• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Bao Liran, Li Yu, Zhang Fenglei, Yue Fujun, Luo Kai, Deng Hai, Yan Mingshu. 2024. Spatial distribution, influencing factors and contribution to carbon emission reduction of topsoil organic carbon in Chongqing, China[J]. Geology in China, 51(5): 1501−1512. DOI: 10.12029/gc20230505002
Citation: Bao Liran, Li Yu, Zhang Fenglei, Yue Fujun, Luo Kai, Deng Hai, Yan Mingshu. 2024. Spatial distribution, influencing factors and contribution to carbon emission reduction of topsoil organic carbon in Chongqing, China[J]. Geology in China, 51(5): 1501−1512. DOI: 10.12029/gc20230505002

Spatial distribution, influencing factors and contribution to carbon emission reduction of topsoil organic carbon in Chongqing, China

Funds: Supported by Scientific Research Project of Chongqing Geological and Mineral Exploration and Development Bureau in 2022 (No. DKJ−2022−208−B−001).
More Information
  • Author Bio:

    BAO Liran, female, born in 1983, master, professor level senior engineer, engaged in research on geochemistry evaluation of land quality; E-mail: blr1999@163.com

  • Received Date: May 04, 2023
  • Revised Date: July 18, 2023
  • This paper is the result of environmental geological survey engineering.

    Objective 

    Natural geological carbon sinks mostly consist of soil and karst carbon sinks, and the main form of carbon’s participation in the carbon cycle in soil is organic carbon. Therefore, the study of topsoil organic carbon has great significance for increasing soil carbon sink and achieving the "carbon peaking and carbon neutrality" goal.

    Methods 

    Based on the data of a multi−objective regional geochemical survey, this paper analyzed the spatial distribution of topsoil organic carbon density in Chongqing with the geostatistical method, studied the influencing factors and importance of soil organic carbon density by one−way ANOVA and classification regression tree and evaluated the carbon sequestration and emission reduction potential of the farmland soil with the model approach.

    Results 

    The average density of topsoil organic carbon in the study area was 2.75 kg/m2 , and the spatial distribution had a moderate degree of spatial autocorrelation, showing a distribution pattern of being high at the north and south ends and low in the middle. Altitude, temperature and soil type were the main factors affecting the organic carbon density, followed by precipitation and land use method. The carbon sequestration potential of farmland topsoil was about 36.88 Tg C, equivalent to 24.10% of Chongqing's carbon emissions from energy consumption in 2018.

    Conclusions 

    The soil organic carbon density was relatively high in cool and humid high−altitude areas, in Chongqing; and forests, grasslands, and paddy fields can help with the accumulation of soil organic carbon among different land use methods. Before the carbon balanceis achieved, the farmland soil, has a "carbon sink" effect as a whole, absorbing carbon from the air.

