• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
WANG Huan, MA Bing, JIA Lingxiao, YU Yang, HU Jiaxiu, WANG Wei. The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations[J]. GEOLOGY IN CHINA, 2021, 48(6): 1720-1733. DOI: 10.12029/gc20210605
Citation: WANG Huan, MA Bing, JIA Lingxiao, YU Yang, HU Jiaxiu, WANG Wei. The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations[J]. GEOLOGY IN CHINA, 2021, 48(6): 1720-1733. DOI: 10.12029/gc20210605

The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations

Funds: 

the project of China Geological Survey DD20190414

More Information
  • Author Bio:

    WANG Huan, female, born in 1985, engineer, engaged in mineral resources management research; E-mail: whuan@mail.cgs.gov.cn

  • Corresponding author:

    MA Bing, female, born in 1967, professor, engaged in mineral resources management research; E-mail: mabing@mail.cgs.gov.cn

  • Received Date: August 18, 2021
  • Revised Date: November 11, 2021
  • Available Online: September 25, 2023
  • Driven by the goal of "carbon neutrality", it is a general trend for the global energy system to develop towards cleaner, low-carbon or even carbon-free. In response to the demand for the transition to clean energy, the methods of statistical comparison, classified summary and comprehensive analysis are adopted to analyze and study the role and demand of critical minerals in department such as batteries, electricity networks, low-carbon power generation and hydrogen. Combined with the problems, such as high geographical concentration of current critical mineral output, long cycle of project development, and decline in resource quality, that cannot meet the needs of clean energy transition, it is proposed to ensure the diversified supply of key minerals, promote technological innovation in all links of the value chain, scale up recycling, enhance supply chain resilience and market transparency. It is suggested to mainstream higher environmental, social and governance standards into the main process, and strengthen international collaboration between producers and consumers.

