Citation: | Liu Chunyan, Liu Jingtao, Zhu Liang, Zhang Yuxi, Jing Jihong, Huang Guanxing, Zhou Bing, Chen Xi, Xie Fei, Li Bei. 2024. Distribution characteristics, influencing factors and impacts on ecological environment of Fe and Mn in shallow groundwater of Plateau Valley–City: A case study of Xining City[J]. Geology in China, 51(5): 1776−1790. DOI: 10.12029/gc20230307003 |
This paper is the result of hydrogeological survey engineering.
Due to the limitation of terrain conditions, the ecological environment of plateau valley cities is fragile, and the strong human activities have had a severe impact on groundwater. Iron and manganese ions have become the main contribution index of super−class III groundwater in shallow groundwater in Xining, a typical plateau valley city, which seriously threatens the local ecological environment security .and the health of residents. The distribution characteristics and influencing factors of iron and manganese in shallow groundwater in plateau valley cities are deeply explored in order to provide technical support for the prevention and control measures of groundwater pollution and the alleviation of water quality safety problems in this area.
Based on the test results of hydrochemical composition of 144 groups of shallow groundwater samples in Xining city, combined with the geology, landform, land use type, hydrogeological investigation data and the influence of human activities, this paper studies the distribution characteristics and influencing factors of Fe and Mn in shallow groundwater in Xining city.
The over−standard rates of Fe and Mn in shallow groundwater in the study area are 20.98% and 9.79%. Compared with 2012, the contribution rate of Fe and Mn ions to Class Ⅲ groundwater increased by 2 and 3, respectively. The excess rate of Fe and Mn in shallow groundwater of construction land is 1.4 times and 3.47 times higher than that of other land use types, respectively. There are 36 hydrochemical types of shallow groundwater in the study area, and 21 hydrochemical types of groundwater in construction land. Groundwater with high Fe and Mn is mainly enriched in HCO3–Ca·Mg type water and HCO3·SO4–Ca type water. The migration and enrichment of Fe and Mn ions in groundwater are mainly controlled by oxidation−reduction environment, and have no obvious correlation with acid−base conditions, except for the properties of overburden, ground pollution, groundwater runoff conditions.
The increase of Fe and Mn content in groundwater in the study area is mainly caused by the primary sedimentary environment, while the increase of Fe and Mn content in shallow groundwater in local construction land is caused by the primary sedimentary environment and human activities. Therefore, it is necessary to monitor the Fe and Mn content in groundwater in construction land for a long time and formulate corresponding management measures to prevent the increase of Fe and Mn content in shallow groundwater in the future.
[1] |
Adeyeye O, Xiao C L, Zhang Z H, Liang X J. 2020. State, source and triggering mechanism of iron and manganese pollution in groundwater of Changchun, Northeastern China[J]. Environmental Monitoring and Assessment, 192(10): 1−15.
|
[2] |
Chen Yuchuan, Liu Dequan, Tang Yanling, Wang Denghong, Zhou Ruhong, Wang Jinliang, Li Huaqin, Wang Xiaodi. 2007. Study on the Large Mineral Concentration Area of Strategic Solid Minerals in Xinjiang, China[M]. Beijing: Geological Publishing House (in Chinese).
|
[3] |
Carretero S, Kruse E. 2015. Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina[J]. Environmental Earth Sciences, 73(5): 1983−1995. doi: 10.1007/s12665-014-3546-5
|
[4] |
Czernel G, Typek R, Klimek K, Czurylo A, Dawidowicz A L, Gagos̈ M. 2016. Catalytic effect of free iron ions and heme–iron on chromophore oxidation of a polyene antibiotic amphotericin B[J]. Journal of Molecular Structure, 1111: 69−75. doi: 10.1016/j.molstruc.2016.01.052
|
[5] |
Dippong T, Mihali C, Hoaghia M, Cical E, Cosma A. 2019. Chemical modeling of groundwater quality in the aquifer of Seini town–Somes, Plain, Northwestern Romania[J]. Ecotoxicology and Environmental Safety, 168: 88−101. doi: 10.1016/j.ecoenv.2018.10.030
|
[6] |
Degnan J R, Lindsey B D, Levitt J P, Szabo Z. 2020. The relation of geogenic contaminants to groundwater age, aquifer hydrologic position, water type, and redox conditions in Atlantic and Gulf Coastal Plain aquifers, eastern and south–central USA[J]. Science of the Total Environment, 723: 137835. doi: 10.1016/j.scitotenv.2020.137835
|
[7] |
Du Y, Deng Y M, Ma T, Xu Y, Tao Y Q, Huang Y W, Liu R, Wang Y X. 2020. Enrichment of geogenic ammonium in Quaternary alluvial–lacustrine aquifer systems: Evidence from carbon isotopes and DOM characteristics[J]. Environmental Science and Technology, 54(10): 6104−6114. doi: 10.1021/acs.est.0c00131
|
[8] |
Fan Y P, Fang C L. 2020. Evolution process analysis of urban metabolic patterns and sustainability assessment in western China, a case study of Xining city[J]. Ecological Indicators 109: 105784.
