• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Chen Shuangxi, Li Qinghua, Liu Huaiqing, Chen Wen, Yu Shaowen, Wang Qing, Zhang Hongxin. 2019. Dataset of Field Testing of the Groundwater in the Fangchenggang Area of the Guangxi Zhuang Autonomous Region[J]. Geology in China, 46(S2):92−98.. DOI: 10.12029/gc2019Z207
Citation: Chen Shuangxi, Li Qinghua, Liu Huaiqing, Chen Wen, Yu Shaowen, Wang Qing, Zhang Hongxin. 2019. Dataset of Field Testing of the Groundwater in the Fangchenggang Area of the Guangxi Zhuang Autonomous Region[J]. Geology in China, 46(S2):92−98.. DOI: 10.12029/gc2019Z207

Dataset of Field Testing of the Groundwater in the Fangchenggang Area of the Guangxi Zhuang Autonomous Region

Funds: China Geological Survey projects titled “Comprehensive Geological Survey in Jiangdong New District, Haikou City”(DD20190304), “Overall Comprehensive Geological Survey in Marine Areas and Land Along Coastal Zone of Beihai City” (DD20189502), and “Hydrogeological and Engineering Geological Survey and Assessment in Fangchenggang Area” (12120113004100).
More Information
  • Author Bio:

    CHEN Shuangxi, male, born in 1982, senior engineer with doctorate degree, engages in Quaternary geological and environmental geological survey and research; E-mail: sxchen128@126.com

  • Corresponding author:

    LI Qinghua, male, born in 1978, professorate senior engineer with doctorate degree, engages in hydrogeological and environmental geological survey and research; E-mail: tsinghua_li@126.com

  • Received Date: October 23, 2019
  • Revised Date: November 07, 2019
  • Available Online: September 25, 2023
  • The Fangchenggang area of the Guangxi Zhuang Autonomous Region is a typical coastal area in South China where acidic groundwater is well developed. A groundwater survey was carried out in this area during 2013—2015. As a result, a batch of field-testing data of the groundwater was obtained and a dataset was developed (also referred to as the Dataset). The Dataset consists of 2 Excel data tables that respectively contain the field-testing data of the groundwater during the wet and dry seasons. Each of the data tables is comprised of data items such as survey point locations, burial depth of groundwater, groundwater type and the physical and chemical characteristics of the groundwater. It can be shown from the Dataset that the groundwater in Fangchenggang is weakly acidic with a pH value ranging from 5.50–6.50. The Dataset will provide data for the assessment and development of groundwater resources in the Fangchenggang area and also offer a typical demonstration for research on acidic groundwater in the coastal areas of South China.

