Citation: | Jiang Gaolei, Wang Nai’ang, Li Zhuolun, Li Meng, Su Xianbao, Ning Kai. 2024. Distribution pattern of saline minerals in surface sediments of lakes in the Badain Jaran Desert and its implications for climate−environmental reconstruction[J]. Geology in China, 51(6): 2077−2089. DOI: 10.12029/gc20220304004 |
This paper is the result of environmental geological survey engineering.
It is of great significance to understand the distribution pattern of saline mineral deposits in lake basin for the reconstruction of palaeoenvironment and palaeohydrology. However, the studies on mineral distribution for groundwater recharged lake sediments are few, which hinders the climate−environmental reconstruction in arid area.
The Badain Jaran Desert, located in western Inner Mongolia in a hyper−arid area of China, is characterized by the coexistence of more than 110 perennial lakes and thousands of mega−dunes. More than 90% of the recharge of lakes between mega−dunes is groundwater. In this study, we analyzed the mineral assemblage and distribution characteristics of the surface sediments of eight lakes with different salinity in the Badain Jaran Desert.
(1) For individual lakes, the distribution pattern of saline mineral deposits is similar to those of lakes with runoff recharge, that is, there are more detrital mineral deposits at the edge of the lake, and the saline mineral deposits gradually increase towards the lake interior, and the mineral types gradually change from carbonate to sulfate and chloride. (2) The mineral composition of the sediments near the lake edge is more easily affected by the variation of lake water level and area, while the sediments near the lake center may be affected by the water depth and the groundwater recharge. (3) The shallow lakes are well mixed and are not easily affected by the stratification of lake salinity and water temperature, and the replenishment of fresh water at the bottom. Moreover, the total content of salt minerals has a good linear relationship with the salinity of lake water.
The changes of saline mineral assemblage and its content in the lakes recharged by groundwater can well reflect the changes of lake salinity and can be used as a proxy of climate−environmental reconstruction in desert areas. The lakes in desert are highly sensitive to climate change. The changes of salt mineral assemblage and content in desert lakes can be used as an important basis for discussing environmental problems such as global warming and desertification.
[1] |
Anoop A, Prasad S, Plessen B, Basavaiah N, Gaye B, Naumann R, Menzel P, Weise S, Brauer A. 2013. Palaeoenvironmental implications of evaporativegaylussite crystals from Lonar Lake, central India[J]. Journal of Quaternary Science, 28(4): 349−359.
|
[2] |
Chen J S, Li L, Wang J Y, Barry D A, Sheng X F, Gu W Z, Zhao X, Chen L. 2004. Groundwater maintains dunes landscape[J]. Nature, 432: 459−460. doi: 10.1038/432459a
|
[3] |
Chen Jiansheng, Zhao Xia, Sheng Xuefen, Dong Haizhou, Rao Wenbo, Su Zhiguo. 2006. Formation mechanism of lakes and sand mountains in Badain Jaran desert[J]. Science Bulletin, 51(23): 2789−2796 (in Chinese).
|
[4] |
Chen Li, Wang Nai’ang, Wang Hao, Dong Chunyu, Lu Ying, Lu Junwei. 2012. Spatial patterns of chemical parameters of lakes and groundwater in Badain Jaran Desert[J]. Journal of Desert Research, 32(2): 531−538 (in Chinese with English abstract).
|
[5] |
Chen Tianfei, Wang Xusheng, Hu Xiaonong, Lu Huiting, Gong Yanping. 2015. Clines in salt lakes in the Badain Jaran Desert and their significances in indicating fresh groundwater discharge[J]. Journal of Lake Sciences, 27(1): 183−189 (in Chinese with English abstract). doi: 10.18307/2015.0121
|
[6] |
Chen T Y, Lai Z P, Liu S W, Wang Y X, Wang Z T, Miao X D, An F Y, Yu L P, Han F Q. 2019. Luminescence chronology and palaeoenvironmental significance of limnic relics from the Badain Jaran Desert, northern China[J]. Journal of Asian Earth Science, 177: 240−249. doi: 10.1016/j.jseaes.2019.03.024
|
[7] |
Dong C Y, Wang N A, Chen J S, Li Z L, Chen H B, Chen L, Ma N. 2016. New observational and experimental evidence for the recharge mechanism of the lake group in the Alxa Desert, north−central China[J]. Journal of Arid Environments, 124: 48−61. doi: 10.1016/j.jaridenv.2015.07.008
|
[8] |
Dong Z B, Qian G Q, Lv P, Hu G Y. 2013. Investigation of the sand sea with the tallest dunes on Earth: China’s Badain Jaran Sand Sea[J]. Earth−Science Reviews, 120: 20−39. doi: 10.1016/j.earscirev.2013.02.003
|
[9] |
Fan J W, Xiao J L, Wen R L, Zhang S R, Huang Y, Yue JJ, Wang X, Cui LL, Li H, Xue D S, Liu Y H. 2019. Mineralogy and carbonate geochemistry of the Dali Lake sediments: Implications for paleohydrological changes in the East Asian summer monsoon margin during the Holocene[J]. Quaternary International, 523: 103−112.
