 唐俊华, 郑远川, 汪传胜, 三金柱.2006.东天山觉罗塔格红云滩花岗岩年代学-地球化学及其构造意义[J].岩石学报, 22; 1121-1134. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605006
      新疆维吾尔自治区地质调查院.2003.新疆东天山彩霞山-金滩一带靶区优选及资源评价报告[R]. 1-187.
      徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚.2014.东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].新疆地质, 41(6):1771-1790. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201406002
      徐仕琪, 赵同阳, 冯京, 高永峰, 田江涛, 杨在峰, 刘德权.2011.东天山海相火山岩型铁矿区域成矿规律研究[J].新疆地质, 29(2):173-177. doi: 10.3969/j.issn.1000-8845.2011.02.011
      曾红, 柴凤梅, 周刚, 耿新霞, 李强, 孟庆鹏, 徐璐璐.2014.新疆雅满苏铁矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J].中国地质, 41(6):1914-1928. doi: 10.3969/j.issn.1000-3657.2014.06.010
      赵宏军, 陈秀法, 何学洲, 张新元, 张潮, 王靓靓, 陈玉明, 陈喜峰, 卢民杰, 周尚国, 黄费新, 姚春彦, 杨言辰.2018.全球铁矿床主要成因类型特征与重要分布区带研究[J].中国地质, 45(5):890-919. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180502&flag=1
      张招崇, 柴凤梅, 谢秋红. 2016.热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成[J].中国地质, (2):367-379. doi: 10.3969/j.issn.1000-3657.2016.02.001
      张振亮, 冯选洁, 高永伟, 王志华, 董福辰, 谭文娟2015.新疆西天山晚古生代主要磁铁矿床(点)成因类型与成矿过程探讨[J].中国地质, (3):737-758. doi: 10.3969/j.issn.1000-3657.2015.03.025
      赵联党, 陈华勇, 张莉, 张增杰, 李登峰, 张维峰, 陆万俭, 杨骏, 闫学录. 2017.新疆黑尖山Fe-Cu (-Au)矿床氢氧同位素特征及其地质意义[J].矿床地质, 36(1):38-56. http://d.old.wanfangdata.com.cn/Periodical/kcdz201701003
    • Related Articles

      [1]QIN Yong. Thinking and discussion for some problems of geological survey of coal measures gas[J]. GEOLOGY IN CHINA, 2023, 50(5): 1355-1374. DOI: 10.12029/gc20230222001
      [2]LIU Weibin, XU Xingyou, ZHANG Junfeng, CHEN Shan, BAI Jing, LIU Chang, LI Yaohua. Accurate drilling technology for horizontal wells in continental shale formation geology-engineering integration—Taking Jiyeyou 1HF well in Songliao Basin as an example[J]. GEOLOGY IN CHINA, 2022, 49(6): 1808-1822. DOI: 10.12029/gc20220608
      [3]SUN Yuecheng, LI Yongfei, SUN Shouliang, ZHANG Tao, ZHANG Wei, ZHANG Hong. Effective seismic imaging technology in igneous rock coverage area and its application to oil and gas investigation in Jinyang Basin of western Liaoning[J]. GEOLOGY IN CHINA, 2021, 48(5): 1469-1484. DOI: 10.12029/gc20210512
      [4]ZHANG Dejun, ZHANG Jian, ZHENG Yuejuan, SU Fei, CHEN Shuwang, HUANG Xin, ZHANG Haihua, ZHEN Zhen. Discovery of Late Permian pollen and spores in TD-2 borehole in Tuquan Basin of Hinggan League of Inner Mongolia and their oil and gas geological implications[J]. GEOLOGY IN CHINA, 2020, 47(3): 798-809. DOI: 10.12029/gc20200317
      [5]ZHAO Zhongquan, SUN Ming, WAN Xiaoming, CHEN Shenghong, ZHAO Jing, SONG Lijun, LI Hui, QIANG Kunsheng, LIANG Yongxing. The application of microbial exploration technology to the oil and gas survey of Chaoshan depression[J]. GEOLOGY IN CHINA, 2020, 47(3): 645-654. DOI: 10.12029/gc20200306
      [6]CAO Hui, SUN Dongsheng, YUAN Kun, LI Awei, ZHANG Guanghan. In-situ stress determination of 3 km oil-gas deep hole and analysis of the tectonic stress field in the southern Guizhou[J]. GEOLOGY IN CHINA, 2020, 47(1): 88-98. DOI: 10.12029/gc20200107
      [7]XU Jie, ZHU Yongyi, WU Xiaoming, WANG Wenshi, ZHANG Hengchun, YAN Jia, CAO Longlong, XU Lin, ZHANG Linsheng, ZHENG Wenlong. High-temperature core drilling fluid technology of Well Songke-2[J]. GEOLOGY IN CHINA, 2019, 46(5): 1184-1192. DOI: 10.12029/gc20190518
      [8]HOU Hesheng, ZHANG Jinchang, ZHANG Jiaodong, WANG Wenshi, YANG Liwei, XIAO Guangwu, FU Wei, MIAO Huixin, XU Shenglin, ZENG Qiunan, LIU Xufeng, WANG Dandan, ZHANG Wenhao. Vertical distribution characteristics of light hydrocarbon components in Well SK-2 and its implications for deep oil and gas[J]. GEOLOGY IN CHINA, 2019, 46(5): 943-953. DOI: 10.12029/gc20190501
      [9]JIN Chun-shuang, QIAO De-wu, XU Xue-hao, LI Gang, LIANG Jian-she, JIANG Zai-xing, XU Li-ming. Oil and gas potential and target selection in southern East China Sea Shelf Basin[J]. GEOLOGY IN CHINA, 2015, 42(5): 1601-1609. DOI: 10.12029/gc20150527
      [10]Du Xiao-di, TANG Yue, LIU De-chang, LI Zhao, WANG Hai-da. The application of aerial hyperspectral technology to the geological survey for oil and gas in the East Junggar Basin[J]. GEOLOGY IN CHINA, 2015, 42(1): 275-287. DOI: 10.12029/gc20150121

    Catalog

      Article views (3346) PDF downloads (3842) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return