    Highlights
    Based on the data of multi−objective regional geochemical survey, this paper studied the influencing factors and importance to soil organic carbon density, and assessed the potential for carbon sequestration and emission reduction of the farmland topsoil.
  • [1]
    Ajami M, Heidari A, Khormali F, Gorji M, Ayoubi S. 2016. Environmental factors controlling soil organic carbon storage in loess soils of a subhumidregion, northern Iran[J]. Geoderma: An International Journal of Soil Science, 281: 1−10.
    [2]
    Cambardella C A, Moorman T B, Novak J M, Parkin T B, Konopka A E. 1994. Field–scale variability of soil properties in central lowa soils[J]. Soil Science Society of America Journal, 58(5): 1501−1511. doi: 10.2136/sssaj1994.03615995005800050033x
    [3]
    Chang Xiaofeng, Wang Shiping, Xu Guangping, Bai Ling. 2013. Estimating uncertainties and determinants of soil organic carbon stock[J]. Guihaia, 33(5): 710−716, 668 (in Chinese with English abstract).
    [4]
    Cheng Jin, Huang Wenqing, Zhang Shichang, Zhang Weiqing, Huang Gongbiao, Zhang Jiangzhou, Wu Liangquan. 2023. Spatial distribution of and factors influencing topsoil organic carbon density in Fujian Province, China[J]. Journal of Agricultural Resources and Environment, 40(4): 805−816 (in Chinese with English abstract).
    [5]
    Guo Jingjing. 2015. Changes of Soil Carbon Pool in Typical Areas of Changjiang Drainage Basin and Carbon Sequestration Potential[D]. Beijing: China University of Geosciences (Beijing), 1–78 (in Chinese with English abstract).
    [6]
    Huang Changyong. 2000. Soil Science[M]. Beijing: China Agriculture Press, 26–28 (in Chinese).
    [7]
    Huang Qiaoyun, Lin Qimei, Xu Jianming. 2015. Soil Biochemistry[M]. Beijing: Higher Education Press, 155–157 (in Chinese).
    [8]
    Huang Xuexia, Ni Jiupai, Gao Ming, Wei Chaofu, Xie Deti. 2005. Estimating soil organic carbon pool of Chongqing area and its spatial distribution[J]. Journal of Soil and Water Conservation, 19(1): 54−58 (in Chinese with English abstract).
    [9]
    Kong Xiangbin, Hu Yingjie, Li Yue, Duan Zengqiang. 2019. Distribution and influencing factors of soil organic carbon of cultivated land topsoil in Beijing[J]. Resources Science, 41(12): 2307−2315 (in Chinese with English abstract).
    [10]
    Le Xiaofang, Chen Jiachun, Miao Lu. 2020. A review of agricultural soil carbon sink research[J]. Agriculture and Technology, 40(22): 8−10 (in Chinese).
    [11]
    Li Haiyan, Zhou Huijie, Mo Liping. 2024. Distribution characteristics and influencing factors of organic carbon in farmland soil in Rongxian County[J]. Agriculture and Technology, 44(5): 92−97 (in Chinese).
    [12]
    Liao Q L, Zhang X H, Li Z P, Pan G X, Wu X M. 2009. Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province[J]. Global Change Biology, 15(4): 861−875. doi: 10.1111/j.1365-2486.2008.01792.x
    [13]
    Lin Chihui, Guo Xiaoyu, Kang Wenhui, Zhang Yu. 2020. Effects of different management measures on soil carbon cycle[J]. West Resources, 95(2): 165−168 (in Chinese with English abstract).
    [14]
    Liu Aili, Wang Peifa, Ding Yuan. 2012. Introduction to Geostatistics[M]. Beijing: Science Press, 60–67 (in Chinese).
    [15]
    Liu Guodong, Li Ying, Zhang Li, Cui Yujun, Yang Ke, Liu Yinghan. 2014. The estimation of soil carbon sequestration potential in southern Songnen plain[J]. Geology in China, 41(2): 658–664(in Chinese with English abstract).
    [16]
    Liu Qingyu, Ma Ying, Cheng Li, Shen Xiao, Zhang Yafeng, Miao Guowen, Huang Qiang, Han Siqi. 2023. Density and spatial distribution of organic carbon in the topsoil of eastern Qinhai[J]. Geophysical and Geochemical Exploration, 47(4): 1098−1108 (in Chinese with English abstract).
