• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
WEI Wen-bo, JIN Sheng, YE Gao-feng, DENG Ming, JING Jian-en. MT sounding and lithosphere thickness in North China[J]. GEOLOGY IN CHINA, 2006, 33(4): 762-772.
Citation: WEI Wen-bo, JIN Sheng, YE Gao-feng, DENG Ming, JING Jian-en. MT sounding and lithosphere thickness in North China[J]. GEOLOGY IN CHINA, 2006, 33(4): 762-772.

MT sounding and lithosphere thickness in North China

More Information
  • Abstract: In recent years, with the development of geosciences, there has been a growing interest in the study of electrical conductivity structure of the continental lithosphere, which is because the results of solid geophysical research show that the study of electrical conductivity structure of the continental lithosphere can provide important physical grounds for research in other areas of geosciences. Magnetotelluric(MT) sounding is an indispensable geophysical method for the study of the structures of the crust and upper mantle in the context of electrical conductivity. For a long time, great efforts have been devoted to the study of MT technologies in China. At present, with the development of science and technology, major advances have been made in instrumentation, data acquisition or processing technology and inversion technology. In China, superwide-band and high-precision MT survey techniques have been applied and data processing and inversion technologies have been improved greatly and in the main are compatible with the world's advanced technologies. Therefore, an MT profile was run along the Yingxian, Shanxi, to Shanghe, Shandong, in 2001. A 2D conductivity structure model of the profile, obtained by using the advanced MT data processing method and rapid release inversion (RRI), shows the features of the conductivity structure of the lithosphere in North China. According to the electrical features, the North China lithosphere is divided into the eastern and western parts by the frontal fault of the Taihang Mountains. The eastern part is characterized by low resistivity and the western part by high resistivity. In the eastern part, the electrical structure of the upper curst corresponds roughly to a tectonic framework of alternating uplifts and depressions in the North China rift system and the lithosphere conductance reaches a maximum of 30 000 S, being far greater than that of the Andes magma arc area with strong volcanic activities and that of the Tibetan Plateau. In the western part, the lithosphere of the Taihang and Hengshan mountains, marked by high-resistance blocks, is characterized by the conductivity structure of the stable continental lithosphere. However, a group of gently west-inclined high-conductive layers, with a conductivity of 0.04—0.25 S/m and a top depth of 20 km and a bottom depth of 40 km, were discovered under the high-resistance block of Hengshan Mountain.Study indicates that the very low-resistivity feature of the crust below the North China rift basin is probably determined by the thermal structure and regime in the curst and mantle of the rift basin. According to a discussion on continental resistivity models, it can be inferred that the “asthenosphere” character defined by predecessors might not exist in the upper mantle below the Ordos block. Although the North China rift basin is a Meso-Cenozoic tectonically active area, its activity is weaker than that of younger volcanic arcs or zones with violent tectonic movement. Therefore, the asthenosphere character of the North China rift basin is not distinct. That is one of the possible reasons why there is no "high-conductive layer of the upper mantle" in the MT profile from Yingxian to Shanghe, which images the asthenosphere electrical characters. However, according to the survey results, it can be inferred that the crust and lithosphere of western North China are thicker than those of eastern North China. In order to obtain more accurate results, more intensive and precise geophysical surveys and studies remain to be conducted.
  • Related Articles

