• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
MA Bing, JIA Lingxiao, YU Yang, WANG Huan, CHEN Jing, ZHONG Shuai, ZHU Jichang. Geoscience and carbon neutralization: Current status and development direction[J]. GEOLOGY IN CHINA, 2021, 48(2): 347-358. DOI: 10.12029/gc20210201
Citation: MA Bing, JIA Lingxiao, YU Yang, WANG Huan, CHEN Jing, ZHONG Shuai, ZHU Jichang. Geoscience and carbon neutralization: Current status and development direction[J]. GEOLOGY IN CHINA, 2021, 48(2): 347-358. DOI: 10.12029/gc20210201

Geoscience and carbon neutralization: Current status and development direction

Funds: 

China Geological Survey"dynamic tracking and analysis of International Geological Survey" DD20190414

More Information
  • Author Bio:

    MA Bing, female, born in 1967, professor, engaged in mineral resources management research; E-mail: mabing@mail.cgs.gov.cn

  • Received Date: February 02, 2021
  • Revised Date: February 28, 2021
  • Available Online: September 25, 2023
  • Carbon neutralization is a hot topic in the world, and geoscience can play an important role in this field. Internationally, the Intergovernmental Panel on Climate Change, the International Energy Agency, the Energy Transition Commission, and policy advisory groups at the national level have proposed a series of models and scenarios for possible ways to reduce CO2 emissions, indicating that to achieve carbon neutrality, electricity will replace fossil fuels as the main carrier of global energy. In the context of global urgent need for CO2 emission reduction, it is very important for geosciences to provide geological solutions to achieve the climate objectives of the Paris Agreement. Carbon dioxide emission reduction involves many scientific issues, including heat storage and geothermal, dry hot rock, hydropower energy storage, compressed air energy storage, nuclear energy, carbon capture and storage, hydrogen economy and mineral raw materials for energy transformation. Earth science can help reducing carbon dioxide emissions through the following ways: first, to describe the rock mechanics characteristics of geological body, so as to store CO2 and establish green energy system in the decarbonization area; secondly, to further reveal the origin and genesis of the mineral resources needed for electric vehicle batteries and wind turbines; thirdly, to expand the scale from small laboratory to pilot, industrialization and commercialization; and fourthly, to understand the public's attitude towards underground decarbonization technology to ensure the safety of the project. The goal of carbon neutralization provides new opportunities for geoscience research, and the future development needs support from various aspects. Achieving carbon neutrality requires improving awareness of the key role of geoscience in achieving decarbonization, developing technologies, building industrial chains, and achieving sustainable development.