    [17]
    Lü Yuanchun, Xu Pengcheng. 2012. Response of soil organic carbon to temperature changes under different land use patterns[J]. Journal of Anhui Agricultural Sciences, 40(35): 17079−17080, 17097 (in Chinese with English abstract).
    [18]
    Ni Jiupai, Yuan Daoxian, Xie Deti, Wei Chaofu. 2009. Estimation of soil organic carbon storage and the characteristic of carbon spatial distributions in karst area, Chongqing, China[J]. Acta Ecologica Sinica, 29(11): 6292−6301 (in Chinese with English abstract).
    [19]
    Post W M, Emanuel W R, Zinke P J, Stangenberger A J. 1982. Soil carbon pools and world life zones[J]. Nature, 298(5870): 156−159. doi: 10.1038/298156a0
    [20]
    Qin Zhangcai, Huang Yao. 2010. Model−based estimation of soil carbon sequestration potential in farmland[J]. Chinese Science: Life Sciences, 40(7): 658−676 (in Chinese).
    [21]
    Sichuan Provincial Department of Agriculture and Animal Husbandry, Sichuan Provincial Soil Census Office. 1997. Sichuan Soil[M]. Chengdu: Sichuan Science and Technology Press, 191–213, 316–370, 392–453(in Chinese).
    [22]
    Shi Yongliang, Jiang Guixin. 2022. Effects of different agricultural land use patterns on distribution of soil organic carbon and total nitrogen[J]. Acta Agriculturae Jiangxi, 34(12): 101−106 (in Chinese with English abstract).
    [23]
    Sun Xijun, Deng Rui, Lü Shuang, Gao Ying, Cai Miao, Gou Qiaohong, Zhao Juan. 2022. Spatial variability characteristics of farmland soil organic matter in Xi'an[J]. Chinese Agricultural Science Bulletin, 38(35): 43−53 (in Chinese with English abstract).
    [24]
    Tang Min. 2019. Research advances in spatial and temporal distribution of soil organic carbon and its influencing factors in China[J]. Journal of Henan University of Engineering, 31(4): 42−49,82 (in Chinese with English abstract).
    [25]
    Tang Zhixin, Xiao Peng, Zhang Dan, Xie Geng, Zhang Yunhuai. 2022. Dynamic characteristics and driving factors decomposition of energy consumption carbon emissions in Chongqing[J]. Envimnmental Impact Assessment, 44(3): 84−88 (in Chinese with English abstract).
    [26]
    Wang D, He N P, Wang Q, Li Y L, Wang Q F, Xu Z W, Zhu J X. 2016. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China[J]. Pedosphere, 26(3): 399−407. doi: 10.1016/S1002-0160(15)60052-2
    [27]
    Wang Dandan, Shi Xuezheng, Yu Dongsheng, Wang Hongjie, Sun Weixia, Ren Hongyan. 2009. Main natural factors controlling soil organic carbon density in the uplands of Northeast China[J]. Ecology and Environmental Sciences, 18(3): 1049−1053 (in Chinese with English abstract).
    [28]
    Wang Haocheng, Yang Bingjuan, Liang Xiaogui, Hu Qiliang, Li Na, Huang Guoqin. 2024. A review of researches on cropland soil organic carbon pool and its influencing factors in China[J]. Ecological Science, 43(2): 260−270 (in Chinese with English abstract).
    [29]
    Wang Xiuli, Zhang Fengrong, Zhu Taifeng, Zhou Jian, Wu Hao, Yang Lifang. 2013. Study on the distribution and influencing factors of soil organic carbon in mountainous areas of Beijing[J]. Resources Science, 35(6): 1152−1158 (in Chinese with English abstract).
    [30]
    Wang Wenjun. 2012. The characteristics of soil organic carbon reserves in Longyan area, Fujian Province, and their impacting factors[J]. Quaternary Sciences, 32(2): 337−345 (in Chinese with English abstract).
    [31]
