Citation: | Zhang Yu, Xu Zongheng, Zha Linglong, Chen Yunying, Tao Zhenpeng. 2024. Grain size characteristics and sedimentary history reconstruction of the Xiayuan ancient landslide−dammed lake in Yongsheng County, Yunnan Province, based on different calculation methods[J]. Geology in China, 51(5): 1761−1775. DOI: 10.12029/gc20220413004 |
This paper is the result of environmental geological survey engineering.
The cascade of disasters caused by landslide−dammed lakes is highly destructive, with its formation and outburst processes significantly influenced by the external environment. The sediment within the dammed−lake serves as a valuable tool for documenting the entire lifecycle of thedammed−lake, offering important insights into paleoenvironment and paleoclimate. Utilizing the most effective analytical methods to interpret this sediment can aid in reconstructing the sediment deposition process and understanding changes in paleoenvironment.
Through sediment sampling for field investigation and laboratory analysis, the suitability of statistical characteristics of dammed lake sediments is assessed using graphical and moment methods. The sediment environment of the dammed lake is reconstructed by analyzing particle size in conjunction with organic matter content, allowing for the restoration of the development process of the dammed lake.
(1) The stratified sediment sequence of the dammed lake sediment is distinct, representing a monogenic hydrodynamic lacustrine sediment with consistent material sources rather than polygenic sediment. Analysis of the organic matter and sediment grain size variations indicates that the dammed lake has undergone four cycles of wet−dry periods, with at least three instances of blockage−overflow deposition processes resulting from the combination of climatic and geological factors. The estimated sedimentary cycle period is approximately 1750 a. It is suggested that the sedimentation history is a consequence of prolonged and intricate activities within the fault zone, as well as the combined influence of climate and river dynamics. (2) The statistical analysis results from the graphical method and the moment method indicate a high level of agreement in assessing the average grain size and sorting coefficient, suggesting that they are interchangeable. However, the partial kurtosis values obtained from the moment method are greater than those from the graphical method, necessitating a linear adjustment for practical application. Additionally, deviations from statistical expressions are observed in the skewness and kurtosis due to the reference value description.
The grain size distribution of the sediment from the dammed lake is straightforward and easily calculated, making it convenient for comparison with other sediment types. The graphical method is suggested for these calculations. The findings indicate that the grain size characteristics offer valuable insights into understanding the deposition and outburst processes of dammed lake, as well as the response of landslide disasters to climate change. This information can serve as a theoretical foundation for reconstructing the paleoenvironment and paleoclimate of the dammed lake during its deposition phase.
[1] |
Cai Guofu, Fan Daidu, Shang Shuai, Wu Yijing, Shao Lei. 2014. Difference in grain−size parameters of tidal depositsderived form the graphic and its potential causes[J]. Marine Geology and Quaternary Geology, 34(1): 195−204 (in Chinese with English abstract).
|
[2] |
Chen Jing'an, Wang Guojiang, Zhang Feng, David Dian Zhang, Huang Guirong. 2003. Environmental records of lake sediments at different time scales— Taking sediment particle size as an example[J]. Science in China (Series D: Earth Science), 33(6): 563−568 (in Chinese with English abstract).
|
[3] |
Chen Song, Chen Jian, Qiao Chunsheng, Ma Junxue, Liu Chao. 2017. Application of graphic and moment methods on the analysis of particle sizes of dam–break accumulations by Xuelongnang ancient landslide lake in the upper Jinsha river[J]. Geoscience, 31(6): 1278–1283(in Chinese with English abstract).
|
[4] |
Chen Yong. 2015. Natural Disasters (4th Edition)[M]. Beijing: Beijing Normal University Press(in Chinese with English abstract).
|
[5] |
Cui Peng, Han Yongshun, Chen Xiaoqing. 2009. Distribution and risk analysis of dammed lakes by Wenchuan Earthquake[J]. Journal of Sichuan University(Engineering Science Edition), 41(3): 35−42 (in Chinese with English abstract).