  • Benjamin K, Sovacool, Saleem H, Ali Morgan Bazilian, Ben Radley, Benoit Nemery, Julia Okatz, Dustin Mulvaney. 2020. Sustainable minerals and metals for a low-carbon future[J]. Science, 367(6473): 30-33. doi: 10.1126/science.aaz6003
    Brad Page, Guloren Turan, Alex Zapantis. 2019. Global Status of CCS 2019[R]. Melbourne: Global Carbon Capture and Storage Institute Ltd.
    Carbon Brief. 2015. Nuclear power additions 'need to quadruple' to hit climate goals, IEA says[EB/OL]. [2015-01-31]. https://www.carbonbrief.org/nuclear-power-additions-need-to-quadruple-to-hit-climate-goals-iea-says.
    China Petrochemical News. 2019. Definition and resources of dry hot rock[EB/OL]. [2019-12-23]. http://202.149.227.159/zgshb/html/2019-12/23/content_841175.htm?div=-1.
    CHUNENG. BJX. COM. CN. 2016. How many of the world's top ten pumped storage power stations do you know?[EB/OL]. [2016-01-22]. http://chuneng.bjx.com.cn/news/20160122/703734.shtml.
    Committee on Climate Change. 2019. Net Zero: The UK's Contribution to Stopping Global Warming[R]. London: Committee on Climate Change.
    Energy Transitions Commission. 2017. Better Energy, Greater Prosperity Achievable Pathways to Low-carbon Energy Systems[R]. Energy Transitions Commission.
    ESA. 2021 Variable Speed Pumped Hydroelectric Storage[EB/OL]. [2021-02-01]. http://energystorage.org/why-energy-storage/technologies/variable-speed-pumped-hydroelectric-storage/.
    Gibbins J, Chalmers H. 2008. Carbon capture and storage[J]. Energy Policy, 36: 4317-4322. doi: 10.1016/j.enpol.2008.09.058
    Goldthau A, Westphal K, Bazilian M, Bradshaw M. 2019. Model and manage the changing geopolitics of energy[J]. Nature, 569: 29-31. doi: 10.1038/d41586-019-01312-5
    Helen Mountford. 2020. Responding to Coronavirus: Low-carbon Investments Can Help Economies Recover. [EB/OL]. [2020-03-12]. https://www.wri.org/blog/2020/03/coronavirus-economy-low-carbon-investments.
    He Wei, Dooner Mark, King Marcus, Li Dacheng, Guo Songshan, Wang Jihong. 2021. Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation[J]. Applied Energy, 282(PA): 1-15. http://www.sciencedirect.com/science/article/pii/S0306261920315208
    IEA. 2020. CCUS in Clean Energy Transitions[EB/OL]. [2020-09-01]. https://www.iea.org/reports/ccus-in-clean-energy-transitions/a-new-era-for-ccus#abstract.
    IEA. 2018. World Energy Outlook 2018[R]. Paris: International Energy Agency.
    IPCC. 2018. Summary for policymakers//Masson-Delmotte V, Zhai P. (eds.). Global Warming of 1.5℃. An IPCC Special Report on the Impacts of Global Warming of 1.5℃ Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty[R]. Geneva: World Meteorological Organization.
    IRENA. 2019. Global Energy Transformation: A Roadmap to 2050[R]. Abu Dhabi: International Renewable Energy Agency.
    Johannes Friedrich, Thomas Damassa, Mengpin Ge. 2015. What Will Future Emissions Look Like?[EB/OL]. [2015-03-09]. https://www.wri.org/blog/2015/03/what-will-future-emissions-look.
    Jose M Bermudez, Taku Hasegawa. 2020. Hydrogen: More efforts needed[EB/OL]. [2020-06]. https://www.iea.org/reports/hydrogen.
    Kirsten Hund, Daniele La Porta, Thao P. Fabregas. 2020. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition[R]. Washington, DC: The World Bank.
    Lindsay Delevingne, Will Glazener, Liesbet Grégoir. 2020. Climate risk and decarbonization: What every mining CEO needs to know[R]. New York City: Mckinsey&Company.
    Mao Xiang, Guo Dianbin, Luo Lu, Wang Tinghao. 2019. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review, 65(6): 1462-1472(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201906018.htm