    Wen Xin, Wang Yihui, Zhong Cong, Hu Baoqing, Zhang Xinying. 2023. Spatial variation of surface soil organic matter and its influencing factors in Guizhou Province[J]. Journal of Soiland Water Conservation, 37(3): 1−7 (in Chinese with English abstract).
    [32]
    Wu Hao. 2015. The relationship between terrain factors and spatial variability of soil nutrients for pine–oak mixed forest in Qinling Mountains[J]. Journal of Natural Resources, 30(5): 858−869 (in Chinese with English abstract).
    [33]
    Xi Xiaohuan, Yang Zhongfang, Liao Qilin, Zhang Jianxin, Bai Rongjie, Zhang Xiuzhi, Jin Lixin, Wang Huifeng, Li Min, Xia Xueqi. 2010. Soil organic carbon storage in typical regions of China[J]. Quaternary Sciences, 30(3): 573−583 (in Chinese with English abstract).
    [34]
    Xi Xiaohuan, Yang Zhongfang, Xia Xueqi, Li Min. 2009. Calculation techniques for soil carbon storage of China based on multi–purpose geochemical survey[J]. Earth Science Frontiers, 16(1): 194−205 (in Chinese with English abstract).
    [35]
    Yan Ningzhen, Cheng Yongyi, Yang Jianghong, Qu Ming. 2013. Distribution and impact factor of soil organic carbon on topsoil in karst mountain: A case study of Beibei district of Chongqing[J]. Carsologica Sinica, 32(3): 292−298 (in Chinese with English abstract).
    [36]
    Yang Anguang, Miao Zhenghong, Qiu Fafu, Yang Qingchen, Wang Zongming, Mao Dehua. 2015. A study on storage and distribution of soil organic carbon in Sanjiang Plain based on GIS[J]. Bulletin of Soll and Water Conservation, 35(2): 155−158 (in Chinese with English abstract).
    [37]
    Yang Ke. 2016. Soil Carbon Sequestration Potential of Typical Agricultural Area in China[D]. Beijing: China University of Geosciences, 1–167 (in Chinese with English abstract).
    [38]
    Yang Weidong, Zeng Lianbo, Li Xiang. 2023. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science, 38(2): 151−167 (in Chinese with English abstract).
    [39]
    Yang Yixun, Jiang Xiaoxu, Li Mingsheng, Yang Nan, Feng Xue. 2022. Spatial variability of soil organic carbon content and density in the Sanjiang Plain[J]. Chinese Journal of Soil Science, 53(6): 1313−1319 (in Chinese with English abstract).
    [40]
    Yang Zhongfang, Xia Xueqi, Yu Tao, Hou Qingye, Feng Haiyang. 2011. Soil carbon pool in the northeast Inner Mongolia and its influencing factors[J]. Earth and Science Frontiers, 18(6): 1–10 (in Chinese with English abstract).
    [41]
    Zhang Yuyi. 2020. Environmental Analysis of Rose Orange Production Area−Taking Ganning Town in Wanzhou District as An Example[D]. Chongqing: Southwest University, 1–81 (in Chinese with English abstract).
    [42]
    Zhou Jinlin, Huang Yang, Chen Jiajing, Wang Longchang. 2015. Analysis on temporal and spatial variations of organic carbon and carbon sequestration potential in farmland soil in Chongqing[J]. Acta Scientiae Circumstantiae, 35(11): 3647−3654 (in Chinese with English abstract).
    [43]
    Zhou Meng, Liang Zhipeng, Zou Tianxiang, Tu Junxi, Hu Yanfeng, Shen Wenjie. 2024. Estimation of organic carbon storage and carbon sequestration potential of cultivated soil in red beds area[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 63(3): 12−20 (in Chinese with English abstract).
    [44]
    Zhou Shuang. 2016. Analysis of Influencing Factors and Prediction of Soil Organic Carbon at Agricultural Landscape in Hilly Area[D]. Chongqing: Southwest University, 1–57 (in Chinese with English abstract).
    [45]
    常小峰, 汪诗平, 徐广平, 白玲. 2013. 土壤有机碳库的关键影响因素及其不确定性[J]. 广西植物, 33(5): 710−716, 668. doi: 10.3969/j.issn.1000-3142.2013.05.023
    [46]
    程金, 黄文卿, 张世昌, 张卫清, 黄功标, 张江周, 吴良泉. 2023. 福建省表层土壤有机碳密度空间分布及影响因素分析[J]. 农业资源与环境学报, 40(4): 805–816.
    [47]