|
[6] |
Dufresne A, Ostermann M, Preusser F. 2018. River–damming, Late–Quaternary rockslides in the Ötz Valley region(Tyrol, Austria)[J]. Geomorphology, 310: 153−167. doi: 10.1016/j.geomorph.2018.03.012
|
[7] |
Fan X M, Dufresne A, Whiteley J, Yunus A P, Subramanian S S, Okekee C A U, P´anek T, Hermanns R L, Peng M, Strom A, Havenith H, Dunning S, Wang G H, Stefanelli C T. 2021. Recent technological and methodological advances for the investigation of landslide dams[J]. Earth–Science Reviews, 218: 103646
|
[8] |
Folk R L, Ward W C. 1957. Brazos River Bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 27(1): 3−26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
|
[9] |
Fu Lili, Feng Xiuli, Yang Xuhui. 2011. The responses of grain–size parameters to grade interval[J]. Periodical of Ocean University of China, 41(9): 83−89 (in Chinese with English abstract).
|
[10] |
Jia Jianjun, Gao Shu, Xue Yunchuan. 2002. Grain–size parameters derived from graphic and moment methods: A comparative study[J]. Oceanologia et Limnologia Sinica, 33(6): 577−582 (in Chinese with English abstract).
|
[11] |
Li Gaocong, Li Zhiqiang, Zhu Bingbing, Zhang Huiling, Zeng Chunhua. 2020. Comparative study on grain–size parameters of marine sediment derived from graphic and moment methods[J]. Journal of Guangdong Ocean University, 40(6): 96−101 (in Chinese with English abstract).
|
[12] |
Li Qiankun. 2011. The Zhaizicun Landslide in Jinsha Rive and its Deposits of Landslide–Dammed Lake[D]. Kunming: Kunming University of Science and Technology, 1–77(in Chinese with English abstract).
|
[13] |
Li Qiankun, Xu Zemin, Zhang Jiaming. 2011. The ancient landslide and dammed lake found in the Jinsha River near Zhaizicun, Yongsheng, Yunnan, China[J]. Journal of Mountainous Sciences, 29(6): 729−737 (in Chinese with English abstract).
|
[14] |
Li Zhiliang, Du Xiaoru. 2008. Comparison of methods solving sediment particle size paramters[J]. Journal of Yangtze River Scientific Research Institute, 25(4): 16−19 (in Chinese with English abstract).
|
[15] |
Liu Haili, Han Zhiyong, Li Xusheng, Fang Yingsan. 2012. Influence of pretreatments on grain–sizedistribution of the red earth in Southern China: A case study on the quaternary red earth profile in Xuancheng, Anhui Province[J]. Quaternary Geology, 32(2): 162−165 (in Chinese with English abstract).
|
[16] |
Liu Tao, Cui Gaosong, Wang Mo. 2012. The comparative study of mean grain–size derived[J]. Hydrographic Surveying and Charting, 32(3): 8−10,14 (in Chinese with English abstract).
|
[17] |
Liu Zhijie, Long Haiyan. 2009. Comparing study on the grain–size parameters estimated from the graphical method and the moment method of the sediments from South China Sea[J]. Periodical of Ocean University of China, 39(2): 313−316, 336 (in Chinese with English abstract).
|
[18] |
Lu Lianzhan, Shi Zhengtao. 2010. Analysis for sediment grain size parameters of connotations and calculation method[J]. Environmental Science and Management, 35(6): 54−60 (in Chinese with English abstract).
|
[19] |
Ma Qianqian, Xiao Jianhua, Yao Zhengyi. 2020. A comparative study on the three calculation methods of grain–size parameters for Aeolian sediments[J]. Journal of Desert Research, 40(4): 95−102 (in Chinese with English abstract).
|
[20] |
Mao Longjiang, Pang Jiangli, Liu Xiaoyan. 2007. Comparative study on grain–size parameters of Xiashu loess derived from graphic and moment methods in Nanjing[J]. Journal of Shaanxi Normal University(Natural Science Edition), 35(3): 95−99 (in Chinese with English abstract).
|
[21] |
Peng C, Yin Z Q, Zhang X J, Shao H, Pang M F. 2023. A comparative study of the main factors controlling geohazards induced by seismic events in Western China since the Wenchuan earthquake[J]. China Geology, 6(1): 70−84.
