Citation: | WANG Yan, WANG Denghong, WANG Yonglei, HUANG Fan. Quantitative research on spatial distribution of antimony deposits in China based on geological big data[J]. GEOLOGY IN CHINA, 2021, 48(1): 52-67. DOI: 10.12029/gc20210104 |
Big data is creating a new approach to geological research, pushing traditional qualitative geological research methods to the level of quantitative research. Antimony ore is the traditional preponderant mineral resources in China, but now it depends on import and becomes our critical metal. Based on the geological big data of antimony deposits, our studies summarize the spatial distribution regularity of antimony deposits, specifically reveal the spatial distribution of antimony in grade-Ⅰ, grade-Ⅱ and grade-Ⅲ minerogenetic belts, and quantitatively analysis the metallogenic density and intensity of antimony deposits in the provinces, cities, counties and Ⅲ level metallogenic belts in China. The research shows that antimony deposits are distributed in all metallogenic domains in China, and the south China metallogenic province is the most important one with more than 59% resources reserves in the whole world. Hunan is the province with the largest amount of antimony ore and the largest mineralization intensity in China. According to the statistics of prefectural cities, Hechi City of Guangxi has the largest number of antimony deposits and Loudi City of Hunan has the largest mineralization intensity. According to county level statistics, Hechi City in Guangxi has the largest number of antimony deposits, while Loudi City in Hunan has the strongest ore-forming intensity, up to 3330 t/km2. The statistics of the metallogenic belts shows that the western part (Ⅲ-78) of southern Yangtze uplift is a metallogenic belt with the largest number of antimony deposits and the largest ore-forming density; while, central Hunan-northcentral Guangxi (Ⅲ-86) is a metallogenic belt with the strongest ore-forming intensity in China. With the development of exploration work, the new addition of antimony resources will be transferred to the depth of crisis mines such as Banxi and Longshan in Hunan province and western areas such as Tibet. The focus of geological prospecting and mining development will also move downward and westward.
Anonymous. 2019. The national geological big data platform was upgraded and put online[R]. The People's Daily, 2019.10.14: A13.
|
Beijing Institute of Geology for Mineral Resources, China Nonferrous Metal Industry Corporation. 1987. Major Non-ferrous Metal Minerals Abroad[M]. Beijing:Metallurgical Industry Press, 1-602(in Chinese).
|
Bristol R S, Euliss N H, Booth N L, Burkardt N, Diffendorfer J E, Gesch D B, McCallum B E, Mille D M, Morman S A, Poore B S, Signel R P, Viger R J. 2012. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023[M]. U.S. Geological Survey.
|
Bruce H. Wilkinsoni, Stephen E. Kesler. 2009. Quantitative identification of metallogenic Epochs and provinces:Application to phanerozoic porphyry copper deposits[J]. Economic Geology, 104(5):607-622. doi: 10.2113/gsecongeo.104.5.607
|
Chang Liheng, Zhu Yueqin, Wang Xinqing, Zhang Xuan, Liu Yujiang, Wu shuo. 2018. Construction of minerals knowledge base in big data environment:A case study of tungsten ore[J]. China Mining Magazine, 27(9):93-108(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-mining-magazine_thesis/0201216502436.html
|
Chen Jianping, Li Jing, Cui Ning, Yu Pingping. 2015. The construction and application of geological cloud under the big data background[J]. Geological Bulletin of China, 34(7):1260-1265(in Chinese with English abstract). http://www.researchgate.net/publication/286100097_The_construction_and_application_of_geological_cloud_under_the_big_data_background
|
Chen Jianping, Xiang Jie, Hu Qiao, Yang Wei, Lai Zili, Hu Bin, Wei Wei. 2016. Quantitative geoscience and geological big data development:A review[J]. Acta Geologica Sinica (English Edition), 90(4):1490-1515. doi: 10.1111/1755-6724.12782
|
Ding Jianhua, Yang Yiheng, Deng Fan. 2013. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 40(3):846-858(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI201303017.htm
|
Deng Zhonghua, Li Zhifang. 2013. The evolution of scientific research paradigm:The fourth paradigm of scientific research in the Era of big data[J]. Information and Documentation Services, 4:19-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QBZL201304007.htm
|
Felice Frankel, Rosalind Reid. 2008. Big data:Distilling meaning from data[J]. Nature, 455(4):30. http://www.nature.com/articles/455030a
|
Huang Shaofang, Liu Xiaohong. 2016. Thinking about the application of geological big data and geological information development[J]. China Mining Magazine, 25(8):166-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201608035.htm
|
Li Jingzhe, Zhou Yongzhang, Zhang Jinliang, Wang Shugong, Ding Lin. 2018. Eustatic fluctuations of the neogene K successions of Huizhou Sag:High resolution quantitative analysis and applocation of Bays-Laplace principle with big data[J]. Acta Petrologica Sinica, 34(2):372-382(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201802014.htm
|
Linda G S, Belnap J, Goldhaber M, Goldstein A, Haeussler P J, Ingebritsen S E, Jones J W, Plumlee G S, Thieler E R, Thompson R S, Back J M. 2011. Geology for a Changing World 2010-2020 Implementing The U.S Geological Survey Science Strategy:U.S. Geological Survey Circular 1369[M]. U.S. Geological Survey, 2011.