  • Argonne National Laboratory(ANL). 2020. BatPaC Model Software, https://www.anl.gov/cse/batpac-model-software.
    Ashby M F. 2013. Materials for low-carbon power//Materials and the Environment (2nd ed. ), 349-413, https://doi.org/10.1016/b978-0-12-385971-6.00012-9.
    Ballinger B, Stringer M, Schmeda-Lopez D R, Kefford B, Parkinson B, Greig C, Smart S. 2019. The vulnerability of electric vehicle deployment to critical mineral supply[J]. Applied Energy, 255, 113844, 0306-2619. https://www.sciencedirect.com/science/article/pii/S0306261919315314
    Chen Qishen, Zhang Yanfei, Xing Jiayun, Long Tao, Zheng Guodong, Wang Kun, Cui Bojing, Qin Sheng. 2021. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geosciences, 42(2): 137-144(in Chinese with English abstract).
    Eggert R G. 2011. Minerals go critical[J]. Nature Chemistry, 3(9): 688-691. doi: 10.1038/nchem.1116
    EC JRC (Joint Research Center). 2011. Critical Metals in Strategic Energy Technologies.
    European Union(EU). 2020. Study on the EU's list of Critical Raw Materials.
    Fishman T, Myers R, Rios O, Graedel T E. 2018. Implications of emerging vehicle technologies on rare earth supply and demand in the US[J]. Resources, 7(1): 1-15. doi: 10.3390/resources7010009
    Grandell L, Lehtilaea A, Kivinenm M, Koljonen T, Kihlman S, Lauri L. 2016. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 95: 53-62. doi: 10.1016/j.renene.2016.03.102
    Guo Hui, Li Yaping, Wang Xueming. 2018. Indium, gallium and selenium have become new favorites of new energy materials. Geological prospecting and comprehensive utilization should be strengthened[J]. Geology in China, 45 (1): 205-206(in Chinese).
    Guo Juan, Yan Weidong, Xu Shuguang, Cui Rongguo, Hu Rongbo, Lin Bolei, Zhou Qizhong, Zhou Zhou, Yang Ling. 2021. Discussion on evaluation criteria and list of critical minerals in China[J]. Acta Geosciences, 42 (2): 151-158(in Chinese with English abstract).
    IEA. 2020. World Energy Outlook 2020.
    IEA. 2021. The Role of Critical Minerals in Clean Energy Transitions.
    Li Guangming, Zhang Linkui, Zhang Zhi, Xia Xiangbiao, Liang Wei, Hou Chunqiu. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentation and Tethyan Geology, 41 (2): 351-360(in Chinese with English abstract).
    Lin Weibin, Wu Jiayi. 2021. Three Trends for China's Energy Transition under the Carbon Neutrality Vision[J/OL]. Price Theory and Practice: https://doi.org/10.19851/j.cnki.CN11-1010/F. 2021.07.89(in Chinese with English abstract).
    Liu Shuai. 2019. Supply, demand and future trend of lithium resources in 2018[J]. Geology in China, 46 (6): 1580-1582 (in Chinese).
    Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347-358(in Chinese with English abstract).
    Materials Research Society(MRS), American Physical Society(APS). 2011. Energy Critical Elements: Securing Materials for Emerging Technologies[R]. College Park: Materials Research Society, American Physical Society.
    National Research Council(NRC). 2008. Committeeoncritical Mineral Impacts on the US Economy: Minerals, Critical Minerals, and the US Economy[M]. Washington: National Academies Press.
    Nordelöf A, Grunditz E, Lundmark S, Tillman A, Alatalo M, Thiringer T. 2019. Life cycle assessment of permanent magnet electric traction motors[J]. Transportation Research Part D: Transport and Environment, 67: 263-274. doi: 10.1016/j.trd.2018.11.004
    Qiang Haiyang, Gao Bing, Guo Dongyan, Wang Xinyi. 2021. Options for sustainable development of mining industry under the background of carbon neutrality[J]. China Land and Resources Economy, 34 (4): 4-11(in Chinese with English abstract).
    Sprecher B, Xiao Yanping, Walton A, Speight J, Harris R, Kleijn R, Visser G, Kramer G. 2014. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets[J]. Environmental Science and Technology, 48(7): 3951-3958. doi: 10.1021/es404596q
    Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. Summary of the research progress of China's three rare mineral resources strategy survey[J]. Geology in China, 40(2): 361-370(in Chinese with English abstract).
    Wang Huan. 2021. EU releases list of 30 key minerals and source countries[J]. Geology in China, 48 (2): 674-675 (in Chinese). http://www.mdpi.com/2075-163X/12/1/44
    Wang Peng, Wang Qiaochu, Han Ruru, Tang Binbin, Liu Yu, Cai Wenjia, Chen Weiqiang. 2021. Nexus between low-carbon energy and critical metals: Literature review and implications[J]. Resources Science, 43(4): 669-681(in Chinese with English abstract).
    Xu Deyi, Zhu Yongguang. 2020. Review and outlook of key minerals securiy during energy tranformation[J]. Resources and Industry, 22 (4): 1-11(in Chinese with English abstract).
    Zhang Jialin, Fan Jun, Qin Yuan. 2021. Scientific and technological counter measures for increasing reserves of key minerals in China[J]. Nonferrous Metal Engineering, 11(5): 102-109(in Chinese with English abstract).
    Zhai Mingguo, Hu Bo. 2021. Thinking to state security, internet competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 43(1): 1-11(in Chinese with English abstract).
    陈其慎, 张艳飞, 邢佳韵, 龙涛, 郑国栋, 王琨, 崔博京, 覃升. 2021. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 42(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202102002.htm
    郭慧, 李亚萍, 王学明. 2018. 铟、镓、硒成为新能源材料新宠应加强地质找矿与综合利用[J]. 中国地质, 45(1): 205-206. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180122&flag=1
    郭娟, 闫卫东, 徐曙光, 崔荣国, 胡容波, 林博磊, 周起忠, 周舟, 杨玲. 2021. 中国关键矿产评价标准和清单的探讨[J]. 地球学报, 42(2): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202102004.htm
    李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351-360. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102019.htm
    林卫斌, 吴嘉仪. 2021. 碳中和愿景下中国能源转型的三大趋势[J/OL]. 价格理论与实践, https://doi.org/10.19851/j.cnki.CN11-1010/F. 2021.07.89
    刘帅. 2019. 2018年锂资源供需及未来趋势[J]. 中国地质, 46(6): 1580-1582. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190624&flag=1
    马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347-358. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210201&flag=1
    强海洋, 高兵, 郭冬艳, 王心一. 2021. 碳中和背景下矿业可持续发展路径选择[J]. 中国国土资源经济, 34(4): 4-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ202104002.htm
    汪鹏, 王翘楚, 韩茹茹, 汤林彬, 刘昱, 蔡闻佳, 陈伟强. 2021. 全球关键金属-低碳能源关联研究综述及其启示[J]. 资源科学, 43(4): 669-681. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202104004.htm
    王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001
    王欢. 2021. 欧盟发布30种关键矿产与来源国清单[J]. 中国地质, 48(2): 674-675. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210228&flag=1
    徐德义, 朱永光. 2020. 能源转型过程中关键矿产资源安全回顾与展望[J]. 资源与产业, 22(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU202004001.htm
    张家林, 樊俊, 秦媛. 2021. 我国关键矿产勘查增储的科技应对策略[J]. 有色金属工程, 11(5): 102-109. doi: 10.3969/j.issn.2095-1744.2021.05.016
    翟明国, 胡波. 2021. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 43(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101004.htm
  • Related Articles