    郭晶晶. 2015. 长江流域典型地区土壤碳库变化及固碳潜力研究[D]. 北京: 中国地质大学(北京), 1–78.
    [48]
    黄昌勇. 2000. 土壤学[M]. 北京: 中国农业出版社, 26–28.
    [49]
    黄巧云, 林启美, 徐建明. 2015. 土壤生物化学[M]. 北京: 高等教育出版社, 155–157.
    [50]
    黄雪夏, 倪九派, 高明, 魏朝富, 谢德体. 2005. 重庆市土壤有机碳库的估算及其空间分布特征[J]. 水土保持学报, 19(1): 54−58. doi: 10.3321/j.issn:1009-2242.2005.01.014
    [51]
    孔祥斌, 胡莹洁, 李月, 段增强. 2019. 北京市耕地表层土壤有机碳分布及其影响因素[J]. 资源科学, 41(12): 2307−2315. doi: 10.18402/resci.2019.12.14
    [52]
    乐小芳, 陈佳淳, 苗璐. 2020. 农业土壤碳汇研究综述[J]. 农业与技术, 40(22): 8−10.
    [53]
    李海燕, 周慧杰, 莫莉萍. 2024. 容县耕地土壤有机碳分布特征及其影响因素[J]. 农业与技术, 44(5): 92−97.
    [54]
    林赤辉, 郭小雨, 康文慧, 张宇. 2020. 耕地不同管理措施对土壤碳循环的影响研究[J]. 西部资源, 95(2): 165−168.
    [55]
    刘爱利, 王培法, 丁园. 2012. 地统计学概论[M]. 北京: 科学出版社, 60–67.
    [56]
    刘国栋, 李瑛, 张立, 崔玉军, 杨柯, 刘应汉. 2014. 松嫩平原耕层土壤固碳潜力估算[J]. 中国地质, 41(2): 658−664. doi: 10.3969/j.issn.1000-3657.2014.02.026
    [57]
    刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 2023. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 47(4): 1098−1108.
    [58]
    吕元春, 许鹏程. 2012. 不同土地利用方式下的土壤有机碳对温度变化的响应[J]. 安徽农业科学, 40(35): 17079−17080, 17097. doi: 10.3969/j.issn.0517-6611.2012.35.040
    [59]
    倪九派, 袁道先, 谢德体, 魏朝富. 2009. 重庆岩溶区土壤有机碳库的估算及其空间分布特征[J]. 生态学报, 29(11): 6292−6301. doi: 10.3321/j.issn:1000-0933.2009.11.066
    [60]
    覃章才, 黄耀. 2010. 基于模型的农田土壤固碳潜力估算[J]. 中国科学: 生命科学, 40(7): 658−676.
    [61]
    四川省农牧厅, 四川省土壤普查办公室. 1997. 四川土壤[M]. 成都: 四川科学技术出版社, 191–213, 316–370, 392–453.
    [62]
    史永亮, 蒋桂欣. 2022. 不同农业土地利用方式对土壤有机碳和全氮的分布影响[J]. 江西农业学报, 34(12): 101−106.
    [63]
    孙喜军, 邓睿, 吕爽, 高莹, 蔡苗, 缑巧红, 赵娟. 2022. 西安市农用地土壤有机质空间变异特征[J]. 中国农学通报, 38(35): 43−53.
    [64]
    唐敏. 2019. 中国土壤有机碳时空分布及影响因素研究进展[J]. 河南工程学院学报(自然科学版), 31(4): 42−49, 82.
    [65]
    唐志欣, 肖鹏, 张丹, 谢耕, 张云怀. 2022. 重庆市能源消费碳排放动态特征及驱动因素分解[J]. 环境影响评价, 44(3): 84−88.
    [66]
    王丹丹, 史学正, 于东升, 王洪杰, 孙维侠, 任红艳, 赵永存. 2009. 东北地区旱地土壤有机碳密度的主控自然因素研究[J]. 生态环境学报, 18(3): 1049−1053.
    [67]
    王浩成, 杨滨娟, 梁效贵, 胡启良, 李娜, 黄国勤. 2024. 中国农田土壤有机碳库及其影响因素研究述评[J]. 生态科学, 43(2): 260−270.
    [68]
    王秀丽, 张凤荣, 朱泰峰, 周建, 吴昊, 杨黎芳. 2013. 北京山区土壤有机碳分布及其影响因素研究[J]. 资源科学, 35(6): 1152−1158.
    [69]
    王文俊. 2012. 福建龙岩地区土壤有机碳储量特征及其影响因素[J]. 第四纪研究, 32(2): 337−345.
    [70]
    文鑫, 王艺惠, 钟聪, 胡宝清, 张新英. 2023. 贵州表层土壤有机质空间变异特征及其影响因素分析[J]. 水土保持学报, 37(3): 1−7.
    [71]
    吴昊. 2015. 秦岭山地松栎混交林土壤养分空间变异及其与地形因子的关系[J]. 自然资源学报, 30(5): 858−869. doi: 10.11849/zrzyxb.2015.05.013
    [72]
    奚小环, 杨忠芳, 廖启林, 张建新, 白荣杰, 张秀芝, 金立新, 王会峰, 李敏, 夏学齐. 2010. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 30(3): 573−583. doi: 10.3969/j.issn.1001-7410.2010.03.16
    [73]
    奚小环, 杨忠芳, 夏学齐, 李敏. 2009. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 16(1): 194−205. doi: 10.3321/j.issn:1005-2321.2009.01.022
    [74]
    严宁珍, 程永毅, 杨剑虹, 屈明. 2013. 岩溶山地土壤有机碳的分布特征及表层土壤有机碳的影响因素分析——以重庆市北碚区为例[J]. 中国岩溶, 32(3): 292−298. doi: 10.3969/j.issn.1001-4810.2013.03.007
    [75]
    杨安广, 苗正红, 邱发富, 杨清臣, 王宗明, 毛德华. 2015. 基于GIS的三江平原表层土壤有机碳储量估算及空间分布研究[J]. 水土保持通报, 35(2): 155−158.
    [76]
    杨柯. 2016. 我国典型农耕区土壤固碳潜力研究[D]. 北京: 中国地质大学, 1–167.
    [77]
    杨卫东, 曾联波, 李想. 2023. 碳汇效应及其影响因素研究进展[J]. 地球科学进展, 38(2): 151−167. doi: 10.11867/j.issn.1001-8166.2023.004
    [78]
    杨亦恂, 姜晓旭, 李名升, 杨楠, 封雪. 2022. 三江平原土壤有机碳含量及其密度的空间变异特征分析[J]. 土壤通报, 53(6): 1313−1319.
    [79]
    杨忠芳, 夏学齐, 余涛, 侯青叶, 冯海艳. 2011. 内蒙古中北部土壤碳库构成及其影响因素[J]. 地学前缘, 18(6): 1−10.
    [80]
    张云逸. 2020. 玫瑰香橙产地环境分析−以万州区甘宁镇为例[D]. 重庆: 西南大学, 1–81.
    [81]
    周金霖, 黄阳, 陈佳婧, 王龙昌. 2015. 重庆市农田土壤有机碳时空变化与固碳潜力分析[J]. 环境科学学报, 35(11): 3647−3654.
    [82]
    周萌, 梁志鹏, 邹天祥, 涂俊喜, 胡炎凤, 沈文杰. 2024. 红层区耕地土壤有机碳储量估算与固碳潜力分析[J]. 中山大学学报(自然科学版)(中英文), 63(3): 12−20.
    [83]
    周双. 2016. 丘陵山区农田土壤有机碳密度影响因素与制图研究[D]. 重庆: 西南大学, 1–57.
  • Related Articles

