Citation: | Tong Yunxiao, Yang Junquan, Wang Xue, Tan Kun. 2024. Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield,Shanxi Province based on time series InSAR[J]. Geology in China, 51(1): 170−183. DOI: 10.12029/gc20221215001 |
This paper is the result of environmental geological survey engineering.
Land subsidence is one of the main geological hazards in coal mine area, which seriously affects the sustainable development of mining economy and the safety and stability of residents' life. It is necessary to conduct rapid and efficient monitoring of land subsidence in the mining area.
Taking Datong coalfield as an example, the 31 scenes Sentinel-1 images acquired from January 2020 to December 2021 were used to monitor the land subsidence based on Small Baseline Subset InSAR (SBAS−InSAR) technology. The land subsidence rate and cumulative subsidence results of Datong coalfield were obtained. Moreover, the reliability of the monitoring results was verified using existing research results, and the spatiotemporal variation characteristics and evolution laws of subsidence were analyzed.
The results indicate that the land subsidence in the Datong coalfield is extensively distributed, and its overall distribution of subsidence is basically consistent with the trend of mining management data. The subsidence is mainly distributed in the west of Nanjiao County of Datong City and the junction of Datong City, Huairen City and Shanyin County, among which the land subsidence of Tashan mine is the most severe. The subsidence characteristics of Datong coalfield mainly include the maximum subsidence rate of 168.03 mm/a, the maximum cumulative subsidence amount of 329.12 mm, and the total subsidence area of 270.95 km2. Overall, there is a continuous increase in subsidence, and it takes a significant amount of time to achieve relative stability in surface activities in accordance with this trend.
This study shows the feasibility of InSAR technology in subsidence monitoring in coal mine area, which can provide a new technical for mineral resources management work, and the research results can provide scientific basis for subsidence monitoring and warning, disaster prevention and control, and rational development and utilization of resources in coal mine area.
[1] |
Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience Remote Sensing, 40(11): 2375−2383. doi: 10.1109/TGRS.2002.803792
|
[2] |
Casu F, Manzo M, Lanari R. 2006. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 102(3/4): 195−210.
|
[3] |
Chaussard E, Wdowinski S, Cabral−Cano E, Amelung F. 2014. Land subsidence in central Mexico detected by ALOS InSAR time−series[J]. Remote Sensing of Environment, 140: 94−106. doi: 10.1016/j.rse.2013.08.038
|
[4] |
Chen Qi. 2013. Research on the Imaging Technology of Spaceborne Multimode Synthetic Aperture Radar Research on Rpaceborne Multimode Synthetic Aperture Radar Imaging Technology [D]. Changsha: National University of Defense Technology, 1−158 (in Chinese with English abstract).
|
[5] |
Chen Y, Remy D, Froger J L, Peltier A, Villeneuve N, Darrozes J, Bonvalot S. 2017. Long−term ground displacement observations using InSAR and GNSS at Pitondela Fournaise volcano between 2009 and 2014[J]. Remote Sensing of Environment, 194: 230−247. doi: 10.1016/j.rse.2017.03.038
|
[6] |
Chen Y, Tan K, Yan S, Zhang K, Zhang H, Liu X, Sun Y. 2019. Monitoring land surface displacement over Xuzhou (China) in 2015–2018 through PCA−based correction applied to SAR interferometry[J]. Remote Sensing, 11(12): 1494. doi: 10.3390/rs11121494
|
[7] |
Chen Y, Tong Y, Tan K. 2020. Coal mining deformation monitoring using SBAS−InSAR and offset tracking: A case study of Yu County, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 6077−6087. doi: 10.1109/JSTARS.2020.3028083
|
[8] |
Dai K, Li Z, Tomás R, Liu G, Yu B, Wang X, Stockamp J. 2016. Monitoring activity at the Daguangbao mega−landslide (China) using Sentinel−1 TOPS time series interferometry[J]. Remote Sensing of Environment, 186: 501−513. doi: 10.1016/j.rse.2016.09.009
|
[9] |
Dong J, Zhang L, Tang M, Liao, M, Xu Q, Gong J, Ao M. 2018. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 205: 180−198. doi: 10.1016/j.rse.2017.11.022
|
[10] |
Du Y, Zhang L, Feng G, Lu Z, Sun Q. 2016. On the accuracy of topographic residuals retrieved by MTInSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 1053−1065.
|
[11] |
Ferretti A, Prati C, Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience Remote Sensing, 38(5): 1685−1701.