|
Liu Bo, Wei Liuchun. 2019. Study on metallogenic characteristics of non-ferrous metals mines under the background of large data[J]. World Nonferrous Metals, 5:217-218(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-COLO201905132.htm
|
Liu Jianming, Ye Jie, He Binbin, Zhang Ruibin, Li Yongbing. 2002. Sedex-type antimony deposits in giant antimony metallogenic belt, South China[J]. Mineral Deposits, 21(S):169-171(in Chinese with English abstract).
|
Liu Xuejiao, Liu Su, Peng Siyuan. 2018. The present situation and codemand situation analysis of antimony resources in China[J]. Western Resources, 4:201-203(in China).
|
Luo Jianmin, Wang Xiaowei, Zhang Qi, Song Bingtian, Yang Zhongming, Zhao Yanqing. 2019. Application of geological big data to quantitative target area optimization for regional mineral prospecting in China[J]. Earth Science Frontier, 26(4):76-83(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904011.htm
|
Mei Yanxiong, Pei Rongfu, Yang Defeng, Dai Zixi, Li Jinwen, Xu Congrong, Qu Hongying. 2009. Global metallogenic domains and districts[J]. Mineral Deposits, 28(4):383-389(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200904000.htm
|
Mengyi Ren, Jianping Chen, Ke Shao, Sheng Zhang. 2016. Metallogenic information extraction and quantitative prediction process of seafloor massive sulfide resources in the Southwest Indian Ocean[J]. Ore Geology Reviews, 76:108-121. doi: 10.1016/j.oregeorev.2016.01.008
|
Michael H. Stephenson. 2019. The uses and benefits of big data for geological surveys[J]. Acta Geologica Sinica, 93(supp.1):64-65. http://www.cnki.com.cn/Article/CJFDTotal-DZXW2019S1024.htm
|
Peng Boyang, Chen Youliang, Liu Kun, He Zhongyang, Yuan Wei. 2015. Discussion of antimony distribution feature in Tibet[J]. Acta Mineralogica Sinica, 428-429(in Chinese with English abstract).
|
Song Miaomiao, Li Zhe, Zhou Bin, Li Chaoling. 2014. Cloud computing model for big geological data processing[J]. Applied Mechanics and Material, 475-476:306-311. http://www.scientific.net/AMM.475-476.306
|
Tan Yongjie, Qu Honggang, Wen Min. 2018. On big data of geological survey[J]. Geomatics world, 25(2):7-11(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-chrk201802003.htm
|
Tan Yongjie. 2019. Big Data and Geological Big Data[M]. Beijing:Geological Publishing House (in Chinese).
|
Tony H, Stewant T, Kristin T. 2009. The Fourth Paradigm[M]. Microsoft Press.
|
USGS. 2019. Mineral Commodity Summaries, 2019: U.S. Geological Survey[R].