|
[22] |
Qi Lin, Wang Yan, Cai Yao, Qiao Yansong, Yao Haitao, Yang Shuaibin, Bai Wenbin. 2020. Paleoclimatic and paleo–environmental evolution recorded by the aeolian sand–paleosol sequence in the Zoigê basin[J]. Journal of Geomechanics, 26(2): 244−251 (in Chinese with English abstract).
|
[23] |
Ran Tao, Xu Ruge, Zhou Hongfu, Zhang Jinghua, Chen Hao, Wang Yuke, Sun Jie, Cui Yanzong. 2024. Type, formation mechanism and distribution regularity of landslides in the deeply–incised valley area of Yalong River basin: A case study of Zituoxi–Malangcuo river section[J]. Geology in China, 51(2): 511−524 (in Chinese with English abstract).
|
[24] |
Shen Man. 2014. Earthquake Information Study for Paleo–dammed Lake at Minjiang River Upstream[D]. Chengdu: Chengdu University of Technology, 1−128(in Chinese with English abstract).
|
[25] |
Shen Tong, Huang Zhiquan, Song Shuaiqo, Zheng Chao, Yuan Yue, Liu Heng, Wu Xuyang, Chu Yapei. 2023. Formation mechanism and motion pro–cesses of the Aizigou giant paleolandslide, Jinshajiang river[J]. Acta Seismologica Sinica, 45(6): 1091−1110 (in Chinese with English abstract).
|
[26] |
Sun Qianli, Zhou Jie, Xiao Jule. 2001. Grain–size characteristics of lake Daihai sediments and its paleaoenvironment significance[J]. Marine Geology and Quaternary Geology, 21(1): 93−95 (in Chinese with English abstract).
|
[27] |
Sun X Y, Zhang R J, Huang W, Sun A, Lin L J, Xu H G, Jiang D C. 2019. The response between glacier evolution and eco–geological environment on the Qinghai–Tibet Plateau[J]. China Geology, 2(1): 1−7. doi: 10.31035/cg2018078
|
[28] |
Tao Min, Deng Shan, Wang Tingle, Yuan Jinzhao, Xiao Shangbin. 2011. The difference between moment method and graphic method for calculating grain–size parameters of sediments in mountain streams[J]. Journal of Three Gorges University (Natural Science), 33(6): 27−32 (in Chinese with English abstract).
|
[29] |
Wan Feipeng, Yang Weimin, Qiu Zhanlin, Xiang Lingzhi, Qu Jingkai, Wu Jihuan, Zhang Tiantian. 2023. Disaster mechanism and evolution of Nagune Gully landslide–debris flow disaster chain in Minxian County, Gansu Province[J]. Geology in China, 50(3): 911−925 (in Chinese withEnglish abstract).
|
[30] |
Wang Gaofeng, Li Gang, Sun Xiangdong, Li Hao, Tian Yuntao, Dong Hanchuan, Gao Youlong, Xu Youning, Wang Hongde, Li Ruidong. 2024. Preliminary study on the“point–surface dual control” model of geological hazard risk in typical mountainous towns in Gansu Province[J/OL]. Geology in China, 1−21[2024−09−03]. http://kns.cnki.net/kcms/detail/11.1167.p.20230505.0935.004.html.
|
[31] |
Wang Junbo, Ju Jianting, Zhu Liping. 2007. Comparison of lake sediment grain size results measured by two laser diffraction particlesize analyzers[J]. Journal of Lake Science, 19(5): 509−515 (in Chinese with English abstract). doi: 10.18307/2007.0503
|
[32] |
Wang H, Cui P, Liu D Z, Liu W M, Nazir A B, Wang J, Zhang G T, Lei Y. 2019. Evolution of a landslide–dammed lake on the southeastern Tibetan Plateau and its influence on river longitudinal profiles[J]. Geomorphology, 343: 15−32. doi: 10.1016/j.geomorph.2019.06.023
|
[33] |
Wang H Y, Wang P, Hu G, Ge Y K, Yuan R M. 2021. An Early Holocene river blockage event on the western boundary of the Namche Barwa Syntaxis, southeastern Tibetan Plateau[J]. Geomorphology, 395: 107990 doi: 10.1016/j.geomorph.2021.107990
|
[34] |
Wang Li, Li Xi'an, Hong Bo, Zhao Ning, Lin Lincui. 2018. Experimental study on the effect of pretreating method on grain size distribution pattern of Malan Loess[J]. Earth and Environment, 46(2): 210−217 (in Chinese with English abstract).