|
[12] |
Jiang L, Lin H, Ma J, Ma J, Kong B, Wang Y. 2011. Potential of small−baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 115(2): 257−268. doi: 10.1016/j.rse.2010.08.008
|
[13] |
Lanari R, Mora O, Manunta M, Mallorquí J J, Berardino P, Sansosti E. 2004. A small−baseline approach for investigating deformations on full−resolution differential SAR interferograms[J]. Geoscience & Remote Sensing IEEE Transactions on, 42(7): 1377−1386.
|
[14] |
Lee W J, Lu Z, Jung H S, Ji L. 2017. Measurement of small co−seismic deformation field from multi−temporal SAR interferometry: Application to the 19 September 2004 Huntoon Valley earthquake[J]. Geomatics, Natural Hazards and Risk, 8(2): 1241−1257.
|
[15] |
Li G, Lin H, Ye Q. 2018. Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to~ 2012 based on multi−baseline bistatic SAR interferometry[J]. Remote Sensing of Environment, 206: 336−349. doi: 10.1016/j.rse.2017.12.032
|
[16] |
Lippl S, Vijay S, Braun M. 2018. Automatic delineation of debris−covered glaciers using InSAR coherence derived from X−, C−and L−band radar data: A case study of Yazgyl Glacier[J]. Journal of Glaciology, 64(247): 811−821. doi: 10.1017/jog.2018.70
|
[17] |
Liu C, Zhou F, Gao J, Wang J. 2012. Some problems of GPS RTK technique application to mining subsidence monitoring[J]. International Journal of Mining Science and Technology, 22(2): 223−228. doi: 10.1016/j.ijmst.2012.03.001
|
[18] |
Liu Huan, Zhang Yun, Huang Xuhong, Chen Donglei, Yang Junquan, Gao Xuesheng. 2021. Application of remote sensing technology in mining monitoring in midwest major mining area of Inner Mongolia[J]. North China Geology, 44(4): 55−60 (in Chinese with English abstract).
|
[19] |
Liu Qi, Yue Guosen, Ding Xiaobing, Yang Kun, Feng Guangcai, Xiong Zhiqiang. 2019. Temporal and spatial characteristics analysis of deformation along foshan subway using time series InSAR[J]. Geomatics and Information Science of Wuhan University (Information Science Edition), 44(7): 1099−1106 (in Chinese with English abstract).
|
[20] |
Liu Tongyao. 2019. Research on Ground Subsidence Monitoring in Mining Area Based on SBAS−DInSAR Technology [D]. Taiyuan: Taiyuan University of Technology, 1−65 (in Chinese with English abstract).
|
[21] |
Lu Y Y, Ke C Q, Jiang H J, Chen D L. 2019. Monitoring urban land surface deformation (2004–2010) from InSAR, groundwater and levelling data: A case study of Changzhou city, China[J]. Journal of Earth System Science, 128(6): 1−15.
|
[22] |
Ou D, Tan K, Du Q, Chen Y, Ding J. 2018. Decision fusion of D−InSAR and pixel offset tracking for coal mining deformation monitoring[J]. Remote Sensing, 10(7): 1055. doi: 10.3390/rs10071055
|
[23] |
Pan Liangyun, Meng Lingjian, Sun Fuli, Yang Wenjun, Zhang Wei, Ren Lu, Xue Hui, Zhou Bo, Yang Hui. 2023. Geothermal geological characteristics and resource potential in the north of Datong Basin, Shanxi Province[J]. Geology in China, 50(6): 1632–1645 (in Chinese with English abstract).
|
[24] |
Pavez A, Remy D, Bonvalot S, Diament M, Gabalda G, Froger J L, Moisset D. 2006. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring[J]. Remote Sensing of Environment, 100(3): 307−320.
|
[25] |
Qi Xiahng. 2007. The Application of RS in Shanxi Datong Coalfield Geooqic Hazard Investigation [D]. Taiyuan: Taiyuan University of Technology, 1−69 (in Chinese with English abstract).
|
[26] |
Qu Xiaorong. 2019. Distribution characteristics of associated el lements in Middle Jurassic coal in the north of Datong coalfield and their geological significance[J]. Coal Field Geology and Exploration, 47(1): 64−72 (in Chinese with English abstract).
|
[27] |
Tong Yunxiao, Huang Yan, Chen Yu, Tan Kun, Ou Depin, Han Fushun. 2020. Surface subsidence monitoring and spatio−temporal analysis in mining area based on D−InSAR monitoring and space−time analysis of surface subsidence in D−InSAR mining area[J]. Science of Surveying and Mapping, 45(3): 67−73 (in Chinese with English abstract).