|
[10] |
García-Veigas J, Gündoğan I, Helvacı C, Prats E. 2013. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazari trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 294: 315−327.
|
[11] |
Gates J B, Edmunds W M, Darling W G, Ma J Z, Pang Z, Young A A. 2008a. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers[J]. Applied Geochemistry, 23(12): 3519−3534.
|
[12] |
Gates J B, Edmunds W M, Ma J Z, Sheppard P R. 2008b. A 700−year history of groundwater recharge in the drylands of NW China[J]. Holocene, 18: 1045−1054.
|
[13] |
Han L, Li Y, Liu X Q, Yang H. 2020. Paleoclimatic reconstruction and the response of carbonate minerals during the past 8000 years over the northeast Tibetan Plateau[J]. Quaternary International, 553: 94−103. doi: 10.1016/j.quaint.2020.06.009
|
[14] |
Herrero M J, Escavy J I, Schreiber B C. 2015. Thenardite after mirabilite deposits as a cool climate indicator in the geological record: Lower Miocene of central Spain[J]. Climate of the Past, 11(1): 1−13. doi: 10.5194/cp-11-1-2015
|
[15] |
Hu F G, Yang X P. 2016. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 131: 179−192. doi: 10.1016/j.quascirev.2015.10.039
|
[16] |
Hu W F, Wang N A, Zhao L Q, Ning K, Zhang X H, Sun J. 2015. Surface energy and water vapor fluxes observed on a megadune in the Badain Jaran Desert, China[J]. Journal of Arid Land, 7(5): 579−589. doi: 10.1007/s40333-015-0129-6
|
[17] |
Hu Wenfeng, Wang Nai’ang, Zhao Liqiang, Ning Kai, Zhang Hexun, Sun Jie. 2015. Water−heat exchange over a typical lake in Badain Jaran Desert, China[J]. Progress in Geography, 34(8): 1061−1071 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2015.08.013
|
[18] |
Huang J P, Yu H P, Guan X D, Wang G Y, Guo R X. 2016. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6: 166−171.
|
[19] |
Jia B, Si J H, Xi H Y, Qin J. 2021. A characterization of the hydrochemistry and main controlling factors of lakes in the Badain Jaran Desert, China[J]. Water, 13: 2931. doi: 10.3390/w13202931
|
[20] |
Jiang Gaolei, Nie Zhenlong, Liu Zhe, Wang Zhe, Zhao Hua, Yang Jinsong, Shen Jianmei. 2021. OSL ages and its hydrological implications of alluvial−diluvial deposits from the southern margin of Badain Jaran Desert[J]. Earth Science, 46(5): 1829−1839 (in Chinese with English abstract).
|
[21] |
Jiang Gaolei, Nie Zhenlong, Shen Jianmei, Wang Zhe, Zhao Hua, Liu Linjing, Yang Jinsong. 2017. Research progress of Quaternary environment of Badain Jaran Desert[J]. Marine Geology & Quaternary Geology, 37(1): 141−149 (in Chinese with English abstract).
|
[22] |
Jiang G L, Wang N A, Mao X, Zhao H, Liu L J, Shen J M, Nie Z L, Wang Z. 2021. Hydrological evolution of a lake recharged by groundwater in the Badain Jaran Desert over the past 140 years[J]. Frontiers in Earth Science, 9: 721724.
|
[23] |
Jin Zhangdong. 2011. Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J]. Journal of Earth Sciences and Environment, 23(1): 34−45 (in Chinese with English abstract).