|
[35] |
Wang P F, Chen J, Dai F C, Long W, Xu C, Sun J M, Cui Z J. 2014. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 217: 193−203. doi: 10.1016/j.geomorph.2014.04.027
|
[36] |
Wang Xiaoqun. 2009. The Environmental Geological Information in the Sediments of Diexi Ancient Dammed Lake on the Upstream of the Minjiang River in Sichuan Province, China[D]. Chengdu: Chengdu University of Technology, 1−116 (in Chinese with English abstract).
|
[37] |
Wang Xiaoqun, Wang Lansheng, Shen Junhui. 2010. Granularity analysis of sedments in Diexi Ancient Dammed Lake on the upstream of MinJiang River[J]. Journal of Engineering Geology, 18(5): 677−684 (in Chinese with English abstract).
|
[38] |
Wang Xiaoqun, Wang Lansheng. 2013. The pollen and spore characteristics of the Diexi Ancient Dammed Lake on the upstream of Minjiang River[J]. Earth Science—Journal of China University of Geosciences, 38(5): 975−982 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.095
|
[39] |
Wang Ying. 2019. Landslide–dammed Lake Deposits And Landslide Hazards in Landslide–dammed Lake Deposits And Landslide Hazards in Qiaojia–Dongchuan Section of Jinsha River[D]. Beijing: Institute of Geology, China Earthquake Administration, 1–122(in Chinese with English abstract).
|
[40] |
Xia Yinzhen, Liu Weiming, Lai Zhongping, Hu Kaiheng, Zhu Zhengfeng, Wang Hao, Zhang Xinbao, Cao Guangchao. 2017. Age of paleo–landslide–dammed lake at Shiguang–dong in Dadu Rive[J]. Journal of Earth Environment, 8(5): 419−426 (in Chinese with English abstract).
|
[41] |
Xie Zuobin, Xiang Fang, Xu Qiang, Wang Yunsheng, Wang Zhuo, Luo Chao, Chen Xijie. 2024. Characteristics of ancient Aniangzhai barrier lake in upper reaches of Dadu River[J]. Journal of Chengdu University of Technology (Natural Science Edition), 51(3): 449−464 (in Chinese with English abstract).
|
[42] |
Xu H, Chen J, Cui Z J, Chen R C. 2019. Sedimentary facies and depositional processes of the Diexi ancient dammed lake, Upper Minjiang River, China[J]. Sedimentary Geology, 398: 105583.
|
[43] |
Xu Shujian, Pan Baotian, Zhang Hui, Li Qiong. 2005. Grain size parameters of loess–palaeosol deposits from graphic and moment methods: A comparative study[J]. Arid Land Geography, 28(2): 194−198 (in Chinese with English abstract).
|
[44] |
Xu Xingyong, Yi Liang, Yu Hongjun, Li Naisheng, Shi Xuefa. 2010. The differences of grain–size parameters estimated with graphic and moment methods in coastal sediments[J]. Acta Oceanolgica Sinica, 32(2): 80−86 (in Chinese with English abstract).
|
[45] |
Xu Zemin. 2011. Deposits of Zhaizicun landslide–dammed lake along Jinsha River and its implication for the genesis of Xigeda Formation[J]. Geological Review, 57(5): 675−686 (in Chinese with English abstract).