|
Wang Denghong, Liu Xinxing, Liu Lijun. 2015. Characteristics of big geodata and its application to study of minerogenetic regularity and minerogenetic series[J]. Mineral Deposits, 34(6):1143-1154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201506005.htm
|
Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xu Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqing, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Jiankang, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on the study of regularity of major mineral resources and regional metallogenic regularity in China:A review[J]. Acta Geologica Sinica, 88(12):2176-2191(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201412003&dbcode=CJFD&year=2014&dflag=pdfdown
|
Wang Huaitao, Luo Jianmin, Wang Jinrong, Du Jun, Song Bingtian, Wang Yuxi, Wang Xiaowei, Zhou Yuqi. 2018. Quantitative classification and metallogenic prognosis of basic-ultrabasic rocks based on big data:Taking the Beishan area as an example[J]. Acta Petrologica Sinica, 34(11):3195-3206(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201811005.htm
|
Wang Xiu, Wang Jianping, Liu Chonghao, Zhang Fangfang. 2014. Situation analysis and sustainable development strategy of antimony resources in China.[J]. China Mining Magazine, 23(5):9-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZGKA201405004&dbcode=CJFD&year=2014&dflag=pdfdown
|
Wang Yan, Wang Denghong, Sheng Jifu, Huang Fan, Chen Zhenghui. 2018. Quantitative analysis of metallogenic density and intensity of tungsten in China[J]. China Tungsten Industry, 33(1):17-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGWU201801004.htm
|
Wang Yonglei, Chen Yuchuan, Wang Denghong, Xu Jue, Chen Zhenghui, Liang Ting. 2013. The principal antimony concentration areas in China and their resource potentials[J]. Geology in China, 40(5):1366-1378(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi201305003
|
Wang Yonglei, Xu Jue, Zhang Changqing, Wang Chenghui, Chen Zhenghui, Huang Fan. 2014. Summary of metallogenic regularities of antimony deposits in China[J]. Acta Geologica Sinica, 88(12):2208-2215(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201412005.htm
|
Wu Chonglong, Liu Gang. 2019. Big data and future development of geological science[J]. Geological Bulletin of China, 38(7):1081-1088(in Chinese with English abstract).
|
Wu Yongliang, Jia Zhijie, Chen Jianping, Zhu Yueqin. 2017. Construction and prediction of prospecting model based on big data intelligence[J]. China Mining Magazine, 26(9):79-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZGKA201709017&dbcode=CJFD&year=2017&dflag=pdfdown
|
Xiang Jie, Chen Jianping, Xiao Keyan, Li Shi, Zhang Zhiping, Zhang Ye. 2019. 3D metallogenic prediction based on machine learning:A case study of the Lala copper deposit in Sichuan Province[J]. Geological Bulletin of China, 38(12):2010-2021(in Chinese with English abstract).
|
Xiao Qiming, Zeng Duren, Jin Fuqiu, Yang Mingyue, Yang Zhifang. 1993. Time-space distribution feature and exploration guide of China's Sb-deposits[J]. Gold, 9-14(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173915
|
Xu Zhigang, Chen Yuchuan, Wang Denghong, Chen Zhenghui, Li Houmin. 2008. The Scheme of the Classification of the Minerogenetic Units in China[M]. Beijing:Geological Publishing House, 1-138(in Chinese with English abstract).
|
Yu Pingping, Chen Jianping, Cai Fushan, Zheng Xiao, Yu miao, Xu bin. 2015. Research on model driven quantitative prediction and evaluation of mineral resources based on geological big data concept[J]. Geological Bulletin of China, 34(7):1333-1343(in Chinese with English abstract).
|
Zhang Guolin, Yao Jinyan, Gu Xiangping. 1998. Time and spatial distribution regularities and deposit types of antimony in China[J]. Mineral Resources and Geology, 12(5):306-312(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD805.003.htm
|
Zhao Gongye. 2018. Analysis on the development direction of antimony deposits in China[J]. China Metal Bulletin, 5:17-18(in Chinese).