|
[28] |
Tong Yunxiao. 2020. Study on Surface Deformation Monitoring in Mining Area and Multi−model Atmospheric Delay Correction of InSAR[D]. Xuzhou: China University of Mining and Technology, 1−85 (in Chinese with English abstract).
|
[29] |
Wang Dongchen. 2015. Analyzing and Evaluating the Changes of Land Cover and Eco−environment of Datong City by Remote Sensing Images City [D]. Nanjing: Nanjing University, 1−84 (in Chinese with English abstract).
|
[30] |
Wang J, Feng L, Davidsson S, Höök, M. 2013. Chinese coal supply and future production outlooks[J]. Energy, 60: 204−214. doi: 10.1016/j.energy.2013.07.031
|
[31] |
Wang Penghui, Xu Yan, Jiao Minglian. 2017. Application of three track method D−InSAR technology in mine settlement monitoring[J]. Mine Surveying, 45(6): 12−14, 18 (in Chinese with English abstract).
|
[32] |
Wang Tao, Liu Jiamei, Li Zetong, Xin Peng, Shi Jusong, Wu Shuren. 2021. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China, 48(1): 21−39 (in Chinese with English abstract).
|
[33] |
Wang Z, Zhang R, Wang X, Liu G. 2018. Retrieving three−dimensional co−seismic deformation of the 2017 MW7.3 Iraq earthquake by multi−sensor SAR images[J]. Remote Sensing, 10(6): 857. doi: 10.3390/rs10060857
|
[34] |
Werner C, Wegmuller U, Strozzi T, Wiesmann A. 2003. Interferometric point target analysis for deformation mapping[C]// IEEE International Geoscience & Remote Sensing Symposium. IEEE, 7: 4362−4364.
|
[35] |
Xia Y, Wang Y, Du S, Liu X, Zhou H. 2018. Integration of D−InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China[J]. Environmental Earth Sciences, 77: 1−19. doi: 10.1007/s12665-017-7169-5
|
[36] |
Xue Shengsheng, Lin Wei, Liu Hongzhe, Zhang Lu, Zhou Xinpeng, Yin Daojin, Zhang Shuangkui. 2021. Geological characteristics and significance of sandstone−shale copper deposits in the northern section of Taihang Mountain [J]. North China Geology, 44(4): 15−22(in Chinese with English abstract).
|
[37] |
Yang Jiantu, Jiang Yanxiang, Zhou Jun, Huang Liren, Lu Xu. 2006. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics, (1): 70−75 (in Chinese with English abstract).
|
[38] |
Yang Kui, Yang Jianbing, Jiang Bingru. 2015. Sentinel−1 satellite overview[J]. Urban Geotechnical Investigation & Surveying, (2): 24−27 (in Chinese with English abstract).
|
[39] |
Yang Z F, Li Z W, Zhu J J, Hu J, Wang Y J, Chen G L. 2016. InSAR−based model parameter estimation of probability integral method and its application for predicting mining−induced horizontal and vertical displacements[J]. IEEE Transactions On Geoscience And Remote Sensing, 54(8): 4818−4832. doi: 10.1109/TGRS.2016.2551779
|
[40] |
Zhang L, Lu Z, Ding X, Jung H S, Feng G, Lee C W. 2012. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin[J]. Remote Sensing of Environment, 117: 429−439. doi: 10.1016/j.rse.2011.10.020
|
[41] |
Zhang Wei. 2021. A Research on Time−Series InSAR Method for Monitoring Land Subsidence in Mining Areas [D]. Beijing: China University of Geosciences (Beijing), 1−70 (in Chinese with English abstract).
|
[42] |
Zhang Wenzhe. 2020. Research on Surface Subsidence Monitoring of Tianjin Based on SBAS−InSAR Technology[D]. Changchun: Jilin University, 1−50 (in Chinese with English abstract).
|
[43] |
Zhang Yao. 2020. Monitoring and Recognition of Datong Coalfield Subsidence Area Based on InSAR Technology [D]. Beijing: China University of Geosciences (Beijing) , 1−66(in Chinese with English abstract).