    Mark P Mills. 2020. Mines, Minerals, And "Green" Energy: A Reality Check[R]. New York: Manhattan Institute.
    Michael H. Stephenson, Philip Ringrose, Sebastian Geiger, Michael Bridden, David Schofield. 2019. Geoscience and decarbonization: current status and future directions[J]. Petroleum Geoscience, 25: 501-508. doi: 10.1144/petgeo2019-084
    Michel Berthélemy, Sama Bilbao Y Leon. 2020. Nuclear Power[EB/OL]. [2020-06]. https://www.iea.org/reports/nuclear-power.
    Mike Stephenson, Florence Bullough. 2020. Geological skills and knowledge crucial in delivering net-zero[J]. Science in Parliament, 75(4): 11-13. http://www.researchgate.net/publication/343683028_Negotiation_Skills_Crucial_in_Resolving_Differences_and_Disagreement_between_Individuals
    Mining Online. 2017. Major breakthrough in emerging clean energy exploration may rewrite the traditional energy map[EB/OL]. [2017-09-07]. https://www.sohu.com/a/190453433_740265.
    Northern Gas Networks. 2018. H21 North of England-national launch[EB/OL]. [2018-11-26]. https://www.northerngasnetworks.co.uk/event/h21-launches-national/.
    Pacala S, Socolow R. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies[J]. Science, 305: 968-972. doi: 10.1126/science.1100103
    Ringrose P S. 2017. Principles of sustainability and physics as a basis for the low-carbon energy transition[J]. Petroleum Geoscience, 23: 287-297. doi: 10.1144/petgeo2016-060
    Ryan Morrison. 2021. The earth will reach a critical point in 30 years[N]. Reference News, 1.27(9).
    S Julio Friedmann, Alex Zapantis, Brad Pag. 2020. Net-Zero And Geospheric Return: Actions Today For 2030 And Beyond[R]. Amsterdam: Columbia University CGEP.
    Stephenson M. 2018. Energy and climate change: Geological controls, interventions, and mitigations[J]. Energy & Climate Change, 2018: 175-178. http://www.sciencedirect.com/science/article/pii/B9780128120217000099
    Wang Guiling. 2020. Develop new geothermal energy and build a clean, low-carbon, safe and efficient energy system[J]. Acta Geologica Sinica, 94(7): 1921-1922(in Chinese with English abstract).
    www. tanjiaoyi. com. 2020. Which countries and regions in the world have set the goal of carbon neutrality (net zero emission)?[EB/OL]. [2020-09-01]. http://www.tanjiaoyi.com/article-32125-1.html.
    Yang Jianfeng, Wang Yao, Ma Teng, Zhang Cuiguang. 2019. Current status and strategies of exploration and development of Hot Dry Rock geothermal energy in the United States and implications for China[J]. Land and Resources Information, (6): 8-14, 56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GTZQ201906002.htm
    北极星储能网. 2016. 世界十大抽水蓄能电站你知道几个?[EB/OL]. [2016-01-22]. http://chuneng.bjx.com.cn/news/20160122/703734.shtml.
    瑞安·莫里森. 2021. 地球三十年内将达致命临界点[N]. 参考消息, 1.27(9).
    矿业在线. 2017. 新兴清洁能源勘查获重大突破, 或将改写传统能源版图[EB/OL]. [2017-09-07]. https://www.sohu.com/a/190453433_740265.
    毛翔, 国殿斌, 罗璐, 王婷灏. 2019. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm
    王贵玲. 2020. 开发地热新能源, 构建清洁低碳、安全高效的能源体系[J]. 地质学报, 94(7): 1921-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007001.htm
    杨建锋, 王尧, 马腾, 张翠光. 2019. 美国干热岩地热资源勘查开发现状、战略与启示[J]. 国土资源情报, (6): 8-14, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ201906002.htm
    中国碳交易网. 2020. 全球哪些国家和地区设立了碳中和(净零排放)目标?[EB/OL]. [2020-09-01]. http://www.tanjiaoyi.com/article-32125-1.html.
    中国石化报. 2019. 干热岩定义与资源量[EB/OL]. [2019-12-23]. http://202.149.227.159/zgshb/html/2019-12/23/content_841175.htm?div=-1.
  • Related Articles