|
[46] |
Yang Q Y, Guan M F, Peng Y, Chen H Y. 2020. Numerical investigation of flash flood dynamics due to cascading failures of natural landslide dams[J]. Engineering Geology, 276: 105765 doi: 10.1016/j.enggeo.2020.105765
|
[47] |
Yu Xiaoxiao, Gu Dongqi, Yan Wenwen, Du Jun, Liu Shihao. 2014. The response of sedimentary characteristics and sedimentary environment of typical cape bay beaches and Shaba lagoon beaches in Shandong Peninsula[C]//The 13th National Paleogeography Collection of Abstracts of Academic Conference Papers on Science And Sedimentology, 57(in Chinese with English abstract).
|
[48] |
Yuan Hongqi, Wang Lei, Yu Yinghua, Zhang Dongjie, Xu Fengming, Liu Haitao. 2019. Review of sedimentary particle size analysis methods[J]. Journal of Jilin University(Earth Science Edition), 49(2): 380−393 (in Chinese with English abstract).
|
[49] |
Zeng Fangming, Zhang Ping. 2015. Composition analysis of organic from some stages of potash fertilizer production in the qarhan salt lake[J]. Journalof Salt Lake Research, 23(3): 1−4, 22 (in Chinese with English abstract).
|
[50] |
Zha Linglong, Xu Zongheng, Zhang Yu. 2022. Effects of different pretreatment methods on grain size characteristics of sediments from a landslide−dammed lake based on Mastersizer 2000[J]. Quaternary Sciences, 42(6): 1643−1654 (in Chinese with English abstract).
|
[51] |
Zhang Kun, Li Jie, Xiong Jianglan, Guan Bangjin. 2017. Research on the temporal and spatial distribution of rainfall and runoff trends in the Sangyuan River Basin[J]. Yangtze River, 48(S2): 76−80 (in Chinese).
|
[52] |
Zhang T L, Zhou A G, Sun Q, Wang H S, Wu J B, Liu Z H. 2020. Hydrological response characteristics of landslides under typhoon–triggered rainstorm conditions[J]. China Geology, 3(3): 455−461.
|
[53] |
Zhu Sainan, Yin Yueping, Tie Yongbo, Salan Peng, Gao Yanchao, He Yu, Zhao Hui. 2024. Deformation characteristics and reactivation mechanism of giant ancient landslide in Wumeng Mountain area of northeast Yunnan Province: A case study of the Daguan ancient landslide [J/OL]. Chinese Journal of Geotechnical Engineering, 1−10[2024−09−03]. http://kns.cnki.net/kcms/detail/32.1124.TU.20240522.0847.004.html.
|
[54] |
Zhu Xiaomin. 2008. Sedimentary Petrology (4thEdition)[M]. Beijing: Petroleum Industry Press.
|
[55] |
蔡国富, 范代读, 尚帅, 吴伊婧, 邵磊. 2014. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质, 34(1): 195−204.
|
[56] |
陈敬安, 万国江, 张峰, David Dian Zhang, 黄荣贵. 2003. 不同时间尺度下的湖泊沉积物环境记录−以沉积物粒度为例[J]. 中国科学(D辑: 地球科学), 33(6): 563−568.
|
[57] |
陈松, 陈剑, 乔春生, 马俊学, 刘超. 2017. 图解法与矩值法在金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积物粒度分析中的应用[J]. 现代地质, 31(6): 1278−1283. doi: 10.3969/j.issn.1000-8527.2017.06.018
|
[58] |
陈颙. 2015. 自然灾害(第四版)[M]. 北京: 北京师范大学出版社.
|
[59] |
崔鹏, 韩用顺, 陈晓清. 2009. 汶川地震堰塞湖分布规律与风险评估[J]. 四川大学学报(工程科学版), 41(3): 35−42.
|
[60] |
付莉莉, 冯秀丽, 杨旭辉. 2011. 沉积物粒度参数和频率曲线对粒级划分的响应[J]. 中国海洋大学学报(自然科学版), 41(9): 83−89.
|
[61] |
贾建军, 高抒, 薛允传. 2002. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼, 33(6): 577−582.
|
[62] |
李高聪, 李志强, 朱士兵, 张会领, 曾春华. 2020. 图解法和矩值法海洋沉积物粒度参数的对比[J]. 广东海洋大学学报, 40(6): 96−101.