|
[24] |
Lai Tingting, Wang Nai’ang, Huang Yinzhou, Zhang Jianming, Zhao Liqiang, Xu Mingshan. 2012. Seasonal changes of lake in Tengery Desert of 2002[J]. Journal of Lake Science, 24(6): 957−964 (in Chinese with English abstract). doi: 10.18307/2012.0620
|
[25] |
Li J F, Liu X Q. 2018. Orbital− and suborbital−scale changes in the East Asian summer monsoon since the last deglaciation[J]. The Holocene, 28(8): 1216−1224. doi: 10.1177/0959683618771479
|
[26] |
Li Kezu, Cao Le, Meng Lingqun, Liu Xuequan, Yan Dongming. 2018. Bathymetric survey and thermal stratification of Lake Cherigele in the Badain Jaran Desert[J]. Journal of Arid Land Resources and Environment, 32(12): 137−144 (in Chinese with English abstract).
|
[27] |
Li Z L, Chen Q J, Zhang C, Yu Q J, Dong S P, Zhao L Q, Wang N A. 2019. Environmental significance of the chemical composition of sediments in groundwater−recharged lakes of the Badain Jaran Desert, NW China[J]. Geochemistry, Geophysics, Geosystems, 20: 1026−1040.
|
[28] |
Li Zhuolun, Ma Suhui, Wang Nai’ang, Li Meng, Sun Jiaqi, Wei Fangli. 2015. Impacts of salt lakes area changes in Badian Jaran Desert on saline minerals assemblages[J]. Journal of Salt Lake Research, 23(4): 8−14 (in Chinese with English abstract).
|
[29] |
Li Z L, Wei Z Q, Dong S P, Chen Q J. 2018. The paleoenvironmental significance of spatial distributions of grain size in groundwater−recharged lakes: A case study in the hinterland of the Badain Jaran Desert, northwest China[J]. Earth Surface Processes Landforms, 43: 363−372. doi: 10.1002/esp.4248
|
[30] |
Liang X Y, Zhao L Q, Xu X B, Niu Z M, Zhang W J, Wang N A. 2020. Plant phenological responses to the warm island effect in the lake group region of the Badain Jaran Desert, northwestern China[J]. Ecological Informatics, 57: 101066. doi: 10.1016/j.ecoinf.2020.101066
|
[31] |
Liu X Q, Dong H L, Rech J A, Matsumoto R, Yang B, Wang Y B. 2008. Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene–Holocene[J]. Quaternary Science Reviews, 27(7/8): 867−879.
|
[32] |
Lu H Y, Yi S W, Xu Z W, Zhou Y L, Zeng L, Zhu F Y, Feng H, Dong L N, Zhuo H X, Yu K F, Mason J, Wang X Y, Chen YY, Lu Q, Wu B, Dong Z B, Qu J J, Wang X M, Guo Z T. 2013. Chinese deserts and sand fields in Last Glacial Maximum and Holocene optimum[J]. Chinese Science Bulletin, 58: 1−9.
|
[33] |
Lu Ying, Wang Nai’ang, Li Guipeng, Li Zhuolun, Dong Chunyum, Lu Junwei. 2010. Spatial distribution of lakes hydro−chemical types in Badain Jaran Desert[J]. Journal of Lake Sciences, 22(5): 774−782 (in Chinese with English abstract).
|
[34] |
Lu Ying. 2012. Analysis of Spatiotemporal Variations Characters and the Cause of its Formation of the Badain Jaran Desert Lake[D]. Lanzhou: Lanzhou University, 1−64 (in Chinese with English abstract).
|
[35] |
Ma Suhui, Li Zhuolun, Wang Nai’ang, Ning Kai, Li Meng. 2015. Mineralogical assemblages in surface sediments and its formation mechanism in the groundwater recharged lakes: A case study of lakes in the Badain Jaran Desert[J]. Journal of Lake Sciences, 27(4): 727−734 (in Chinese with English abstract). doi: 10.18307/2015.0422
|
[36] |
Ning Kai, Li Zhuolun, Wang Nai’ang, Sun Jianwei, Shao Wanwan. 2013. Spatial characteristics of grain size and its environmental implication in the Badain Jaran Desert[J]. Journal of Desert Research, 33(3): 642−648 (in Chinese with English abstract).
