• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
ZHANG Senqi, YAN Weide, LI Dunpeng, JIA Xiaofeng, ZHANG Shengsheng, LI Shengtao, FU Lei, WU Haidong, ZENG Zhaofa, LI Zhiwei, MU Jianqiang, CHENG Zhengpu, HU Lisha. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. GEOLOGY IN CHINA, 2018, 45(6): 1087-1102. DOI: 10.12029/gc20180601
Citation: ZHANG Senqi, YAN Weide, LI Dunpeng, JIA Xiaofeng, ZHANG Shengsheng, LI Shengtao, FU Lei, WU Haidong, ZENG Zhaofa, LI Zhiwei, MU Jianqiang, CHENG Zhengpu, HU Lisha. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. GEOLOGY IN CHINA, 2018, 45(6): 1087-1102. DOI: 10.12029/gc20180601

Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province

Funds: 

China Geological Survey Program DD20160192

China Geological Survey Program DD20179033

China Geological Survey Program DD20179621

More Information
  • Author Bio:

    ZHANG Senqi, male, born in 1962, master, professor, mainly engages in the study of geothermal geology, hydrogeology, and environmental geology survey and research; E-mail: senqizhang@126.com

  • Corresponding author:

    FU Lei, male, born in 1986, master, engineer, majors in the study of geothermal geology, hydrogeology, and environmental geology survey and research; E-mail:pengyou0808@163.com

  • Received Date: March 27, 2018
  • Revised Date: June 09, 2018
  • Available Online: September 27, 2023
  • Based on regional geology, geothermal geology and integrated geophysical exploration results, the GR1 hot dry rock exploration well was completed in the central part of Qiabuqia Town in the Gonghe basin. The GR1 well is the highest temperature hot-dry rock exploration well in China, which has laid an important foundation for China's first EGS demonstration project. The temperature measurement results show that the temperature at the depth of 2500 m is 150℃, entering into the hot dry rock section. The temperature of the bottom hole at the depth of 3705 m is 236℃. The average geothermal gradient of 2500-3705 m is 71.4℃/km, which is higher than that of the other 3 hot dry rock exploration wells. At 2800-3705 m of GR1 well the geothermal gradient is higher than 80℃/km. The exploration results show that the depth of the hot dry rock is 2104.31-2500 m, which is oval-shaped in the east-west direction, with an area of 246.90 km2. The evaluation results show that the total theoretical resources of the Qiabuqia hot dry rock is 1638.16EJ in the depth of 3-5 km, equivalent to 55.909 billion tons of standard coal.