|
[9] |
Farina M, Avila D S, Rocha J, Aschner M. 2013. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury[J]. Neurochemistry International, 62(5): 575−594. doi: 10.1016/j.neuint.2012.12.006
|
[10] |
Fei Yang, Yan Xiulan, Liao Xiaoyong, Li Yonghua, Lin Longyong, Shan Tianyu. 2017. Stabilization effects and ecological impacts on As and heavy metal co–contaminated soils stabilized by Fe Mn binary oxides[J]. Journal of Agro–Environment Science, 36(1): 57−65 (in Chinese with English abstract).
|
[11] |
Gao Z Y, Zhang H F, Yang X N, Song Z Y. 2019. Assessing the impacts of ecological–living–productive land changes on eco–environmental quality in Xining city on Qinghai–Tibet Plateau, China[J]. Sciences in Cold and Arid Regions, 11(3): 194−207.
|
[12] |
Guo Qishan. 2011. Engineering geology of Xining city area[J]. Journal of Qinghai University (Nature Science), 29(1): 73−77 (in Chinese with English abstract).
|
[13] |
He Jun, Peng Ke, Zeng Ming. 2016. Environmental characteristics of high Fe and Mn groundwater in shallow aquifers at northeastern Jianghan Plain[J]. Geology and Mineral Resources of South China, 32(3): 258−264 (in Chinese with English abstract).
|
[14] |
Hou Q X, Zhang Q, Huang G X, Liu C Y, Zhang Y. 2020. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China[J]. Science of the Total Environment, 701: 134777. doi: 10.1016/j.scitotenv.2019.134777
|
[15] |
Huang Guanxing, Sun Jichao, Jing Jihong, Wang Shan, Du Haiyan, Liu Jingtao, Chen Xi, Zhang Yuxi, Di Xiaobin, Zhi Bingfa. 2008. Distribution and origin of iron in groundwater of the Zhujiang delta[J]. Geology in China, 35(3): 531−537 (in Chinese with English abstract).
|
[16] |
Huang G X, Han D Y, Song J M, Li L P, Pei L X. 2022. A sharp contrasting occurrence of iron–rich groundwater in the Pearl River Delta during the past dozen years (2006–2018): The genesis and mitigation effect[J]. Science of the Total Environment, 829: 154676. doi: 10.1016/j.scitotenv.2022.154676
|
[17] |
Jia Y F, Guo H M, Jiang Y X, Wu Y, Zhou Y Z. 2014. Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia[J]. Journal of Hydrology, 518: 410−420. doi: 10.1016/j.jhydrol.2014.02.004
|
[18] |
Jia Y F, Xi B D, Jiang Y H, Guo H M, Yang Y, Lian X Y, Han S B. 2018. Distribution, formation and human−induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of the Total Environment, 643: 967−993. doi: 10.1016/j.scitotenv.2018.06.201
|
[19] |
Koit O, Barberá J, Marandi A, Terasmaa J, Kiivit I, Martma T. 2020. Spatiotemporal assessment of humic substance–rich stream and shallow karst aquifer interactions in a boreal catchment of northern Estonia[J]. Journal of Hydrology, 580: 124238. doi: 10.1016/j.jhydrol.2019.124238
|
[20] |
Land Planning Research Institute of Planning and Technology Division. 2010. "Qinghai Province Land Utilization Overall Plan" (2006–2020) specific content[J]. Management and Strategy of Qinghai Land and Resources, (4): 6−8 (in Chinese).