|
Zhao Pengda. 2019. Characteristics and rational utilization of geological big data[J]. Earth Science Frontiers, 26(4):1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904002.htm
|
Zhou Xiaoxi, Deng Fan, Wan Lin, Yang Jun. 2019. Design and implementation of information management platform for big data of uranium[J]. Coal Geology & Exploration, 47(1):6-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201901002.htm
|
Zhou Yanjing, Li Jianwu, Wang Gaoshang, Xia Ye, Qiu Nanping. 2014. Distribution and development situation of global antimony resources[J]. China Mining Magazine, 23(10):13-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201410005.htm
|
常力恒, 朱月琴, 汪新庆, 张旋, 刘雨江, 吴硕. 2018.大数据环境下的矿产知识库构建:以钨矿为例[J].中国矿业, 27(9):93-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201809018.htm
|
陈建平, 李婧, 崔宁, 于萍萍. 2015.大数据背景下地质云的构建与应用[J].地质通报, 34(7):1260-1265. doi: 10.3969/j.issn.1671-2552.2015.07.002
|
丁建华, 杨毅恒, 邓凡. 2013.中国锑矿资源潜力及成矿预测[J].中国地质, 40(3):846-858. doi: 10.3969/j.issn.1000-3657.2013.03.016
|
邓仲华, 李志芳. 2013.科学研究范式的演化——大数据时代的科学研究第四范式[J].情报资料工作, 4:19-23. doi: 10.3969/j.issn.1002-0314.2013.04.004
|
黄少芳, 刘晓鸿. 2016.地质大数据应用与地质信息化发展的思考[J].中国矿业, 25(8):166-170. doi: 10.3969/j.issn.1004-4051.2016.08.035
|
李景哲, 周永章, 张金亮, 王树功, 丁琳. 2018.惠州凹陷新近系K系列海平面变化定量分析及大数据应用展望[J].岩石学报, 34(2):372-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802014.htm
|
刘波, 韦柳春. 2019.大数据背景下的有色金属矿山成矿特征研究[J].世界有色金属, 5:217-218. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201905132.htm
|
刘建明, 叶杰, 何斌斌, 张瑞斌, 李永兵. 2002.华南巨型锑矿带中的Sedex型锑矿床[J].矿床地质, 21(S):169-171. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1050.htm
|
刘雪娇, 刘朔, 彭思远. 2018.锑矿资源现状及我国锑矿共需形势分析[J].西部资源, 4:201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201804093.htm
|
罗建民, 王晓伟, 张琪, 宋秉田, 杨忠明, 赵彦庆. 2019.地质大数据方法在区域找矿靶区定量优选中的应用[J].地学前缘, 26(4):76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904011.htm
|
梅燕雄, 裴荣富, 杨德凤, 戴自希, 李进文, 徐丛荣, 瞿泓滢. 2009.全球成矿域和成矿区带[J].矿床地质, 28(4):383-389. doi: 10.3969/j.issn.0258-7106.2009.04.001
|
彭渤洋, 陈友良, 刘堃, 何忠痒, 袁为. 2015.西藏地区锑矿成矿规律探讨[J].矿物学报, 428-429. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1306.htm
|
谭永杰, 屈红刚, 文敏. 2018.论地质调查工作大数据[J].地理信息世界. 25(2):7-11. doi: 10.3969/j.issn.1672-1586.2018.02.002
|
谭永杰. 2019.话说大数据与地质大数据[M].北京:地质出版社.
|
王登红, 刘新星, 刘丽君. 2015.地质大数据的特点及其在成矿规律、成矿系列研究中的应用[J].矿床地质, 34(6):1143-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506005.htm
|
王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014.全国重要矿产和区域成矿规律研究进展综述[J].地质学报, 88(12):2176-2191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412003.htm
|
王怀涛, 罗建民, 王金荣, 杜君, 宋秉田, 王玉玺, 王晓伟, 周煜祺. 2018.基于大数据的基性-超基性岩定量分类及成矿预测研究——以北山地区为例[J].岩石学报, 34(11):3195-3206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811005.htm
|
王修, 王建平, 刘冲昊, 张方方. 2014.我国锑资源形势分析及可持续发展策略[J].中国矿业, 23(5):9-13. doi: 10.3969/j.issn.1004-4051.2014.05.004
|
王岩, 王登红, 盛继福, 黄凡, 陈郑辉. 2018.中国钨矿成矿密度和成矿强度的定量分析[J].中国钨业. 33(1):17-31. doi: 10.3969/j.issn.1009-0622.2018.01.004
|
王永磊, 陈毓川, 王登红, 徐珏, 陈郑辉, 梁婷. 2013.中国锑矿主要矿集区及其资源潜力探讨[J].中国地质, 40(5):1366-1378. doi: 10.3969/j.issn.1000-3657.2013.05.003
|
王永磊, 徐珏, 张长青, 王成辉, 陈郑辉, 黄凡. 2014.中国锑矿成矿规律概要[J].地质学报, 88(12):2208-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412005.htm
|
吴冲龙, 刘刚. 2019.大数据与地质学的未来发展[J].地质通报, 38(7):1081-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907001.htm
|
吴永亮, 贾志杰, 陈建平, 朱月琴. 2017.基于大数据智能的找矿模型构建与预测[J].中国矿业, 26(9):79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201709017.htm
|
肖启明, 曾笃仁, 金富秋, 杨明跃, 阳志芳. 1993.中国锑矿床时空分布规律及找矿方向[J].黄金, 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199212001.htm
|
徐志刚, 陈毓川, 王登红, 陈郑辉, 李厚民. 2008.中国成矿区带划分方案[M].北京:地质出版社, 1-138.