|
[37] |
Ning K, Wang N A, Lv X N, Li Z L, An R, Zhang LL. 2019. A grain size and n−alkanes record of Holocene environmental evolution from a groundwater recharge lake in Badain Jaran Desert, Northwestern China[J]. The Holocene, 29(6): 1045−1058. doi: 10.1177/0959683619831430
|
[38] |
Pitzer K S. 1972. Thermodynamics of electrolytes. I. Theoretical basis and general equations[J]. Journal of Physical Chemistry, 77(2): 268−277.
|
[39] |
Shen J, Liu X Q, Wang S M, Matsumoto R. 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 136(1): 131−140. doi: 10.1016/j.quaint.2004.11.014
|
[40] |
Wang F, Li Z J, Wang X, Li B F, Chen F H. 2018. Variation and interplay of the Siberian High and westerlies in central−east Asia during the past 1200 kyr[J]. Aeolian Research, 33: 62−81. doi: 10.1016/j.aeolia.2018.05.003
|
[41] |
Wang F, Sun D H, Chen F H, Bloemendal J, Guo F, Li Z J, Zhang Y B, Li B F, Wang X. 2015. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert center and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 139−158.
|
[42] |
Wang Lijuan, Wang Zhe, Liu Min, Shen Jianmei, Nie Zhenlong. 2023. The temperature and precipitation change and its impact on lakes in Badain Jaran Desert over the last 60 years[J]. Geological Bulletin of China, 42(7): 1218−12227 (in Chinese with English abstract).
|
[43] |
Wang Nai’ang, Ma Ning, Chen Hongbao, Chen Xiulian, Dong Chunyu, Zhang Zhenyu. 2013. A preliminary study of precipitation characteristics in the hinterland of Badain Jaran desert[J]. Advances in Water Science, 24(2): 153−160 (in Chinese with English abstract).
|
[44] |
Wang N A, Ning K, Li Z L, Wang Y X, Jia P, M L. 2016. Holocene high lake−levels and pan−period on Badain Jaran Desert[J]. Science China Earth Sciences, 59: 1−10. doi: 10.1007/s11430-015-5198-z
|
[45] |
Wang Tao, Chen Guangting. 2008. Landscape in the West: Desert and Gobi in China[M]. Shanghai: Shanghai Science & Technology Press (in Chinese).
|
[46] |
Wang Z, Wang L J, Shen J M, Nie Z L, Meng L Q, Cao L, Wei S B, Zeng X F. 2021. Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau[J]. China Geology, 4: 421−432.
|
[47] |
Woolway R I, Kraemer B M, Lenters J D, Merchant C J, O’Reilly C M, Sharma S. 2020. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 1(8): 388−403.
|
[48] |
Wu D, Zhou A F, Zhang J W, Chen J H, Li G Q, Wang Q, Chen L, Madsen D, Abbott M, Cheng B, Chen F H. 2020. Temperature−induced dry climate in basins in the northeastern Tibetan Plateau during the early to middle Holocene[J]. Quaternary Science Reviews, 237: 106311. doi: 10.1016/j.quascirev.2020.106311
|
[49] |
Wu Y, Wang N A, Zhao L Q, Zhang Z Y, Chen L, Lu Y, LvX N, Chang J L. 2014. Hydrochemical characteristics and recharge sources of Lake Nuoertu in the Badain Jaran Desert[J]. Chinese Science Bulletin, 59: 886−895. doi: 10.1007/s11434-013-0102-8
|
[50] |
Yan Changzhen, Li Sen, Lu Junfeng, Liu Lichao. 2020. Lake number and area in the Tengger Desert during 1975−2015[J]. Journal of Desert Research, 40(4): 183−189 (in Chinese with English absract).
|
[51] |
Yang X P, Williams M A J. 2003. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China[J]. Catena, 51(1): 45−60. doi: 10.1016/S0341-8162(02)00088-7
|
[52] |
Yin Lihe, Zhang Jun, Zhang Pengwei, Gu Xiaofan, Li Xiaodeng. 2024. Ten questions and visions of groundwater in the Taklimakan Desert: Based on60−year hydrogeological investigation and research[J]. Geology in China, 51(3): 865−880 (in Chinese with English abstract).
|
[53] |
Zhang Jing, Wang Xusheng, Hu Xiaonong, Lu Huiting, Gong Yanping. 2015. The Macro−characteristics of groundwater flow in the Badain Jaran Desert[J]. Journal of Desert Research, 35(3): 774−782 (in Chinese with English abstract).