|
[21] |
Li H H, Zhan R Z, Lu Y D, Zhou B, Wu J. 2021. Spatiotemporal variation and periodic evolution characteristics of groundwater in the Xining area of China, eastern Qinghai–Tibet Plateau[J]. Environmental Earth Sciences, 80: 799. doi: 10.1007/s12665-021-10097-8
|
[22] |
Li Mengjie. 2020. Study on Land Use Benefit Evaluation of Xining City Based on TOD Model[D]. Xining: Qinghai Normal University, 1–70 (in Chinese with English abstract).
|
[23] |
Li Shu. 2014. The Interaction Influence between Biofilm and Its Extracellular Polymers by Cu2+[D]. Kunming: Kunming University of Science and Technology, 1–86 (in Chinese with English abstract).
|
[24] |
Liang Guoling, Sun Jichao, Huang Guanxing, Jing Jihong, Liu Jingtao, Chen Xi, Zhang Yuxi, Du Haiyan. 2009. Origin and distribution characteristics of manganese in groundwater of the Zhujiang River Delta[J]. Geology in China, 36(4): 899−906 (in Chinese with English abstract).
|
[25] |
Liang Heguo. 2014. Research progress in iron and manganese removal technology for groundwater in China[J]. Journal of Yangtze University (Natural Science Edition), 11(5): 71−74 (in Chinese).
|
[26] |
Liu Chunyan, Huang Guanxing, Jing Jihong, Liu Jingtao, Zhang Ying, Guo Weixuan. 2023a. Characteristics and driving mechanisms of evolution of groundwater chemistry in Huang−Huai−Hai Plain and its exploitation and utilization suggestions[J]. Geology in China, 50(6): 1705−1719 (in Chinese with English abstract).
|
[27] |
Liu Chunyan, Yu Kaining, Zhang Ying, Jing Jihong, Liu Jingtao. 2023b. Characteristics and driving mechanisms of shallow groundwater chemistry in Xining City[J]. Environmental Science, 44(6): 3228−3236 (in Chinese with English abstract).
|
[28] |
Liu Feng, Chen Huijuan, Wang Shidong, Zhao Dongyang, Qin Guangxiong. 2015. Analysis on main geological disasters formation causes and deformation failure mode in Xining City[J]. Ground Water, 37(3): 175−177 (in Chinese).
|
[29] |
Lü Xiaoli, Liu Jingtao, Zhou Bing, Zhu Liang. 2020. Fe and Mn distribution of groundwater and impact of human activities in the Tacheng Basin, Xinjiang[J]. Geology in China, 47(6): 1765−1775 (in Chinese with English abstract).
|
[30] |
Ma Xiaofan, Zhang Haifeng, Gao Ziyi, Gao Ao. 2019. Study on the trend of population spatial distribution in the main urban area of Xining since the reform and opening up[J]. Modern Urban Research, 34(11): 20−25 (in Chinese with English abstract).
|
[31] |
Ma Y Y, Wang Z Q, Ma T, Chen S X. 2020. Spatial distribution characteristics and influencing factors of organic carbon in sediments of Tongshun River riparian zone[J]. Chemosphere, 252: 126322. doi: 10.1016/j.chemosphere.2020.126322
|
[32] |
McMahon P B, Belitz K, Reddy J E, Johnson T D. 2019. Elevated manganese concentrations in United States groundwater, role of land surface–soil–aquifer connections[J]. Environmental Science and Technology, 53(1): 29−38. doi: 10.1021/acs.est.8b04055
|
[33] |
Neidhardt H, Berner Z A, Freikowski D, Biswas A, Majumder S, Winter J, Gallert C, Chatterjee D, Norra S. 2014. Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations[J]. Chemical Geology, 367: 51−62. doi: 10.1016/j.chemgeo.2013.12.021
|
[34] |
Olmos–Trujillo E, González–Trinidad J, Júnez–Ferreira H, Pacheco–Guerrero A, Bautista–Capetillo C, Avila–S C, Galván–Tejada E. 2020. Spatio–temporal response of vegetation indices to rainfall and temperature in a semiarid region[J]. Sustainability, 12(5): 1939. doi: 10.3390/su12051939
|
[35] |
Pan X H, Wang Y H, Liu Z F, He C Y, Liu H M, Chen Z R. 2021. Understanding urban expansion on the Tibetan Plateau over the past half century based on remote sensing: The case of Xining city, China[J]. Remote Sensing, 13: 46.
