• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
GAO Wei, ZHANG Chuan-heng, WANG Zi-qiang. The discovery of large-scale acanthomorphic acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment[J]. GEOLOGY IN CHINA, 2011, 38(5): 1232-1243.
Citation: GAO Wei, ZHANG Chuan-heng, WANG Zi-qiang. The discovery of large-scale acanthomorphic acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment[J]. GEOLOGY IN CHINA, 2011, 38(5): 1232-1243.

The discovery of large-scale acanthomorphic acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment

More Information
  • Abstract:Numerous large-scale acanthomorpic acritarchs have been found in Neoproterozoic Ruyang Group on the southern margin of North China old land. They are acritarchs with double layers, complex ornaments on the outer layer, dense hollow or nets on the inner layer and nucleus in the cell. Some geologists and palaeogeologists are doubtful why these acritarchs occur in Mesoproterozoic strata in that they usually occur in Neoproterozoic strata. However, scientists fail to know their origin and evolutional pedigree. In recent years, the Meso- and Neoproterozoic section in Jixian has been regarded as a stratotype section in China; nevertheless, new SHRIMP zircon U-Pb dating (1368±12 Ma) was performed for Xiamaling Formation, which gives the formation a new location in the Meso- and Neoproterozoic column and breaks the old evolutional sequence. The new dating suggests that there is a gap in the geological record in 1200~900 Ma. According to a biostratigraphic analysis, the Neoproterozoic strata with large-scale acanthomorpic acritarchs will fill up the gap of the Jixian section. This paper deals with the appearance of the acritarchs, stratigraphic correlation, and the possible tectonic implication of the acritarchs in the light of biostratigraphy, geochemistry and lithology.
  • Related Articles

    [1]SUN Minghang, WANG Ruihu, LIANG Lige, DENG Bin, LI Yukun, LIU Demin, GUAN Yanwu. Characteristics and potential evaluation of geothermal resources in Guangxi[J]. GEOLOGY IN CHINA, 2023, 50(5): 1387-1398. DOI: 10.12029/gc20220221001
    [2]WANG Yizheng, YANG Zhongfang, LIU Xu, LI Cheng, JI Wenbing, ZHANG Qizuan, ZHUO Xiaoxiong, WANG Lei. Geochemical characteristics of copper in soil of Qintang district, Guigang city, Guangxi and its ecological health research[J]. GEOLOGY IN CHINA, 2023, 50(1): 237-248. DOI: 10.12029/gc20200411001
    [3]DUAN Yiren, YANG Zhongfang, YANG Qiong, ZHENG Guodong, ZHUO Xiaoxiong, CHEN Biao. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. GEOLOGY IN CHINA, 2020, 47(6): 1826-1837. DOI: 10.12029/gc20200618
    [4]LI Ruojian, CHEN Yuanrong, GU Ruiqi, LI Jiacai, JIANG Xin, NONG Yuejin, WANG Zhanyu, YAN Xiang. Geochemical characteristics and metallogenic potential of Maoershan granite and its adjacent basement strata in Guangxi[J]. GEOLOGY IN CHINA, 2020, 47(2): 528-537. DOI: 10.12029/gc20200218
    [5]CHEN Shuangxi, LI Qinghua, LIU Huaiqing, CHEN Wen, YU Shaowen, WANG Qing, ZHANG Hongxin. Dataset of Field Testing of the Groundwater in the Fangchenggang Area of the Guangxi Zhuang Autonomous Region[J]. GEOLOGY IN CHINA, 2019, 46(S2): 69-73. DOI: 10.12029/gc2019Z207
    [6]LI Zhi-hong, CHENG Long, ZHAO Lai-shi, WANG Chuan-shang, PENG Zhong-qin, WANG Bao-zhong. New progress in the study of the early Early Carboniferous conodonts biostratigraphy from Nandong, Guangxi[J]. GEOLOGY IN CHINA, 2015, 42(4): 990-1008. DOI: 10.12029/gc20150415
    [7]PENG Zhong-qin, WANG Chuan-shang, LI Zhi-hong, WAMG Bao-zhong. The Early Carboniferous sequence stratigraphy on the eastern margin of the Guizhong depression, Guangxi[J]. GEOLOGY IN CHINA, 2014, 41(5): 1503-1514. DOI: 10.12029/gc20140508
    [8]WEI Xue-ji, SONG Ci-an, DING Ru-fu. Botanogeochemical anomaly characteristics of the Fuhezhong W-Sn polymetallic ore district in Guangxi and their prospecting effectiveness[J]. GEOLOGY IN CHINA, 2011, 38(3): 750-761. DOI: 10.12029/gc20110323
    [9]HUANG Hong-wei, DU Yuan-sheng. Devonian basin evolution and mineralization in Nandan-Hechi area, Guangxi[J]. GEOLOGY IN CHINA, 2009, 36(3): 669-676. DOI: 10.12029/gc20090313
    [10]MAO Xian-cheng, DAI Ta-gen, WU Xiang-bin, ZOU Yan-hong. The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines: a case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. GEOLOGY IN CHINA, 2009, 36(2): 424-435. DOI: 10.12029/gc20090216
  • Cited by

    Periodical cited type(4)

    1. 王学阳,杨言辰,刘志宏,张继武,戴台鹏. 长江中下游成矿带大金山地区综合信息找矿效果及深部找矿潜力分析. 吉林大学学报(地球科学版). 2025(01): 125-138 .
    2. 谭杰,徐文杰,赵毅,罗达,赵俊宏,钟玉龙,陶明荣. 广西五圩矿田多金属矿成矿模式及找矿预测. 中国矿业. 2024(S1): 508-514 .
    3. 李双飞,黄鹂,陈建,朱伟,孙丽莎,王欣,彭永和,商祥鸿,邹占春,唐名鹰,高远,赵家强. 山东省五莲七宝山金铜矿床成矿模式与找矿勘查模型——来自综合物化探的证据. 地质与勘探. 2023(05): 961-973 .
    4. 李玉坤,王兴龙,廖阿托,李科. 东天山梧桐沟钨矿区综合信息找矿模型. 新疆地质. 2023(04): 530-537 .

    Other cited types(2)

Catalog

    Article views (2863) PDF downloads (3592) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return