|
[54] |
Zhang M W, Liu X Q, Yu Z T, Wang Y. 2022. Paleolake evolution in response to climate change since middle MIS 3 inferred from Jilantai Salt Lake in the marginal regions of the ASM domain[J]. Quaternary International, 607: 48−57. doi: 10.1016/j.quaint.2021.06.017
|
[55] |
Zhang M W, Liu X Q. 2020. Climate changes in the Qaidam Basin in NW China over the past 40 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109679.
|
[56] |
Zhang Xinyi, Fan Xiaolu, Tian Mingzhong. 2022. Mineralogical characteristics and its significance of late Pleistocene sediments in the Badain Jaran Desert[J]. Arid Land Geography, 45(6): 1773−1783 (in Chinese with English abstract).
|
[57] |
Zhang Zhonghu, Li Lierong. 2005a. Groundwater Resource of China (Gansu Vol)[M]. Beijing: SinoMaps Press (in Chinese).
|
[58] |
Zhang Zhonghu, Li Lierong. 2005b. Groundwater Resource of China (Xinjiang Vol)[M]. Beijing: SinoMaps Press (in Chinese).
|
[59] |
Zhao H, Li B, Wang X F, Cohen T J, Fan Y X, Yang H Y, Wang K Q, Sheng Y W, Zhan S A, Li S H, Wang T, Wang X L, Chen F H. 2023. Evolution and migration of the highest megadunes on Earth[J]. Global and Planetary Change, 225: 104133. doi: 10.1016/j.gloplacha.2023.104133
|
[60] |
Zheng Mianping, Liu Xifang. 2010. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai−Tibet Plateau, China[J]. Acta Geologica Sinica, 84(11): 1585−1600 (in Chinese with English abstract).
|
[61] |
Zheng Mianping, Zhao Yuanyi, Liu Junying. 1998. Quaternary saline lake deposition and paleoclimate[J]. Quaternary Sciences, 4: 298−307 (in Chinese with English abstract).
|
[62] |
Zhu Jinfeng, Wang Nai’ang, Chen Hongbao, Dong Chunyu, Zhang Hua’an. 2010. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imagery[J]. Progress in Geography, 29(9): 1087−1098 (in Chinese with English abstract).
|
[63] |
Zhu Zhenda. 1980. An Introduction to the Desert in China[M]. Beijing: Science Press (in Chinese).
|
[64] |
陈建生, 赵霞, 盛雪芬, 董海洲, 饶文波, 苏治国. 2006. 巴丹吉林沙漠湖泊群与沙山形成机理研究[J]. 科学通报, 51(23): 2789−2796. doi: 10.3321/j.issn:0023-074X.2006.23.014
|
[65] |
陈立, 王乃昂, 王浩, 董春雨, 陆莹, 路俊伟. 2012. 巴丹吉林沙漠湖泊与地下水化学参数初步研究[J]. 中国沙漠, 32(2): 531−538.
|
[66] |
陈添斐, 王旭升, 胡晓农, 卢会婷, 巩艳萍. 2015. 巴丹吉林沙漠盐湖跃层对地下淡水排泄的指示作用[J]. 湖泊科学, 27(1): 183−189. doi: 10.18307/2015.0121
|
[67] |
胡文峰, 王乃昂, 赵力强, 宁凯, 张洵赫, 孙杰. 2015. 巴丹吉林沙漠典型湖泊湖气界面水−热交换特征[J]. 地理科学进展, 34(8): 1061−1071.
|
[68] |
姜高磊, 聂振龙, 刘哲, 王哲, 赵华, 杨劲松, 申建梅. 2021. 巴丹吉林沙漠南缘冲洪积物的光释光年代及其水文学意义[J]. 地球科学, 46(5): 1829−1839.
|
[69] |
姜高磊, 聂振龙, 申建梅, 王哲, 赵华, 刘林敬, 杨劲松. 2017. 巴丹吉林沙漠第四纪环境研究现状. [J] 海洋地质与第四纪地质, 37(1): 141−149.
|
[70] |
金章东. 2011. 湖泊沉积物的矿物组成、成因、环境指示及研究进展[J]. 地球科学与环境学报, 23(1): 34−45.
|
[71] |
来婷婷, 王乃昂, 黄银洲, 张建明, 赵力强, 许洺山. 2012. 2002年腾格里沙漠湖泊季节变化研究[J]. 湖泊科学, 24(6): 957−964.