|
[36] |
Postma D, Larsen F, Hue N, Duc M, Viet P, Nhan P, Jessen S. 2007. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 71(21): 5054−5071. doi: 10.1016/j.gca.2007.08.020
|
[37] |
Qinghai Provincial Bureau of Statistics, Qinghai Survey Team of the National Bureau of Statistics. 2018. Qinghai Statistical Yearbook[M]. Beijing: China Statistics Press (in Chinese).
|
[38] |
Retike I, Kalvans A, Popovs K, Bikse J, Babre A, Delina A. 2016. Geochemical classification of groundwater using multivariate statistical analysis in Latvia[J]. Hydrology Research, 47(4): 799−813. doi: 10.2166/nh.2016.020
|
[39] |
Singh A, Sharma R, Agrawal M, Marshall F. 2010. Health risk assessment of heavy metals via dietary intake of food–stuffs from the wastewater irrigated site of a dry tropical area of India[J]. Food and Chemical Toxicology, 48(2): 611−619. doi: 10.1016/j.fct.2009.11.041
|
[40] |
Teng Y G, Zuo R, Xiong Y N, Wu J, Zhai Y Z, Su J. 2019. Risk assessment framework for nitrate contamination in groundwater for regional management[J]. Science of the Total Environment, 697: 1−14.
|
[41] |
Vega M A, Kulkarni H V, Johannesson K H, Taylor R J, Datta S. 2020. Mobilization of c–occurring trace elements (CTEs) in arsenic contaminated aquifers in the Bengal basin[J]. Applied Geochemistry, 122: 104709. doi: 10.1016/j.apgeochem.2020.104709
|
[42] |
Wang Hui, Zhang Lei. 2011. Effects of manganese on physiological function of poultry[J]. Livestock and Poultry Industry, (2): 18−19 (in Chinese).
|
[43] |
Wang Y X, Pi K F, Fendorf S, Deng Y M, Xie X J. 2019. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene–Holocene aquifer systems[J]. Earth–Science Reviews, 189: 79−98.
|
[44] |
Wu A M, Hao A B, Guo H P, Liu J T, Zhang E Y, Wang H, Wang X F, Wen X R, Zhang C G. 2020. Main progress and prospect for China’s hydrogeological survey[J]. Journal of Groundwater Science and Engineering, 8(3): 195−209.
|
[45] |
Wu Yanjun, Chen Qiang. 2013. Evaluation of groundwater environmental quality and analysis of pollution countermeasures in Huangshui River basin[J]. Ground Water, 35(1): 59−60 (in Chinese).
|
[46] |
Xu J, Zhang B P, Tan J, Sun R H, Yao Y H. 2009. Spatial relationship between altitudinal vegetation belts and climatic factors in the Qinghai–Tibetan Plateau[J]. Mountain in Research, 27(6): 663−670.
|
[47] |
Yang Hang. 2014. Experimental Study on Biological Removal of Water Containing Low Concentration of Iron and High Concentration of Manganese[D]. Harbin: Harbin Institute of Technology, 1–79 (in Chinese with English abstract).
|
[48] |
Yang Wenping, Gao Jianguang. 2013. Effects of iron on livestock and poultry and evaluation of iron status in the body[J]. Feed Research, (9): 43−45 (in Chinese).
|
[49] |
Ying S C, Schaefer M V, Cock–Esteb A, Li J, Fendorf S. 2017. Depth ratification leads to distinct zones of manganese and arsenic contaminated groundwater[J]. Environmental Science and Technology, 51: 8926−8932. doi: 10.1021/acs.est.7b01121
|
[50] |
Zhai Y Z, Han Y F, Xia X L, Li X D, Lu H, Teng Y G, Wang J S. 2021a. Anthropogenic organic pollutants in groundwater increase releases of Fe and Mn from aquifer sediments: Impacts of pollution degree, mineral content, and pH[J]. Water, 13: 1−15.