    [1]SUN Minghang, WANG Ruihu, LIANG Lige, DENG Bin, LI Yukun, LIU Demin, GUAN Yanwu. Characteristics and potential evaluation of geothermal resources in Guangxi[J]. GEOLOGY IN CHINA, 2023, 50(5): 1387-1398. DOI: 10.12029/gc20220221001
    [2]WANG Yizheng, YANG Zhongfang, LIU Xu, LI Cheng, JI Wenbing, ZHANG Qizuan, ZHUO Xiaoxiong, WANG Lei. Geochemical characteristics of copper in soil of Qintang district, Guigang city, Guangxi and its ecological health research[J]. GEOLOGY IN CHINA, 2023, 50(1): 237-248. DOI: 10.12029/gc20200411001
    [3]DUAN Yiren, YANG Zhongfang, YANG Qiong, ZHENG Guodong, ZHUO Xiaoxiong, CHEN Biao. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. GEOLOGY IN CHINA, 2020, 47(6): 1826-1837. DOI: 10.12029/gc20200618
    [4]LI Ruojian, CHEN Yuanrong, GU Ruiqi, LI Jiacai, JIANG Xin, NONG Yuejin, WANG Zhanyu, YAN Xiang. Geochemical characteristics and metallogenic potential of Maoershan granite and its adjacent basement strata in Guangxi[J]. GEOLOGY IN CHINA, 2020, 47(2): 528-537. DOI: 10.12029/gc20200218
    [5]CHEN Shuangxi, LI Qinghua, LIU Huaiqing, CHEN Wen, YU Shaowen, WANG Qing, ZHANG Hongxin. Dataset of Field Testing of the Groundwater in the Fangchenggang Area of the Guangxi Zhuang Autonomous Region[J]. GEOLOGY IN CHINA, 2019, 46(S2): 69-73. DOI: 10.12029/gc2019Z207
    [6]LI Zhi-hong, CHENG Long, ZHAO Lai-shi, WANG Chuan-shang, PENG Zhong-qin, WANG Bao-zhong. New progress in the study of the early Early Carboniferous conodonts biostratigraphy from Nandong, Guangxi[J]. GEOLOGY IN CHINA, 2015, 42(4): 990-1008. DOI: 10.12029/gc20150415
    [7]PENG Zhong-qin, WANG Chuan-shang, LI Zhi-hong, WAMG Bao-zhong. The Early Carboniferous sequence stratigraphy on the eastern margin of the Guizhong depression, Guangxi[J]. GEOLOGY IN CHINA, 2014, 41(5): 1503-1514. DOI: 10.12029/gc20140508
    [8]WEI Xue-ji, SONG Ci-an, DING Ru-fu. Botanogeochemical anomaly characteristics of the Fuhezhong W-Sn polymetallic ore district in Guangxi and their prospecting effectiveness[J]. GEOLOGY IN CHINA, 2011, 38(3): 750-761. DOI: 10.12029/gc20110323
    [9]HUANG Hong-wei, DU Yuan-sheng. Devonian basin evolution and mineralization in Nandan-Hechi area, Guangxi[J]. GEOLOGY IN CHINA, 2009, 36(3): 669-676. DOI: 10.12029/gc20090313
    [10]MAO Xian-cheng, DAI Ta-gen, WU Xiang-bin, ZOU Yan-hong. The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines: a case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. GEOLOGY IN CHINA, 2009, 36(2): 424-435. DOI: 10.12029/gc20090216
  • Cited by

    Periodical cited type(4)

    1. 王学阳,杨言辰,刘志宏,张继武,戴台鹏. 长江中下游成矿带大金山地区综合信息找矿效果及深部找矿潜力分析. 吉林大学学报(地球科学版). 2025(01): 125-138 .
    2. 谭杰,徐文杰,赵毅,罗达,赵俊宏,钟玉龙,陶明荣. 广西五圩矿田多金属矿成矿模式及找矿预测. 中国矿业. 2024(S1): 508-514 .
    3. 李双飞,黄鹂,陈建,朱伟,孙丽莎,王欣,彭永和,商祥鸿,邹占春,唐名鹰,高远,赵家强. 山东省五莲七宝山金铜矿床成矿模式与找矿勘查模型——来自综合物化探的证据. 地质与勘探. 2023(05): 961-973 .
    4. 李玉坤,王兴龙,廖阿托,李科. 东天山梧桐沟钨矿区综合信息找矿模型. 新疆地质. 2023(04): 530-537 .

    Other cited types(2)

Catalog

    Article views (2801) PDF downloads (4180) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return