    [1]JIANG Gaolei, WANG Nai’ang, LI Zhuolun, LI Meng, SU Xianbao, NING Kai. Distribution pattern of saline minerals in surface sediments of lakes in the Badain Jaran Desert and its implications for climate−environmental reconstruction[J]. GEOLOGY IN CHINA, 2024, 51(6): 2077-2089. DOI: 10.12029/gc20220304004
    [2]CAO Wengeng, WANG Yanyan, ZHANG Yanan, GUO Jiju, XIAO Shunyu, DING Minjin, NA Jing, SUN Zhuang. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. GEOLOGY IN CHINA, 2024, 51(6): 1895-1916. DOI: 10.12029/gc20231028001
    [3]LI Chang, YANG Zhongfang, YU Tao, NIU Rongchen, GUO Rucan, YU Baocheng, XIA Xueqi, YU Chaoyang, CAO Yuanyuan. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. GEOLOGY IN CHINA, 2024, 51(4): 1210-1242. DOI: 10.12029/gc20230814001
    [4]WU Shanshan, YAO Weijun, LIANG Xingjiang, ZHOU Juan, JIA Zhijie, DONG Maogan, NIU Shuyin, CHEN Chao, YANG Binbin, ZHU Peng. Characteristics of geothermal resources and carbon emission reduction potential in Dafeng District, Jiangsu Province[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220706002
    [5]LI Hui, QIAN Yong, HAN Zhantao, KONG Xiangke, ZHANG Wei, MA Lisha, ZHANG Xianfu, TIAN Xia. Natural attenuation monitoring of 1,2,3-trichloropropane and benzene in the groundwater of organic pollution sites, Tianjin chemical plant and its environmental restoration suggestions[J]. GEOLOGY IN CHINA, 2023, 50(5): 1446-1459. DOI: 10.12029/gc20220302001
    [6]GE Weiya, CHANG Xiaojun, JIA Junyuan, LEI Ting, XING Huaixue, ZHOU Jie, YU Cheng, TIAN Fujin, LI Liang. Comprehensive Geological Environmental Survey in New Small Towns ― A Case Study of the Geological Dataset of Danyang City, Jiangsu in 2016[J]. GEOLOGY IN CHINA, 2019, 46(S2): 83-92. DOI: 10.12029/gc2019Z209
    [7]YU Shaowen, LI Qinghua, LIU Fengmei, ZHANG Yanpeng. Dataset of the Environmental Geological Survey on a Scale of 1∶50 000 in the Longmen Map Sheet, Hainan Province[J]. GEOLOGY IN CHINA, 2019, 46(S2): 60-68. DOI: 10.12029/gc2019Z206
    [8]ZHANG Ao, SHAO Changsheng, WANG Cen, YANG Yanlin, LU Tao. Dataset of the Environmental Geological Survey on a Scale of 1∶50 000 in the Puqi County (Present Chibi City) Map Sheet, Hubei Province[J]. GEOLOGY IN CHINA, 2019, 46(S2): 50-59. DOI: 10.12029/gc2019Z205
    [9]HE Fang, XU You-ning, QIAO Gang, LIU Rui-ping. Regional distribution characteristics of mine environmental geological problems in China[J]. GEOLOGY IN CHINA, 2010, 37(5): 1520-1529. DOI: 10.12029/gc20100528
    [10]LU Meng-sheng, KONG Fan-shun, ZHUANG Xue-hou. Comprehensive environmental-geological survey of the Nansi Lake drainage area, southwestern Shandong[J]. GEOLOGY IN CHINA, 2003, 30(4): 424-428. DOI: 10.12029/gc20030415
  • Cited by