  • Barbier E. 2002. Geothermal energy technology and current status:an overview[J]. Renewable & Sustainable Energy Reviews, 6 (1):3-65. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230943360/
    Brown D. 1995. The US hot dry rock program-20 years of experience in reservoir testing[C]//Proceedings of World Geothermal Congress: 2607-2611.
    Chamorro C R, García-cuesta J L, Mondéjar M E, Pérez-Madrazo, A. 2014. Enhanced geothermal systems in Europe:An estimation and comparison of the technical and sustainable potentials[J]. Energy, 65(2):250-263. http://www.sciencedirect.com/science/article/pii/S0360544213010487
    Chelemanski, Zhang Yi, Chen Ming. 1982. Practical Geothermal Science[M]. Beijing:Geological Publishing House (in Chinese).
    Feng Yimin, Cao Xuanduo, Zhang Erpeng, Hu Yunxu, Pan Xiaoping, Yang Junlu, Jia Qunzi, Li Wenming. 2003. Tectonic evolution framework and nature[J]. Northwest Geology, 36(1):1-10(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi2015010006
    GB-T-11615-2010. 2010. Geothermal Resources Geological Exploration Standard[S].
    Goes S, Govers R, Vacher P. 2000. Shallow mantle temperatures under Europe from P and S wave tomography[J]. Journal of Geophysical Research Solid Earth, 105 (B5):11153-11169. doi: 10.1029/1999JB900300
    Haimson B C. 1997. Borehole breakouts and core disking as tools for estimating in situ stress in deep holes[C]//International Symposium on Rock Stress-RS Kumamoto 97: 35-42.
    He Zhiliang, Feng Jianyun, Zhang Ying, Li Pengwei. 2017. A tentative discussion on an evaluation system of geothermal unit ranking and classification in China[J]. Earth Science Frontiers, 24(3):168-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201703015
    Jiang Hongcai, Zhou Ruiliang. 1994. Distribution of geothermal water in structure system of Qinghai-Xizang(Tibet) plateau and its prospecting[J]. Bulletin of the 562 Comprehensive Geological Brigade, Chinese Acadmy of Geological Sciences, (11/12):243-259 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400951552
    Jiang Lin, Ji Jianqing, Xu Qinqin. 2013. Geologic analysis on the prospects of the enhanced geothermal system(EGS)in the Bohai Bay Basin[J]. Geology and Exploration, 49(1):167-178(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201301018
    Li Shengshuang, Sun Weidong, Zhang Guowei, Chen Jiayi, Yang Yongcheng. 1996. Geochronology and geochemistry of the Heigouxia metamorphic volcanic rock in the Minqing tectonic Belt:Evidence from the Paleozoic ocean basin and its closing era[J]. Science China Earth Sciences, 26(3):223-230(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199603008.htm
    Luo Biji, Zhang Hongfei, Xiao Zunqi. 2012. Petrogenesis and tectonic implications of the Early Indosinian Meiwu Pluton in West Qinling, central China[J]. Earth Science Frontiers, 19(3):199-213 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201203022
    Li Y, Schmitt D R. 1998. Drilling-induced core fractures and in situ stress[J]. Journal of Geophysical Research Solid Earth, 103(B3):5225-5239. doi: 10.1029/97JB02333
    Mackenzie G D, Thybo H, Maguire P K H. 2005. Crustal velocity structure across the Main Ethiopian Rift:results from twodimensional wide-angle seismic modelling[J]. Geophysical Journal of the Royal Astronomical Society, 162(3):994. doi: 10.1111/gji.2005.162.issue-3
    Matsuki K, Kaga N, Yokoyama T, Tsuda N. 2004. Determination of three dimensional in situ stress from core discing based on analysis of principal tensile stress[J]. International Journal of Rock Mechanics & Mining Sciences, 41(7):1167-1190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28a4b4069efc0e4d0b8849dd3a460f68
    Panel DOE. 2006. The future of geothermal energy:Impact of enhanced geothermal systems on the United States in the 21st Century[J]. Geothermics, 17(5):881. http://www.osti.gov/scitech/biblio/1220063
    Polsky Y, Capuano L J, Finger J, Huh M, Knudsen S, Mansure A J C, Raymond D, Swanson R. 2008. Enhanced Geothermal Systems (EGS)well construction technology evaluation report[J]. Physical Review D, 17(10):2529-2551. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC029506954/