|
[51] |
Zhai Y Z, Cao X Y, Xia X L, Wang B, Teng Y G, Li X. 2021b. Elevated Fe and Mn concentrations in groundwater in the Songnen Plain, Northeast China, and the factors and mechanisms involved[J]. Agronomy, 11: 2392. doi: 10.3390/agronomy11122392
|
[52] |
Zhai Y Z, Ma T Y, Zhou J J, Li X F, Liu D, Wang Z, Qin Y Q, Du Q Q. 2019. Impacts of leachate of landfill on the groundwater hydrochemistry and size distributions and heavy metal components of colloids: A case study in NE China[J]. Environmental Science and Pollution Research, 26: 5713−5723. doi: 10.1007/s11356-018-4053-0
|
[53] |
Zhang Aikui, Ma Shenglong, Liu Guanglian, Liu Zhigang, Liu Junpei, Zhang Yong, Yang Hong, Liu Yongle, Sun Feifei. 2019. The spatial–temporal distribution, minerogenic series and metallogenic models of iron deposits, Qinghai Province, China[J]. Acta Mineralogica Sinica, 39(1): 41−54 (in Chinese with English abstract).
|
[54] |
Zhang B, Song X F, Zhang Y H, Han D M, Tang C Y, Yu Y L, Ma Y. 2012. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen Plain, Northeast China[J]. Water Research, 46(8): 2737−2748. doi: 10.1016/j.watres.2012.02.033
|
[55] |
Zhang Debin, Liu Guodong, Zhong Rui. 2018. Analysis of iron and manganese pollution and environmental health risk assessment of groundwater in Xiaoxinhe gas field[J]. Journal of Irrigation and Drainage, 37(1): 70−77 (in Chinese with English abstract).
|
[56] |
Zhang Yanjiao. 2019. An Empirical Study on the Relationship between Agricultural Non–point Source Pollution and Economic Development in the Huangshui River Basin[D]. Qinghai: Qinghai University, 1–67 (in Chinese with English abstract).
|
[57] |
Zhang Ying, Sun Jichao, Huang Guanxing, Jing Jihong, Chen Xi, Liu Jingtao, Zhang Yuxi. 2011. A preliminary study of natural background levels of groundwater in the Zhujiang River Delta[J]. Geology in China, 38(1): 190−196 (in Chinese with English abstract).
|
[58] |
Zhang Z H, Xiao C L, Yang W F, Adeyeye O A, Liang X J. 2021. Effects of the natural environment and human activities on iron and manganese content in groundwater: A case study of Changchun city, Northeast China[J]. Environmental Science and Pollution Research, 28: 41109−41119. doi: 10.1007/s11356-021-13576-4
|
[59] |
Zhu Liang, Kang Weidong, Wang Runlan, Sun Jichao, Liu Jingtao. 2014. Impact of human activities on the groundwater quality in Yulin city[J]. Journal of Arid Land Resources and Environment, 28(11): 54−59 (in Chinese with English abstract).
|
[60] |
Zou Xiaojin, Chou Rongliang, Zhou Xiaoyong, Zheng Wenhui. 2008. Heavy metal contamination and health risk assessment in Dabao Mountain, China[J]. Acta Scientiae Circumstantiae, 28(7): 1406−1412 (in Chinese with English abstract).
|
[61] |
陈毓川, 刘德权, 唐延龄, 王登红, 周汝洪, 王金良, 李华芹, 王晓地. 2007. 中国新疆战略性固体矿产大型矿集区研究[M]. 北京: 地质出版社.
|
[62] |
费杨, 阎秀兰, 廖晓勇, 李永华, 林龙勇, 单天宇. 2017. 铁锰双金属材料对As和重金属复合污染土壤钝化修复及其生态效应的影响[J]. 农业环境科学学报, 36(1): 57−65. doi: 10.11654/jaes.2016-0992
|
[63] |
规划科技处国土规划研究院. 2010. 《青海省土地利用总体规划》(2006年–2020年)具体内容[J]. 青海国土经略, (4): 6−8.
|
[64] |
郭岐山. 2011. 西宁市区工程地质研究[J]. 青海大学学报(自然科学版), 29(1): 73−77.
|
[65] |
何军, 彭轲, 曾敏. 2016. 江汉平原东北部浅层高铁锰地下水环境特征[J]. 华南地质与矿产, 32(3): 258−264.
|
[66] |
黄冠星, 孙继朝, 荆继红, 汪珊, 杜海燕, 刘景涛, 陈玺, 张玉玺, 狄效斌, 支兵发. 2008. 珠江三角洲地区地下水铁的分布特征及其成因[J]. 中国地质, 35(3): 531−537. doi: 10.3969/j.issn.1000-3657.2008.03.018
|
[67] |
李梦洁. 2020. 基于TOD模式的西宁市土地利用效益评价研究[D]. 西宁: 青海师范大学, 1–70.