    Periodical cited type(7)

    1. 张照伟,吴华英,谭文娟,王亚磊,邵继,李文渊. 中国镍钴矿产资源禀赋条件与找矿潜力. 岩石学报. 2025(02): 416-430 .
    2. 吕骏腾,陈鑫,连东洋,蔡鹏捷. “镍”槃重生, “镍”创未来. 矿物岩石地球化学通报. 2025(01): 191-197 .
    3. 张照伟,钱兵,王亚磊,李文渊. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨. 中国地质. 2024(02): 371-384 . 本站查看
    4. 邢程,董涛,杨新强,王涛,段召艳,杜斌,李云飞,张有名. 云南镍钴矿成矿规律及找矿方向. 地球学报. 2024(04): 465-480 .
    5. 崔梦萌,苏本勋,王静,袁庆晗. 镁铁-超镁铁岩的全岩和单矿物钴镍分布特征及其成矿指示. 岩石学报. 2024(08): 2489-2502 .
    6. 李杰. 印尼北马鲁古省某红土型镍矿地球化学异常特征及找矿靶区优选. 矿产与地质. 2024(05): 983-989 .
    7. 周云,李堃,于玉帅,赵武强,刘飞,黄啸坤. 广西金秀县龙华镍钴矿床成矿流体性质、来源及演化. 华南地质. 2023(03): 558-570 .

    Other cited types(5)

Catalog

    Article views (2042) PDF downloads (351) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return