    Priestley K, Debayle E, Mckenzie D, Pilidou S. 2006. Upper mantle structure of eastern Asia from multimode surface waveform tomography[J]. Journal of Geophysical Research Solid Earth, 111 (B10). doi: 10.1029-2005JB004082/
    Rybach L. 2010."The Future of Geothermal Energy" and its challenges[C]//Proceedings of World Geothermal Congress, 2010: 25-29.
    Song Bowen, Xu Yadong, Liang Yinping, Jiang Shangsong, Luo Mansheng, Ji Junliang, Han Fang, Wei Yi, Xu Zenglian, Jiang Gaolei. 2014. Evolution of Cenozoic sedimentary basins in Western China[J]. Earth Science——Journal of China University of Geosciences, 39(8):1035-1051 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.093
    Stiegeler S E. 2008.A Dictionary of Earth Sciences[M]. Rowman & Allanheld.
    Simmons S, Kirby S, Jones C. 2016. The geology, geochemistry and geohydrology of the FORGE Deep Well Site, Milford, Utah[C]//41st Workshop on Geothermal Reservior Engineering, 2016: 1-10.
    Wang Chenghu. 2014. Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J]. Geological Review, 60(5):971-995(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405003
    Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 30(32):25-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201232007
    Wang Changgui, Lv Yousheng. 2004. Gonghe Basin:A new and worth-researching basin[J]. Xinjiang Petroleum Geology, 25(5):471-473 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xjsydz200405003
    Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, Hou Zhaoyun, Feng Bo. 2016. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University(Earth Science Edition), 46(4):1139-1152(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201604012
    Xu J F, Castillo P R, Li X H, Yu X Y, Zhang B R, Han Y W. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China:implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean[J]. Earth & Planetary Science Letters, 198(3):323-337. http://www.sciencedirect.com/science/article/pii/S0012821X02005368
    Xu Shuying, Xu Defu, Shi Shengren. 1984. A disscussion on the devolopment of landforms and evolution of environments in the Gonghe Basin[J]. Journal of Lanzhou University(Natural Science), 20(1):146-157 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002074292
    Yang Jingsui, Shirendeng, Wucailai, Wang Xibin, Robinson P T. 2009. Dur'ngoi ophiolitein East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suturein Northwest China[J]. Journal of Earth Science, 20(2):303-331. doi: 10.1007/s12583-009-0027-y
    Yuan Daoyang, Zhang Peizhen, Liu Xiaolong, Liu Baichi, Zheng Wenjun, He Wengui. 2004. The tectonic activity and deformation features during the Late Quaternary of Elashan Mountain active fault zone in Qinghai Province and its implication for the deformation of the northeastern margins of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 11(4):393-402(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200404007.htm
    Yang lirong, Yue Leping, Wang Hongliang, Zhang Rui, Guo Huaijun, Zhu Xiaohui, Zhang Yunxiang, Gong Hujun. 2016. Quaternary stratigraphic realm and sedimentary sequence of the Qilian Mountain and adjacent areas[J]. Geology in China, 43(3):1041-1054(in Chinese with English abstract).
    Yang Lizhong, Liu Jinhui, Sun Zhanxue, Wang Andong, Wan Jianjun, Zhou Yi. 2016. Study of the characteristics of radioactive heat production rate and hot dry rock resources potential in Zhangzhou City[J]. Modern Mining, 563(3):123-127, 133(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYKB201603045.htm
    Zhang Henglei, Hu Xiangyun, Liu Tianyou. 2012. Fast inversion of magnetic source boundary and top depth via second order derivative[J]. Chinese Journal of Geophysics, 55(11):3839-3847 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201211031
    Zhang Fawang, Wang Guiling, Hou Xinwei Li Jianhua, Li Yujing. 2000. An Analysis of the formation of geothermal resources and the effects of groundwater circulation on the wall rock temperature field-taking the Pingdingshan Mining Field as an example[J]. Acta Geoscientia Sinica, 21(2):142-146(in Chinese with English ahstract).