    [1]ZHANG Ying, LIU Jingtao, ZHOU Shiyang, LIU Chunyan, YANG Mingnan, ZHANG Yuxi. Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment[J]. GEOLOGY IN CHINA, 2024, 51(3): 1059-1073. DOI: 10.12029/gc20230911002
    [2]YU Yang, WANG Denghong, WANG Wei, GAO Juanqin, WANG Chenghui, YU Feng, LIU Shanbao, Kan Lei, Cen Kuang, QIN Yan. Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20230316002
    [3]ZHAO Chunhong, LIANG Yongping, WANG Zhiheng, TANG Chunlei, SHEN Haoyong. Dynamic characteristics and evolution mechanism of "goaf water" of coal mine in Shandi River Basin, Yangquan, Shanxi Province and its environmental effects on Niangziguan Spring Area[J]. GEOLOGY IN CHINA, 2023, 50(5): 1471-1485. DOI: 10.12029/gc20220327001
    [4]JIN Yang, JIANG Yuehua, DONG Xianzhe, YANG Guoqiang, LIU Hongying, LEI Changzheng, ZHOU Quanping, ZHANG Hong, MEI Shijia, YANG Hui, LÜ Jinsong, LI Yun. Chemical characteristics and eco-environmental effect of groundwater in Ningbo Plain, Zhejiang Province[J]. GEOLOGY IN CHINA, 2022, 49(5): 1527-1542. DOI: 10.12029/gc20220511
    [5]LI Zhuang, SU Jingwen, DONG Changchun, YE Yonghong, YANG Yang. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu area, Ma'anshan City, Anhui Province[J]. GEOLOGY IN CHINA, 2022, 49(5): 1509-1526. DOI: 10.12029/gc20220510
    [6]LIAO Qi-lin, LIU Cong, ZHU Bai-wan, HUA Ming, JIN Yang, WENG Zhi-hua, CHANG Qing, CAI Yu-man. The role and effect of applying attapulgite to controlling Cd-contaminated soil[J]. GEOLOGY IN CHINA, 2014, 41(5): 1693-1704. DOI: 10.12029/gc20140523
    [7]JING Bao-sheng, PANWei-liang, SHAN Jin-zhong, LI Mei-ying. Regional geochemical exploration and ore-prospecting effect in eastern Qimantag, Xinjiang[J]. GEOLOGY IN CHINA, 2014, 41(1): 264-284. DOI: 10.12029/gc20140122
    [8]WEI Xue-ji, SONG Ci-an, DING Ru-fu. Botanogeochemical anomaly characteristics of the Fuhezhong W-Sn polymetallic ore district in Guangxi and their prospecting effectiveness[J]. GEOLOGY IN CHINA, 2011, 38(3): 750-761. DOI: 10.12029/gc20110323
    [9]TIAN Xiao-juan, DU De-ping, PENG Li-e, LI Xing-hong. Bacterial leaching of refractory gold ore[J]. GEOLOGY IN CHINA, 2008, 35(3): 557-563. DOI: 10.12029/gc20080321
    [10]LIU Tie-geng, YE Lin, WANG Xing-li, PAN Zi-ping. Chemical action is an important factor for rock weathering in arid areas—Simulating experiments of evaporation and leaching[J]. GEOLOGY IN CHINA, 2007, 34(5): 815-821. DOI: 10.12029/gc20070508

Catalog

    Article views (3320) PDF downloads (4292) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return