|
[72] |
李克祖, 曹乐, 孟令群, 刘学全, 闫冬鸣. 2018. 巴丹吉林沙漠车日格勒湖水深分布与水温分层特征[J]. 干旱区资源与环境, 32(12): 137−144.
|
[73] |
李卓仑, 马素辉, 王乃昂, 李孟, 孙佳琦, 魏芳莉. 2015. 巴丹吉林沙漠盐湖面积变化对湖泊边缘表层沉积物盐类矿物组合影响. 盐湖研究, 23(4): 8−14.
|
[74] |
陆莹, 王乃昂, 李贵鹏, 李卓仑, 董春雨, 路俊伟. 2010. 巴丹吉林沙漠湖泊水化学空间分布特征[J]. 湖泊科学, 22(5): 774−782.
|
[75] |
陆莹. 2012. 巴丹吉林沙漠湖泊水化学时空分布特征及其成因初探[D]. 兰州: 兰州大学, 1−64.
|
[76] |
马素辉, 李卓仑, 王乃昂, 宁凯, 李孟. 2015. 地下水补给型湖泊表层沉积物矿物组成及其形成机制—以巴丹吉林沙漠湖泊群为例[J]. 湖泊科学, 27(4): 727−734.
|
[77] |
宁凯, 李卓仑, 王乃昂, 孙建伟, 邵婉婉. 2013. 巴丹吉林沙漠地表风积砂粒度空间分布及其环境意义[J]. 中国沙漠, 33(3): 642−648. doi: 10.7522/j.issn.1000-694X.2013.00092
|
[78] |
王丽娟, 王哲, 刘敏, 申建梅, 聂振龙. 2023. 近60年间巴丹吉林沙漠气温和降水变化及其对湖泊的影响. 地质通报, 42(7): 1218−1227.
|
[79] |
王乃昂, 马宁, 陈红宝, 陈秀莲, 董春雨, 张振瑜. 2013. 巴丹吉林沙漠腹地降水特征的初步分析[J]. 水科学进展, 24(2): 153−160.
|
[80] |
王涛, 陈广庭. 2008. 西部地表: 中国的沙漠·戈壁[M]. 上海: 上海科学技术文献出版社.
|
[81] |
颜长珍, 李森, 逯军峰, 刘立超. 2020. 1975−2015年腾格里沙漠湖泊面积与数量[J]. 中国沙漠, 40(4): 183−189.
|
[82] |
尹立河, 张俊, 张鹏伟, 顾小凡, 李小等. 2024. 塔克拉玛干沙漠地下水十大问题与展望: 基于于60 年来的水文地质调查研究成果[J]. 中国地质, 51(3): 865−880.
|
[83] |
张竞, 王旭升, 胡晓农, 卢会婷, 巩艳萍, 万力. 2015. 巴丹吉林沙漠地下水流场的宏观特征[J]. 中国沙漠, 35(3): 774−782.
|
[84] |
张新毅, 范小露, 田明中. 2022. 巴丹吉林沙漠晚更新世沉积物矿物学特征及其指示意义. 干旱区地理, 45(6): 1773−1783.
|
[85] |
张宗祜, 李烈荣. 2005a. 中国地下水资源(甘肃卷)[M]. 北京: 中国地图出版社.
|
[86] |
张宗祜, 李烈荣. 2005b. 中国地下水资源(新疆卷)[M]. 北京: 中国地图出版社.
|
[87] |
郑绵平, 刘喜方. 2010. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 84(11): 1585−1600.
|
[88] |
郑绵平, 赵元艺, 刘俊英. 1998. 第四纪盐湖沉积与古气候[J]. 第四纪研究, (4): 298−307.
|
[89] |
朱金峰, 王乃昂, 陈红宝, 董春雨, 张华安. 2010. 基于遥感的巴丹吉林沙漠范围与面积分析[J]. 地理科学进展, 29(9): 1087−1094.
|
[90] |
朱震达. 1980. 中国沙漠概论[M]. 北京: 科学出版社.
|
1. |
李全聪,雷国良,赵晖,朱芸,孙婉婷,于源,江戈平. 巴丹吉林沙漠腹地盐湖碳酸盐同位素特征及其环境意义. 干旱区地理. 2025(02): 247-256 .
![]() |