  • [1]
    Egbueri JC. 2020. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study[J]. Groundwater for Sustainable Development, 10, 100292.https://doi.org/10.1016/j.gsd.2019.100292.
    [2]
    Kurosawa K, Egashira K, Tani M. 2013. Relationship of arsenic concentration with ammonium-nitrogen concentration, oxidation reduction potential and pH of groundwater in arsenic-contaminated areas in Asia[J]. Physics and Chemistry of the Earth, Parts A/B/C, 58-60: 85−88. doi: 10.1016/j.pce.2013.04.016
    [3]
    Lee J, Kim G. 2015. Dependence of coastal water pH increases on submarine groundwater discharge off a volcanic island[J]. Estuarine, Coastal and Shelf Science, 163(part B): 15−21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13edd5f8e5b56b3b7d5bac9f0d38197c
    [4]
    Leyden E, Cook F, Hamilton B, Zammit B, Barnett L, Lush AM, Stone D, Mosley L. 2016. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia[J]. Journal of Contaminant Hydrology, 189: 44−57. doi: 10.1016/j.jconhyd.2016.03.008
    [5]
    Loh YSA, Akurugu BA, Manu E, Abdul-Samed A. 2019. Assessment of groundwater quality and the main controls on its hydrochemistry in some Voltaian and basement aquifers, northern Ghana[J]. Groundwater for Sustainable Development, 100296, in press, available online.
    [6]
    Owamah HI. 2020. A comprehensive assessment of groundwater quality for drinking purpose in a Nigerian rural Niger delta community[J]. Groundwater for Sustainable Development, 10, 100286. https://doi.org/10.1016/j.gsd.2019.100286.
    [7]
    Thockchom L, Kshetrimayum KS. 2019. Assessment of quality contributing parameters using hydrochemistry and hydrogeology for irrigation in intermontane Manipur valley in northeast India[J]. Groundwater for Sustainable Development, 8: 667−679. doi: 10.1016/j.gsd.2018.08.003
    [8]
    程新伟, 孙继朝. 2017. 珠江三角洲地区酸性地下水分布特征及其影响因素研究[J]. 地下水, 39(5): 25−27, 87. doi: 10.3969/j.issn.1004-1184.2017.05.008
    [9]
    李锐, 周训, 张理, 欧业成, 黄喜新. 2006. 北海市偏酸性地下水pH值的特点及其影响因素简析[J]. 勘察科学技术, (5): 46−50. doi: 10.3969/j.issn.1001-3946.2006.06.012
    [10]
    张玉玺, 孙继朝, 陈玺, 黄冠星, 荆继红, 刘景涛, 向小平, 王金翠, 支兵发. 2011. 珠江三角洲浅层地下水pH值的分布及成因浅析[J]. 水文地质工程地质, 38(1): 16−21. doi: 10.3969/j.issn.1000-3665.2011.01.004
    [11]
    自然资源部中国地质调查局. 2019. 水文地质调查技术要求(1∶50 000)[S]. 1−32.
    [1]
    China Geological Survey, Ministry of Natural Resources of the People’s Republic of China. 2019. Technical requirement for hydrogeological survey (1: 50 000)[S]. 1–32 (in Chinese).
    [2]
    Cheng Xinwei, Sun Jichao. 2017. Study on distribution characteristics of acid groundwater and its influencing factors in the Pearl River Delta[J]. Ground water, 39(5): 25−27,87 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dixs201705008
    [3]
    Egbueri JC. 2020. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study[J]. Groundwater for Sustainable Development, 10: 100292. doi: 10.1016/j.gsd.2019.100292
    [4]
    Kurosawa K, Egashira K, Tani M. 2013. Relationship of arsenic concentration with ammonium–nitrogen concentration, oxidation reduction potential and pH of groundwater in arsenic-contaminated areas in Asia[J]. Physics and Chemistry of the Earth, Parts A/B/C, 58–60: 85−88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b78ebdcfa5d115ace7cbcc033668e03
    [5]
    Lee J, Kim G. 2015. Dependence of coastal water pH increases on submarine groundwater discharge off a volcanic island[J]. Estuarine, Coastal and Shelf Science, 163(part B): 15−21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13edd5f8e5b56b3b7d5bac9f0d38197c
    [6]
    Leyden E, Cook F, Hamilton B, Zammit B, Barnett L, Lush AM, Stone D, Mosley L. 2016. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia[J]. Journal of Contaminant Hydrology, 189: 44−57. doi: 10.1016/j.jconhyd.2016.03.008
    [7]
    Li Rui, Zhou Xun, Zhang Li, Ou Yecheng, Huang Xixin. 2006. Characteristics of the pH in weak acidic groundwater near Beihai and preliminary analyses of its affecting factors[J]. Site Investigation Science and Technology, (5): 46−50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kckxjs200605013
    [8]
    Loh YSA, Akurugu BA, Manu E, Abdul-Samed A. 2019. Assessment of groundwater quality and the main controls on its hydrochemistry in some Voltaian and basement aquifers, northern Ghana[J]. Groundwater for Sustainable Development, 100296, in press, available online.
    [9]
    Owamah HI. 2020. A comprehensive assessment of groundwater quality for drinking purpose in a Nigerian rural Niger delta community[J]. Groundwater for Sustainable Development, 10: 100286. doi: 10.1016/j.gsd.2019.100286
    [10]
    Thockchom L, Kshetrimayum KS. 2019. Assessment of quality contributing parameters using hydrochemistry and hydrogeology for irrigation in intermontane Manipur valley in northeast India[J]. Groundwater for Sustainable Development, (8): 667−679. doi: 10.1016/j.gsd.2018.08.003
    [11]
    Zhang Yuxi, Sun Jichao, Chen Xi, Huang Guanxing, Jing Jihong, Liu Jingtao, Xiang Xiaoping, Wang Jincui, Zhi Bingfa. 2011. Characteristics and preliminary analyses of the formation of pH in shallow groundwater in the Pearl River delta[J]. Hydrogeology & Engineering Geology, 38(1): 16−21 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201101004
  • Related Articles