|
佚名. 2019.国家地质大数据平台升级上线[N].人民日报, 2019年10月14日13版.
|
于萍萍, 陈建平, 柴福山, 郑啸, 于淼, 徐彬. 2015.基于地质大数据理念的模型驱动矿产资源定量预测[J].地质通报, 34(7):1333-1343. doi: 10.3969/j.issn.1671-2552.2015.07.011
|
向杰, 陈建平, 肖克炎, 李诗, 张志平, 张烨. 2019.基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例[J].地质通报, 38(12):2010-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912010.htm
|
张国林, 姚金炎, 谷相平. 1998.中国锑矿床类型及时空分布规律[J].矿产与地质. 12(5):306-312. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD805.003.htm
|
赵工业. 2018.浅析我国锑业的发展方向[J].中国金属通报, 5:17-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201805007.htm
|
赵鹏大. 2019.地质大数据特点及其合理开发利用[J].地学前缘, 26(4):1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904002.htm
|
中国有色金属工业总公司北京矿产地质研究所. 1987.国外主要有色金属矿产[M].北京:冶金工业出版社, 1-602.
|
周小希, 邓凡, 万林, 杨君. 2019.铀矿大数据综合管理信息平台设计与实现[J].煤田地质与勘探. 47(1):6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201901002.htm
|
周艳晶, 李建武, 王高尚, 夏烨, 邱南平. 2014.全球锑矿资源分布及开发现状[J].中国矿业, 23(10):13-16. doi: 10.3969/j.issn.1004-4051.2014.10.004
|
1. |
何迎迎,王瑞雪,周渊,樊林奎,窦妍. 改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用. 复合材料学报. 2024(02): 735-747 .
![]() | |
2. |
严文泽,刘思为,杨柳毅,曹玉川,安登极,黄光耀. 锰资源现状及开发利用技术进展. 中国锰业. 2024(02): 16-21+26 .
![]() | |
3. |
马驷骏,王静,王鹏. 联合传统测量与InSAR技术的锰矿地表形变预测研究. 中国锰业. 2024(02): 62-66+71 .
![]() | |
4. |
常嘉毅,刘燕青,张争辉. 豫西卢氏县杨树沟锰矿找矿潜力分析. 中国锰业. 2024(02): 27-30+36 .
![]() | |
5. |
林伟志,付成兵,胡平,杨凯旭,曹建新. 铜仁地区菱锰矿矿物学特征及其元素赋存状态研究. 无机盐工业. 2024(06): 73-79 .
![]() | |
6. |
谢配红,补建伟,徐庆方,肖春山,黄胤赫. 遵义市典型锰矿区土壤重金属污染空间分布特征及生态风险评价. 安全与环境工程. 2024(04): 223-235 .
![]() | |
7. |
刘建,李鹏翔,包久荣,徐如磊. 安哥拉kitota锰矿区地质特征及矿床成因. 四川地质学报. 2024(03): 444-448 .
![]() | |
8. |
马杰,王胜蓝,秦启荧,文川勇,李名升,封雪. 基于源导向的锰矿尾矿库周边土壤重金属风险评估. 环境科学. 2024(12): 7166-7176 .
![]() | |
9. |
王佳,李凤杰,张玺华,陈聪,高兆龙. 湘西南黔阳盆地“大塘坡式”锰矿成因分析:以湖南靖州地区为例. 中国地质. 2023(01): 249-263 .
![]() | |
10. |
卫俊. 龙田沟锰矿成矿地质特征及成矿潜力研究. 现代矿业. 2023(04): 26-29 .
![]() | |
11. |
徐欢,张超,秦林,杨绍泽,马鑫. 碳酸锰矿选矿技术研究进展与展望. 中国锰业. 2023(02): 1-6+12 .