    Zhao Ping, Wang Jiyang, Wang Ji, an, Luo Dinggui. 1995. Characteristics of heat production distribution in SE China[J]. Acta Petrologica Sinica, 11 (3):292-305 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500588525
    Zhang Senqi, Jia Xiaofeng, Zhang Yang, Li Shengtao, Li Zhiwei, Tian Puyuan, Ming Yuanyuan, Zhang Chao. 2017. Volcanic magma chamber survey and geothermal geological condition analysis for hot dry rock at the Weishan Volcano in Wudalianchi Region, Heilongjiang Province[J]. Acta Geologica Sinica, 91(7):1506-1521 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201707008.htm
    Zhang Guowei, Guo Anlin, Yao Anping. 2004. Western QinlingSongpan continental tectonic node in China's continental tectonics[J]. Earth Science Frontiers, 11(3):23-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200403004.htm
    Zhang Xueting, Yang Shengde, Yang Zhanjun. 2007. The Plate Tectonics of Qinghai Province-A Guide to the Geotectonic Map of Qinghai Province[M]. Beijing:Geological Publishing House(in Chinese).
    冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003.西秦岭造山带的演化、构造格局和性质[J].西北地质, 36(1):1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001
    何治亮, 冯建赟, 张英, 李朋威. 2017.试论中国地热单元分级分类评价体系[J].地学前缘, 24 (3):168-179. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703015
    GB-T-11615-2010. 2010.地热资源地质勘查规范[S].
    姜鸿才, 周瑞良. 1994.青藏高原构造体系控制下的地热水分布及找热方向[J].中国地质科学院562综合大队集刊, (11/12):243-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400951552
    蒋林, 季建清, 徐芹芹. 2013.渤海湾盆地应用增强型地热系统(EGS)的地质分析[J].地质与勘探, 49 (1):167-178. http://d.old.wanfangdata.com.cn/Periodical/dzykt201301018
    骆必继, 张宏飞, 肖尊奇. 2012.西秦岭印支早期美武岩体的岩石成因及其构造意义[J].地学前缘, 19 (3):199-213. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203022
    李曙光, 孙卫东, 张国伟, 陈家义, 杨永成. 1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学-古生代洋盆及其闭合时代的证据[J].中国科学(地球科学), 26 (3):223-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600264854
    切列缅斯基, 赵羿, 陈明. 1982.实用地热学[M].北京:地质出版社.
    宋博文, 徐亚东, 梁银平, 江尚松, 骆满生, 季军良, 韩芳, 韦一, 徐增连, 姜高磊. 2014.中国西部新生代沉积盆地演化[J].地球科学——中国地质大学学报, 39(8):1035-1051. http://d.old.wanfangdata.com.cn/Periodical/dqkx201408008
    汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012.中国大陆干热岩地热资源潜力评估[J].科技导报, 30 (32):25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002
    王昌桂, 吕友生. 2004.共和盆地——一个值得研究的新盆地[J].新疆石油地质, 25 (5):471-473. doi: 10.3969/j.issn.1001-3873.2004.05.003
    王成虎. 2014.地应力主要测试和估算方法回顾与展望[J].地质论评, 60 (5):971-996. http://d.old.wanfangdata.com.cn/Periodical/dzlp201405003
    许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 2016.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版), 46 (4):1139-1152. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201604012
    徐叔鹰, 徐德馥, 石生仁. 1984.共和盆地地貌发育与环境演化探讨[J].兰州大学学报(自科版), 20 (1):150-161, 188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002074292
    袁道阳, 张培震, 刘小龙, 刘百篪, 郑文俊, 何文贵. 2004.青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制[J].地学前缘, 11 (4):393-402. doi: 10.3321/j.issn:1005-2321.2004.04.006
    杨利荣, 岳乐平, 王洪亮, 张睿, 郭怀军, 朱小辉, 张云翔, 弓虎军. 2016.祁连山及邻区第四纪地层区划与沉积序列[J].中国地质, 43(3):1041-1054. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?flag=1&file_no=20160326&journal_id=geochina
    杨立中, 刘金辉, 孙占学, 王安东, 万建军, 周毅. 2016.漳州岩体放射性生热率特征及干热岩资源潜力[J].现代矿业, 563 (3):123-127. doi: 10.3969/j.issn.1674-6082.2016.03.045
    张森琦, 贾小丰, 张杨, 李胜涛, 李志伟, 田蒲源, 明圆圆, 张超. 2017.黑龙江省五大连池尾山地区火山岩浆囊探测与干热岩地热地质条件分析[J].地质学报, 91 (7):1506-1521. doi: 10.3969/j.issn.0001-5717.2017.07.007
    张国伟, 郭安林, 姚安平. 2004.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘, 11 (3):23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004
    张雪亭, 杨生德, 杨站君. 2007.青海省板块构造研究——1:100万青海省大地构造图说明书[M].北京:地质出版社.
    张恒磊, 胡祥云, 刘天佑. 2012.基于二阶导数的磁源边界与顶部深度快速反演[J].地球物理学报, 55 (11):3839-3847. doi: 10.6038/j.issn.0001-5733.2012.11.031
    张发旺, 王贵玲, 侯新伟, 李建华, 李玉静. 2000.地下水循环对围岩温度场的影响及地热资源形成分析——以平顶山矿区为例[J].地球学报, 21 (2):53-142. http://d.old.wanfangdata.com.cn/Periodical/dqxb200002006
    赵平, 汪集旸, 汪缉安, 罗定贵. 1995.中国东南地区岩石生热率分布特征[J].岩石学报, 11 (3):292-305. doi: 10.3321/j.issn:1000-0569.1995.03.011
  • Cited by