    [1]SUN Minghang, WANG Ruihu, LIANG Lige, DENG Bin, LI Yukun, LIU Demin, GUAN Yanwu. Characteristics and potential evaluation of geothermal resources in Guangxi[J]. GEOLOGY IN CHINA, 2023, 50(5): 1387-1398. DOI: 10.12029/gc20220221001
    [2]WANG Yizheng, YANG Zhongfang, LIU Xu, LI Cheng, JI Wenbing, ZHANG Qizuan, ZHUO Xiaoxiong, WANG Lei. Geochemical characteristics of copper in soil of Qintang district, Guigang city, Guangxi and its ecological health research[J]. GEOLOGY IN CHINA, 2023, 50(1): 237-248. DOI: 10.12029/gc20200411001
    [3]DUAN Yiren, YANG Zhongfang, YANG Qiong, ZHENG Guodong, ZHUO Xiaoxiong, CHEN Biao. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. GEOLOGY IN CHINA, 2020, 47(6): 1826-1837. DOI: 10.12029/gc20200618
    [4]LI Ruojian, CHEN Yuanrong, GU Ruiqi, LI Jiacai, JIANG Xin, NONG Yuejin, WANG Zhanyu, YAN Xiang. Geochemical characteristics and metallogenic potential of Maoershan granite and its adjacent basement strata in Guangxi[J]. GEOLOGY IN CHINA, 2020, 47(2): 528-537. DOI: 10.12029/gc20200218
    [5]CHEN Shuangxi, LI Qinghua, LIU Huaiqing, CHEN Wen, YU Shaowen, WANG Qing, ZHANG Hongxin. Dataset of Field Testing of the Groundwater in the Fangchenggang Area of the Guangxi Zhuang Autonomous Region[J]. GEOLOGY IN CHINA, 2019, 46(S2): 69-73. DOI: 10.12029/gc2019Z207
    [6]LI Zhi-hong, CHENG Long, ZHAO Lai-shi, WANG Chuan-shang, PENG Zhong-qin, WANG Bao-zhong. New progress in the study of the early Early Carboniferous conodonts biostratigraphy from Nandong, Guangxi[J]. GEOLOGY IN CHINA, 2015, 42(4): 990-1008. DOI: 10.12029/gc20150415
    [7]PENG Zhong-qin, WANG Chuan-shang, LI Zhi-hong, WAMG Bao-zhong. The Early Carboniferous sequence stratigraphy on the eastern margin of the Guizhong depression, Guangxi[J]. GEOLOGY IN CHINA, 2014, 41(5): 1503-1514. DOI: 10.12029/gc20140508
    [8]WEI Xue-ji, SONG Ci-an, DING Ru-fu. Botanogeochemical anomaly characteristics of the Fuhezhong W-Sn polymetallic ore district in Guangxi and their prospecting effectiveness[J]. GEOLOGY IN CHINA, 2011, 38(3): 750-761. DOI: 10.12029/gc20110323
    [9]HUANG Hong-wei, DU Yuan-sheng. Devonian basin evolution and mineralization in Nandan-Hechi area, Guangxi[J]. GEOLOGY IN CHINA, 2009, 36(3): 669-676. DOI: 10.12029/gc20090313
    [10]MAO Xian-cheng, DAI Ta-gen, WU Xiang-bin, ZOU Yan-hong. The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines: a case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. GEOLOGY IN CHINA, 2009, 36(2): 424-435. DOI: 10.12029/gc20090216
  • Cited by

    Periodical cited type(4)

    1. 王学阳,杨言辰,刘志宏,张继武,戴台鹏. 长江中下游成矿带大金山地区综合信息找矿效果及深部找矿潜力分析. 吉林大学学报(地球科学版). 2025(01): 125-138 .
    2. 谭杰,徐文杰,赵毅,罗达,赵俊宏,钟玉龙,陶明荣. 广西五圩矿田多金属矿成矿模式及找矿预测. 中国矿业. 2024(S1): 508-514 .
    3. 李双飞,黄鹂,陈建,朱伟,孙丽莎,王欣,彭永和,商祥鸿,邹占春,唐名鹰,高远,赵家强. 山东省五莲七宝山金铜矿床成矿模式与找矿勘查模型——来自综合物化探的证据. 地质与勘探. 2023(05): 961-973 .
    4. 李玉坤,王兴龙,廖阿托,李科. 东天山梧桐沟钨矿区综合信息找矿模型. 新疆地质. 2023(04): 530-537 .

    Other cited types(2)

Catalog

    Article views (2673) PDF downloads (3955) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return