    [1]BAO Shujing, GE Mingna, XU Xingyou, GUO Tianxu, LIN Yanhua, MOU Degang, LIANG Hongbo. Progress and development proposals in the exploration and development of continental shale oil in China[J]. GEOLOGY IN CHINA, 2023, 50(5): 1343-1354. DOI: 10.12029/gc20230105002
    [2]WANG Huan, MA Bing, JIA Lingxiao, YU Yang, HU Jiaxiu, WANG Wei. The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations[J]. GEOLOGY IN CHINA, 2021, 48(6): 1720-1733. DOI: 10.12029/gc20210605
    [3]CHENG Xiang, HU Peng, ZHANG Haikun, JIANG Junsheng. The main types, distribution and current development of manganese ore deposits[J]. GEOLOGY IN CHINA, 2021, 48(1): 102-119. DOI: 10.12029/gc20210107
    [4]The realization of UN sustainable development goal promulgated by European geoscience organizations and its inspirations[J]. GEOLOGY IN CHINA, 2020, 47(1): 262-264. DOI: 10.12029/gczgdz-47-1-262
    [5]YIN Zhiqiang, LI Ruimin, LI Xiaolei, MENG Hui, LIU Qiong, YANG Nan, WANG Yi, TONG Xiaoxia, LI Chunyan, GAO Mengmeng. Research progress and future development directions of geo-resources and environment carrying capacity[J]. GEOLOGY IN CHINA, 2018, 45(6): 1103-1115. DOI: 10.12029/gc20180602
    [6]XIONG Sheng-qing. The strategic consideration of the development of China's airborne geophysical technology[J]. GEOLOGY IN CHINA, 2009, 36(6): 1366-1374. DOI: 10.12029/gc20090618
    [7]HUANG Run-qiu, XU Ze-min. Environmental geological issues of typical cities in southwest China and city planning[J]. GEOLOGY IN CHINA, 2007, 34(5): 894-906. DOI: 10.12029/gc20070517
    [8]LI Ting-dong. Status and development trend of geological map compilation in the world[J]. GEOLOGY IN CHINA, 2007, 34(2): 206-211. DOI: 10.12029/gc20070202
    [9]ZHANG Guang-hui, LIU Shao-yu, ZHANG Cui-yun, CHEN Zong-yu, NIE Zhen-long, SHEN Jian-mei, WANG Jin-zhe, WANG Zhao. Evolution of groundwater circulation in the Heihe River drainage area[J]. GEOLOGY IN CHINA, 2004, 31(3): 289-293. DOI: 10.12029/gc20040308
    [10]GUO Jian-qiang, ZHU Li-xue, FAN Xiao. Tourism resources of Luoji Mountain, Sichuan, and a study of its development strategy[J]. GEOLOGY IN CHINA, 2002, (2): 222-224. DOI: 10.12029/gc20020222
  • Cited by