|
[68] |
李姝. 2014. Cu2+对生物膜及其胞外多聚物的作用规律研究[D]. 昆明: 昆明理工大学, 1–86.
|
[69] |
梁国玲, 孙继朝, 黄冠星, 荆继红, 刘景涛, 陈玺, 张玉玺, 杜海燕. 2009. 珠江三角洲地区地下水锰的分布特征及其成因[J]. 中国地质, 36(4): 899−906. doi: 10.3969/j.issn.1000-3657.2009.04.018
|
[70] |
梁和国. 2014. 我国地下水除铁除锰技术研究进展[J]. 长江大学学报(自然科学版), 11(5): 71−74.
|
[71] |
刘春燕, 黄冠星, 荆继红, 刘景涛, 张英, 郭维轩. 2023a. 黄淮海平原地下水化学演化特征、形成机制及其开发利用建议[J]. 中国地质, 50(6): 1705−1719.
|
[72] |
刘春燕, 于开宁, 张英, 荆继红, 刘景涛. 2023b. 西宁市浅层地下水化学特征及形成机制[J]. 环境科学, 44(6): 3228−3236.
|
[73] |
刘峰, 陈慧娟, 王士东, 赵东阳, 秦光雄. 2015. 西宁市主要地质灾害成因及变形破坏模式分析[J]. 地下水, 37(3): 175−177. doi: 10.3969/j.issn.1004-1184.2015.03.079
|
[74] |
吕晓立, 刘景涛, 周冰, 朱亮. 2020. 新疆塔城盆地地下水中铁锰分布特征及人类活动的影响[J]. 中国地质, 47(6): 1765−1775. doi: 10.12029/gc20200613
|
[75] |
马晓帆, 张海峰, 高子轶, 高骜. 2019. 改革开放以来西宁市主城区人口空间分布变动趋势研究[J]. 现代城市研究, 34(11): 20−25.
|
[76] |
青海省统计局, 国家统计局青海调查队. 2018. 青海统计年鉴[M]. 北京: 中国统计出版社.
|
[77] |
王辉, 张磊. 2011. 锰对家禽生理机能的影响[J]. 畜禽业, (2): 18−19. doi: 10.3969/j.issn.1008-0414.2011.02.008
|
[78] |
吴艳军, 陈强. 2013. 湟水流域地下水环境质量评价及污染对策分析[J]. 地下水, 35(1): 59−60. doi: 10.3969/j.issn.1004-1184.2013.01.024
|
[79] |
杨航. 2014. 低铁高锰环境下生物除铁除锰试验研究[D]. 哈尔滨: 哈尔滨工业大学, 1–79.
|
[80] |
杨文平, 高建广. 2013. 铁对畜禽的影响及机体内铁状况的评估[J]. 饲料研究, (9): 43−45.
|
[81] |
张爱奎, 马生龙, 刘光莲, 刘智刚, 刘军培, 张勇, 杨鸿, 刘永乐, 孙非非. 2019. 青海省铁矿时空分布、成矿系列及成矿模式[J]. 矿物学报, 39(1): 41−54.
|
[82] |
张德彬, 刘国东, 钟瑞. 2018. 孝新合气田区地下水铁锰污染分析及环境健康风险评价[J]. 灌溉排水学报, 37(1): 70−77.
|
[83] |
张艳娇. 2019. 湟水河流域农业面源污染与经济发展关系的实证研究[D]. 青海: 青海大学, 1–67.
|
[84] |
张英, 孙继朝, 黄冠星, 荆继红, 陈玺, 刘景涛, 张玉玺. 2011. 珠江三角洲地区地下水环境背景值初步研究[J]. 中国地质, 38(1): 190−196. doi: 10.3969/j.issn.1000-3657.2011.01.020
|
[85] |
朱亮, 康卫东, 王润兰, 孙继朝, 刘景涛. 2014. 人类活动对榆林地区地下水水质的影响[J]. 干旱区资源与环境, 28(11): 54−59.
|
[86] |
邹晓锦, 仇荣亮, 周小勇, 郑文晖. 2008. 大宝山矿区重金属污染对人体健康风险的研究[J]. 环境科学学报, 28(7): 1406−1412. doi: 10.3321/j.issn:0253-2468.2008.07.024
|