    Periodical cited type(21)

    1. 彭学锐,陈翔,周思裕. 广西梧州六堡茶茶叶及根系土中硒含量影响因素. 物探与化探. 2024(02): 545-554 .
    2. 潘有良,费光春,张钟华,杨恩林,王小洪,刘浩,肖波,吴鹏,肖玉. 贵州省桐梓县耕地表层土壤钾元素分布特征及生态环境评价. 中国地质. 2024(04): 1304-1318 . 本站查看
    3. 赵岩,郭常来,崔健,张艳飞,李莹,李旭光,于慧明. 辽宁省锦州市北镇农业区土壤重金属分布特征、生态风险评价及源解析. 中国地质. 2024(05): 1469-1484 . 本站查看
    4. 王烨,刘方,朱健,陈祖拥,刘元生. 贵州省土壤锰的空间异质性及其影响因子. 农业资源与环境学报. 2023(04): 817-828 .
    5. 彭学锐,周思裕,陈翔,陈琮友. 广西梧州六堡茶主产区茶叶-土壤重金属污染现状及源解析. 农业环境科学学报. 2023(10): 2231-2243 .
    6. 李樋,刘小念,刘洪,张腾蛟,李佑国,李随民,王昕,欧阳渊,张景华. 西昌普诗地区中—下白垩统小坝组岩石–紫色土剖面稀土元素地球化学特征分析. 沉积与特提斯地质. 2023(04): 829-843 .
    7. 余晚霞,陈勇杏,郭磊,鲁斌,朱书红,华燕. 滇黄精品质评价及与土壤元素相关性分析. 西部林业科学. 2023(06): 64-72 .
    8. 李樋,刘洪,李佑国,李夔洲,李随民,欧阳渊,张景华,张腾蛟. 基于地统计学及GIS的西昌地区中生代红层区紫色土营养元素空间变异性及影响因素研究. 地球科学进展. 2022(06): 627-640 .
    9. 尹德超,祁晓凡,王雨山,徐蓉桢,安永会,王旭清,耿红杰. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价. 中国地质. 2022(03): 979-992 . 本站查看
    10. Xiaofeng Wei,Houyun Sun,Zirang Chen,Xia Li,Hao Wei,Wenru Jia,Wei Li. Element migration and enrichment characteristics of bedrock–regolith–soil–plant continuum system in the chestnut planting area, Chengde, China. Acta Geochimica. 2022(05): 839-860 .
    11. 郑俊峰,谢建华,张巧芬,庞杰. 减压贮藏对杨梅果实采后品质的影响. 保鲜与加工. 2021(02): 33-37 .
    12. 孙厚云,卫晓锋,孙晓明,贾凤超,李多杰,李健. 承德杏仁产区关键带基岩-土壤-作物果实BRSPC系统元素迁聚特征. 地球科学. 2021(07): 2621-2645 .
    13. 赵辰,孙彬彬,周国华,贺灵,曾道明. 福建龙海杨梅生态地质适生模型研究与应用. 物探与化探. 2021(05): 1121-1129 .
    14. 阳文武,王巍,赵顺鑫,谷文超,黄小兰,李紫君,周浓. 滇重楼根际土壤有效性元素与药材质量相关性分析. 中国野生植物资源. 2021(10): 13-18+30 .
    15. 顾涛,朱晓华,赵信文,江拓,邱啸飞,郑小战,帅琴. 广州新垦莲藕产区莲藕品质与地球化学条件的关系. 岩矿测试. 2021(06): 833-845 .
    16. 张玉明,谢庆锋,王丽远. 河南新郑大枣中元素含量与产区土壤地球化学关系研究. 矿产勘查. 2020(12): 2621-2627 .
    17. 廖启林,崔晓丹,黄顺生,黄标,任静华,顾雪元,范健,徐宏婷. 江苏富硒土壤元素地球化学特征及主要来源. 中国地质. 2020(06): 1813-1825 . 本站查看
    18. 段轶仁,杨忠芳,杨琼,郑国东,卓小雄,陈彪. 广西北部湾地区土壤锗分布特征、影响因素及其生态环境评价. 中国地质. 2020(06): 1826-1837 . 本站查看
    19. 孙厚云,孙晓明,贾凤超,王艳丽,李多杰,李健. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系. 中国地质. 2020(06): 1646-1667 . 本站查看
    20. 刘孜,黄行凯,徐宏林,张斌,彭青松,王晨昇,王恒,姜华. 湖北宜昌鸦鹊岭地区岩石-土壤元素迁移特征及柑橘种植适宜性评价. 中国地质. 2020(06): 1853-1868 . 本站查看
    21. 武春林,成欢,王瑞廷,董英,杨宏林. 陕西省西咸新区窑店镇土地质量地球化学评价及合理开发建议. 地质调查与研究. 2019(03): 225-234 .

    Other cited types(8)

Catalog

    Article views (6060) PDF downloads (7646) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return