![]() | |
12. |
石光耀,王学求,刘东盛,王玮,薛建玲,吕可欣. 中国深层土壤锰地球化学异常空间分布及找矿远景区预测. 地质通报. 2023(06): 978-986 .
![]() | |
13. |
罗伟恢,边亮,宋绵新,罗伟格,聂嘉男,杨敬杰,张娇,张金梅,张琴,张鹏,解鑫. 烧结锰矿酸浸试验. 有色金属(冶炼部分). 2023(08): 17-24 .
![]() | |
14. |
郝海强,刘志远,杨闪,王建国,张明科,谢静博. 激发极化法在西非加纳某锰矿勘查中的应用. 矿产勘查. 2023(07): 1106-1113 .
![]() | |
15. |
符基卓,覃丰,林最近. 广西钦州市麻园-睦家锰矿地质特征及成矿模式研究. 中国锰业. 2023(03): 10-14 .
![]() | |
16. |
向鹏,曾国平,姜军胜,吴发富,王建雄,胡鹏,张继纯,严永祥. 加纳成矿区带划分与勘查开发现状. 地质通报. 2023(08): 1353-1364 .
![]() | |
17. |
徐一帆,董志国,王长乐,张连昌. 神奇而低调的锰——社会生活中的“配角”. 矿床地质. 2023(06): 1310-1318 .
![]() | |
18. |
景涛,赵强,张鹏羽,杨卓. 某低品位锰矿石选矿工艺研究. 中国锰业. 2023(06): 31-35 .
![]() | |
19. |
张红,薛颖,李智平,曹慷峰. 河北省涿鹿县胥家夭锰矿地质特征及成因分析. 华北自然资源. 2022(02): 27-31 .
![]() | |
20. |
李蕾,龙希建. 锰矿石中硅含量测定的氟硅酸钾容量法确认. 中国锰业. 2022(02): 85-89 .
![]() | |
21. |
孙凯,张起钻,朱清,江思宏,任军平,孙宏伟,张航,古阿雷,曾威,王佳营,卢宜冠,董津蒙,张津瑞. 全球锰矿资源特征及供需格局. 矿产勘查. 2022(04): 371-387 .
![]() | |
22. |
任辉,刘敏,王自国,吴昊,毛景文. 我国锰矿资源及产业链安全保障问题研究. 中国工程科学. 2022(03): 20-28 .
![]() | |
23. |
王自国,吴昊,朱利岗. 中央企业锰矿战略布局思考. 中国矿业. 2022(S1): 1-4 .
![]() | |
24. |
李重洋,谭杰,周浩,谢峥,钱振. 某贫菱锰矿精矿浸出及除杂试验研究. 中国锰业. 2022(03): 33-36+67 .
![]() | |
25. |
卢芳,刘树林,金龙,胡容. 低品位锰铁矿烧结杯试验研究. 甘肃冶金. 2022(05): 24-27 .
![]() | |
26. |
孙宏伟,王杰,任军平,左立波,古阿雷,孙双振,贾磊. 非洲中部加丹加-赞比亚地区锰矿床研究现状及找矿方向. 矿产勘查. 2021(02): 390-400 .
![]() | |
27. |
任军平,胡鹏,王杰,王建雄,张航,刘江涛,刘晓阳,曾国平,孙凯,姜军胜,古阿雷,程湘,陈军强,赵凯,吴兴源. 非洲矿业发展概况. 地质学报. 2021(04): 945-961 .
![]() | |
28. |
覃德亮,陈南雄. 2020年全球锰矿及我国锰产品生产简述. 中国锰业. 2021(04): 10-12+21 .
![]() | |
29. |
卢友志,马倩,莫福金,梁远基,秦志祥. 核桃壳还原浸出低品位氧化锰矿石试验研究. 湿法冶金. 2021(05): 377-381 .
![]() | |
30. |
卢友志,王雅梦,赵义. 核桃壳还原浸出软锰矿的动力学. 有色金属(冶炼部分). 2021(12): 28-34 .
![]() | |
31. |
栾卓然,闫领军,陈超,陈喜峰,张伟波,王丰翔,刘景,鲁先科. 非洲锰矿床成矿规律、开发利用与勘查建议. 地质与勘探. 2021(06): 1216-1228 .
![]() |