|
[63] |
李乾坤. 2011. 金沙江寨子村滑坡及其堰塞湖沉积[D]. 昆明: 昆明理工大学, 1−77.
|
[64] |
李乾坤, 徐则民, 张家明. 2011. 永胜金沙江寨子村古滑坡和古堰塞湖的发现[J]. 山地学报, 29(6): 729−737
|
[65] |
李志亮, 杜小如. 2008. 沉积物粒度参数求解方法的对比[J]. 长江科学院院报, 25(4): 16−19.
|
[66] |
刘海丽, 韩志勇, 李徐生, 房迎三. 2012. 不同前处理方法对南方红土粒度测量的影响−以安徽宣城第四纪红土剖面为例[J]. 海洋地质与第四纪地质, 32(2): 162−165.
|
[67] |
刘涛, 崔高嵩, 王沫. 2012. 图解法和矩值法所求平均粒径应用对比研究[J]. 海洋测绘, 32(3): 8−10, 14.
|
[68] |
刘志杰, 龙海燕. 2009. 南海沉积物图解法和矩值法粒度参数计算及对比[J]. 中国海洋大学学报(自然科学版), 39(2): 313−316, 336
|
[69] |
卢连战, 史正涛. 2010. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理, 35(6): 54−60.
|
[70] |
马茜茜, 肖建华, 姚正毅. 2020. 风成沉积物3种粒度参数计算方法比较[J]. 中国沙漠, 40(4): 95−102.
|
[71] |
毛龙江, 庞奖励, 刘晓燕. 2007. 南京下蜀黄土图解法与矩值法粒度参数对比研究[J]. 陕西师范大学学报(自然科学版), 35(3): 95−99.
|
[72] |
綦琳, 王燕, 蔡遥, 乔彦松, 姚海涛, 杨帅斌, 白文彬. 2020. 若尔盖风成砂–古土壤序列的古气候与古环境记录研究[J]. 地质力学学报, 26(2): 244−251.
|
[73] |
冉涛, 徐如阁, 周洪福, 张景华, 陈浩, 王羽珂, 孙洁, 崔炎宗. 2024. 雅砻江流域深切河谷区滑坡类型、成因及分布规律—以子拖西―麻郎错河段为例[J]. 中国地质, 51(2): 511−524.
|
[74] |
沈曼. 2014. 岷江上游叠溪古堰塞湖沉积物中地震信息研究[D]. 成都: 成都理工大学, 1−128.
|
[75] |
申通, 黄志全, 宋帅奇, 郑超, 袁玥, 刘恒, 吴旭阳, 楚亚培. 2023. 金沙江矮子沟巨型古滑坡形成机制及运动过程研究[J]. 地震学报, 45(6): 1091−1110.
|
[76] |
孙千里, 周杰, 肖举乐. 2001. 岱海沉积物粒度特征及其古环境意义[J]. 海洋地质与第四纪地质, 21(1): 93−95.
|
[77] |
陶敏, 邓山, 王婷乐, 袁金钊, 肖尚斌. 2011. 矩值法和图解法计算山区河流沉积物粒度参数的差异[J]. 三峡大学学报(自然科学版), 33(6): 27−32.
|
[78] |
万飞鹏, 杨为民, 邱占林, 向灵芝, 渠敬凯, 吴季寰, 张田田. 2023. 甘肃岷县纳古呢沟滑坡–泥石流灾害链成灾机制及其演化[J]. 中国地质, 50(3): 911−925. doi: 10.12029/gc20220323005
|
[79] |
王高峰, 李刚, 孙向东, 李浩, 田运涛, 董翰川, 高幼龙, 徐友宁, 王洪德, 李瑞冬. 2024. 甘肃南部山区城镇地质灾害风险双控模式初探[J/OL]. 中国地质, 1−21[2024−09−03]. http://kns.cnki.net/kcms/detail/11.1167.p.20230505.0935.004.html.