    Periodical cited type(29)

    1. 王浩,徐俊辉,陆佳敏,张高,罗淼,赵云松,王卫东,徐孜俊,戴秋霞,陈留平,王同涛. 大规模地质储氢工程现状及应用展望. 中国地质. 2025(01): 180-204 . 本站查看
    2. 李丹,孙少川,毛翔,罗璐,许振华,张海雄. 江苏省与新加坡深层地热资源潜力分析. 中国煤炭地质. 2024(07): 35-40 .
    3. 赵鹏涛,王海桥,王龙,王馨蕾. 非凝材料恒压注浆技术在松软煤层封孔中的应用. 湖南科技大学学报(自然科学版). 2024(02): 9-16 .
    4. 潘昭帅,张照志,车东,张涛,张兰英,杨巍. 中国银矿资源特征及新能源背景下需求分析. 中国地质. 2024(05): 1554-1569 . 本站查看
    5. 肖贝,陈磊,杨皝,张译丹,汪飞,芦慧. 准噶尔盆地深部咸水层CO_2地质封存适宜性及潜力评价. 大庆石油地质与开发. 2024(06): 120-127 .
    6. 徐枫,王帅斌,汪亚楠. 财政金融协同视角下的碳中和目标实现:内涵属性、内在机理与路径选择. 国际经济评论. 2023(01): 152-173+8 .
    7. 李金玺,孙东,李智武,曹楠,童馗,廖俊,张正鹏,董建兴,章旭. 四川盆地水热型地热资源构造成因模式. 地质科学. 2023(02): 438-460 .
    8. 余鸣潇,马峰,王贵玲,张薇,朱喜,张汉雄,王延欣. 雄安新区容东片区地热资源赋存特征及潜力评价. 地球学报. 2023(01): 180-190 .
    9. 孙强,张卫强,耿济世,胡建军,张玉良,吕超,葛振龙,李鹏飞,贾海梁,刘亚斌,李宇翔. 利用煤炭开发地下空间储能的技术路径与地质保障. 煤田地质与勘探. 2023(02): 229-242 .
    10. 刁玉杰,刘廷,魏宁,马鑫,金晓琳,付雷. 咸水层二氧化碳地质封存潜力分级及评价思路. 中国地质. 2023(03): 943-951 . 本站查看
    11. 韩东旭,张炜韬,焦开拓,宇波,李庭宇,巩亮,王树荣. 基于嵌入式离散裂缝模型的增强型地热系统热—流—力—化耦合分析. 天然气工业. 2023(07): 126-138 .
    12. 黄涵钗,孟凡震,李沐子,修占国,张树翠,李致远. 工质密度和储层渗透率演化对EGS系统传热效能的影响. 水利与建筑工程学报. 2023(04): 71-79 .
    13. 彭仁东,韦波,李鑫,张冀,张紫昭,王博,张娜,崔德广. 地下矿井煤炭碳排放量估算方法研究——以阜康矿区西部为例. 煤田地质与勘探. 2023(10): 9-18 .
    14. 孙明行,王瑞湖,梁礼革,邓宾,李玉坤,刘德民,管彦武. 广西地热资源特征与潜力评价. 中国地质. 2023(05): 1387-1398 . 本站查看
    15. 潘良云,孟令箭,孙福利,杨文军,张玮,任路,薛慧,周博,杨慧. 山西大同盆地北部地热地质特征及资源潜力. 中国地质. 2023(06): 1632-1645 . 本站查看
    16. 韦小玉,杨力. 碳中和领域中英文研究对比分析——基于VOSviewer和CiteSpace的图谱呈现. 淮南师范学院学报. 2022(02): 84-89 .
    17. 熊亚选,王辉祥,胡子亮,药晨华,宋超宇,丁玉龙. 电石渣骨架定型相变材料储热性能研究. 综合智慧能源. 2022(04): 71-75 .
    18. 陈明星,程嘉梵,周园,丁子津,马海涛. 碳中和的缘起、实现路径与关键科学问题:气候变化与可持续城市化. 自然资源学报. 2022(05): 1233-1246 .
    19. 桑树勋,袁亮,刘世奇,韩思杰,郑司建,刘统,周效志,王冉. 碳中和地质技术及其煤炭低碳化应用前瞻. 煤炭学报. 2022(04): 1430-1451 .
    20. 杜文越,王琪,蒲俊兵,于奭. 漓江流域丰水期外源酸对岩溶化学风化碳汇的影响. 地球学报. 2022(04): 449-460 .
    21. 黄奇波,吴华英,程瑞瑞,李腾芳,罗飞,赵光帅,李小盼. 桂林岩溶区石灰土壤对酸雨缓冲作用的观测及其对岩溶碳汇的指示意义. 地球学报. 2022(04): 461-471 .
    22. 孙明行,王瑞湖,管彦武,刘德民. 广西陆域干热型地热资源潜力估算. 吉林大学学报(地球科学版). 2022(04): 1302-1313 .
    23. 李嘉豪,王怀林,肖前华,陶宇,杨贵中,胡晓. 全球CO_2驱油及封存技术发展现状. 重庆科技学院学报(自然科学版). 2022(04): 103-108 .
    24. 韩玉. “碳达峰、碳中和”背景下化工行业面临的机遇与挑战. 橡塑资源利用. 2022(02): 15-20 .
    25. 陈裕鑫,金虹,刘琛,刘静杰,谢通达,余谦. 钴铁双金属有机骨架及其衍生碳材料的制备与电化学性能研究. 江西科学. 2022(05): 976-979+1003 .
    26. 应恒成,李洪强,张玉敏,靳中原,张家铎,符伟,高磊,安栋召,潘宗栋,汪伟,侯贺晟. 基于SPAC法探测松科二井深层地热储水构造. 地球学报. 2022(06): 909-916 .
    27. 王朋飞,姜重昕,马冰. 国内外氢能发展战略及其重要意义. 中国地质调查. 2021(04): 33-39 .
    28. 方国安,陈勇,赵宝成. 超大城市碳达峰、碳中和的地质工作路径探索——以上海市为例. 中国国土资源经济. 2021(12): 29-36 .
    29. 王欢,马冰,贾凌霄,于洋,胡嘉修,王为. 碳中和目标下关键矿产在清洁能源转型中的作用、供需分析及其建议. 中国地质. 2021(06): 1720-1733 . 本站查看

    Other cited types(38)

Catalog

    Article views (4096) PDF downloads (5952) Cited by(67)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return