|
[44] |
Zhao C, Lu Z, Zhang Q, Yang C, Zhu W. 2014. Mining collapse monitoring with SAR imagery data: A case study of Datong mine, China[J]. Journal of Applied Remote Sensing, 8(1): 083574. doi: 10.1117/1.JRS.8.083574
|
[45] |
Zhao F, Mallorqui J, Iglesias R, Gili J A, Corominas J. 2018. Landslide monitoring using multi−temporal SAR interferometry with advanced persistent scatterers identification methods and super high−spatial resolution TerraSAR−X images[J]. Remote Sensing, 10(6): 921. doi: 10.3390/rs10060921
|
[46] |
Zhao Feng. 2016. Study on the Method of Multi−platform SAR Datasets and MTInSAR Technique Based Ground Deformation Monitoring[D]. Xuzhou: China University of Mining and Technology, 1−83 (in Chinese with English abstract).
|
[47] |
Zhu Jianjun, Li Zhiwei, Hu Jun. 2017. InSAR deformation monitoring methods and research progress[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1717−1733 (in Chinese with English abstract).
|
[48] |
陈祺. 2013. 星载多模式合成孔径雷达成像技术研究[D]. 长沙: 国防科学技术大学, 1−158.
|
[49] |
刘欢, 张云, 黄旭红, 陈东磊, 杨俊泉, 高学生. 2021. 遥感技术在内蒙古自治区中西部重点矿区开采监测中的应用[J]. 华北地质, 44(4): 55−60.
|
[50] |
刘琦, 岳国森, 丁孝兵, 杨坤, 冯光财, 熊志强. 2019. 佛山地铁沿线时序InSAR形变时空特征分析[J]. 武汉大学学报(信息科学版), 44(7): 1099−1106.
|
[51] |
刘童谣. 2019. 基于SBAS−DInSAR技术的煤矿地表沉降监测研究[D]. 太原: 太原理工大学, 1−65.
|
[52] |
潘良云, 孟令箭, 孙福利, 杨文军, 张玮, 任路, 薛慧, 周博, 杨慧. 2023. 山西大同盆地北部地热地质特征及资源潜力[J]. 中国地质, 50(6): 1632–1645.
|
[53] |
齐香玲. 2007. 遥感在山西大同煤田地质灾害调查中的应用[D]. 太原: 太原理工大学, 1−69.
|
[54] |
屈晓荣. 2019. 大同煤田北部中侏罗统煤中伴生元素分布特征及其地质意义[J]. 煤田地质与勘探, 47(1): 64−72.
|
[55] |
仝云霄, 黄岩, 陈宇, 谭琨, 欧德品, 韩福顺. 2020. D−InSAR矿区地表沉降监测及时空分析[J]. 测绘科学, 45(3): 67−73.
|
[56] |
仝云霄. 2020. InSAR矿区地表形变监测及大气延迟校正研究[D]. 徐州: 中国矿业大学, 1−85.
|
[57] |
王冬辰. 2015. 大同市土地覆盖与生态环境变化遥感分析与评价[D]. 南京: 南京大学, 1−84.
|
[58] |
王鹏辉, 徐妍, 焦明连. 2017. 三轨法D−InSAR技术在矿区沉降监测中的应用[J]. 矿山测量, 45(6): 12−14, 18.
|
[59] |
王涛, 刘甲美, 栗泽桐, 辛鹏, 石菊松, 吴树仁. 2021. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质, 48(1): 21−39.
|
[60] |
薛生升, 林伟, 刘宏哲, 张璐, 周新鹏, 尹道瑾, 张双奎. 2021. 太行山北段砂页岩型铜矿地质特征及其意义[J]. 华北地质, 44(4): 15−22.
|
[61] |
杨建图, 姜衍祥, 周俊, 黄立人, 路旭. 2006. GPS测量地面沉降的可靠性及精度分析[J]. 大地测量与地球动力学, (1): 70−75.
|
[62] |
杨魁, 杨建兵, 江冰茹. 2015. Sentinel−1卫星综述[J]. 城市勘测, (2): 24−27.
|
[63] |
张玮. 2021. 时序InSAR方法监测矿区地面沉降的研究[D]. 北京: 中国地质大学(北京) , 1−70.
|
[64] |
张文哲. 2020. 基于SBAS−InSAR技术的天津市地表沉降监测研究[D]. 长春: 吉林大学, 1−50.
|
[65] |
张堯. 2020. 基于InSAR技术大同煤田沉陷区的监测与识别[D]. 北京: 中国地质大学(北京) , 1−66.
|
[66] |
赵峰. 2016. 多平台时序InSAR技术的地表形变联合监测方法研究[D]. 徐州: 中国矿业大学, 1−83.
|
[67] |
朱建军, 李志伟, 胡俊. 2017. InSAR变形监测方法与研究进展[J]. 测绘学报, 46(10): 1717−1733.
|