|
[80] |
王君波, 鞠建廷, 朱立平. 2007. 两种激光粒度仪测量湖泊沉积物粒度结果的对比[J]. 湖泊科学, 19(5): 509−515. doi: 10.3321/j.issn:1003-5427.2007.05.003
|
[81] |
王力, 李喜安, 洪勃, 赵宁, 李林翠. 2018. 前处理方法对马兰黄土粒度测量影响的实验研究[J]. 地球与环境, 46(2): 210−217.
|
[82] |
王小群. 2009. 岷江上游叠溪古堰塞湖沉积物的环境地质信息研究[D]. 成都: 成都理工大学, 1−116.
|
[83] |
王小群, 王兰生, 沈军辉. 2010. 岷江上游叠溪古堰塞湖沉积物粒度特征及环境意义[J]. 工程地质学报, 18(5): 677−684
|
[84] |
王小群, 王兰生. 2013. 岷江叠溪古堰塞湖沉积物中孢粉特征[J]. 地球科学(中国地质大学学报), 38(5): 975−982.
|
[85] |
王盈. 2019. 金沙江巧家—东川段堰塞湖沉积及滑坡灾害[D]. 北京: 中国地震局地质研究所, 1−122.
|
[86] |
夏银珍, 刘维明, 赖忠平, 胡凯衡, 朱正峰, 王昊, 张信宝, 曹广超. 2017. 大渡河石广东古滑坡堰塞湖沉积物光释光年代研究[J]. 地球环境学报, 8(5): 419−426. doi: 10.7515/JEE201705005
|
[87] |
谢佐彬, 向芳, 许强, 王运生, 王卓, 罗超, 陈熙杰. 2024. 大渡河上游阿娘寨古堰塞湖的发现及其特征[J]. 成都理工大学学报(自然科学版), 51(3): 449−464.
|
[88] |
徐树建, 潘保田, 张慧, 李琼. 2005. 末次冰期旋回风成沉积物图解法与矩值法粒度参数的对比[J]. 干旱区地理, 28(2): 194−198. doi: 10.3321/j.issn:1000-6060.2005.02.011
|
[89] |
徐兴永, 易亮, 于洪军, 李乃胜, 石学法. 2010. 图解法和矩值法估计海岸带沉积物粒度参数的差异[J]. 海洋学报(中文版), 32(2): 80−86.
|
[90] |
徐则民. 2011. 金沙江寨子村滑坡坝堰塞湖沉积及其对昔格达组地层成因的启示[J]. 地质论评, 57(5): 675−686.
|
[91] |
于晓晓, 谷东起, 闫文文, 杜军, 刘世昊. 2014. 山东半岛典型岬湾海滩与沙坝澙湖海滩沉积特征与沉积环境的响应[C]//第十三届全国古地理学及沉积学学术会议论文摘要集(2014), 57.
|
[92] |
袁红旗, 王蕾, 于英华, 张冬杰, 许凤鸣, 刘海涛. 2019. 沉积学粒度分析方法综述[J]. 吉林大学学报(地球科学版), 49(2): 380−393.
|
[93] |
曾方明, 张萍. 2015. 图解法和矩值法计算西台吉乃尔盐湖沉积物粒度参数的差异[J]. 盐湖研究, 23(3): 1−4, 22.
|
[94] |
查玲珑, 徐宗恒, 张宇. 2022. 基于Mastersizer 2000的不同前处理方式对滑坡堰塞湖沉积物粒度特征的影响[J]. 第四纪研究, 42(6): 1643−1654.
|
[95] |
张坤, 李婕, 熊江兰, 官邦锦. 2017. 桑园河流域降雨时空分布与径流趋势变化研究[J]. 人民长江, 48(S2): 76−80.
|
[96] |
朱赛楠, 殷跃平, 铁永波, 撒兰鹏, 高延超, 贺宇, 赵慧. 2024. 乌蒙山区巨型古滑坡变形特征与复活机理研究—以大关古滑坡为例[J/OL]. 岩土工程学报, 1−10[2024−09−03]. http://kns.cnki.net/kcms/detail/32.1124.TU.20240522.0847.004.html.
|
[97] |
朱筱敏. 2008. 沉积岩石学(第4版)[M]. 北京: 石油工业出版社.
|