• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
HU Qiu-yuan, LI Li, TANG Zhi-bo, SHI Xiu-peng. Characteristics and mechanism of Late Mesozoic extensional faults in West Shandong Uplift[J]. GEOLOGY IN CHINA, 2009, 36(6): 1233-1244.
Citation: HU Qiu-yuan, LI Li, TANG Zhi-bo, SHI Xiu-peng. Characteristics and mechanism of Late Mesozoic extensional faults in West Shandong Uplift[J]. GEOLOGY IN CHINA, 2009, 36(6): 1233-1244.

Characteristics and mechanism of Late Mesozoic extensional faults in West Shandong Uplift

More Information
  • Abstract:Field survey performed in West Shandong Uplift indicates that extensional faults are well developed and characterized by complicated structural styles in West Shandong Uplift. The main structure style is the compound extensional fault system composed of high-angle faults and low-angle décollement faults. The high-angle faults, which dominate the sedimentation in the southern depression, constitute the main part of the extensional fault system in West Shandong Uplift. In the fault zone, there are dynamic breccia, fault clay, small folds and scraping trace making up signs of faulting activity. Regional décollement faults composed of shallow level faults and deep level faults were found in West Shandong Uplift. The most outstanding décollement faults of the shallow level are between Lower Cambrian and Archean and between Ordovician and Carboniferous. There are different structural deformational styles developed near the décollement surface: above it (in the lowermost part of the Cambrian) there occurred intense structure deformation resulting in folding and shattering, whereas the structures in the underlying Archean are relatively simple, only with extrusion and rupture. The décollement of the deep level controlling the formation and distribution of the shallow level décollement is mainly developed in the low-velocity layer of the crust. The result of the tectonic stress field numerical simulation shows that the extensional fault system has been formed by two stages of large scale extensional movement since Late Mesozoic. Mechanically, the extensional fault system is closely related to the Late Mesozoic-Cenozoic strike-slip activity of Tan-Lu fault zone, the subduction of the Pacific Plate and the magma upwelling.
  • Related Articles

    [1]ZHAO Yuru, GAO Da, HU Mingyi, ZHENG Chao, LI Jia, XIE Wuren. Controls of paleoclimate and sea−level changes on the high−frequency sequence of shallow−water carbonates: A case study of the Longwangmiao Formation in the central Sichuan Basin[J]. GEOLOGY IN CHINA, 2024, 51(2): 577-591. DOI: 10.12029/gc20210809001
    [2]LIU Han, SUN Xianfeng, GUO Jing, ZHANG Shizhen, GOU Zhengbin, LI Jun, Wang Baodi. The north-south structure zone of Jilong valley in Xizang (Tibet) and its restriction on the geological safety of the engineering construction across the Himalaya Mountains[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220825004
    [3]HAN Bo, XIA Yubo, MA Zhen, WANG Xiaodan, GUO Xu, LIN Liangjun, PEI Yandong. Division of engineering geological strata, building of 3D geological structure and its application in urban planning and construction in Xiong'an New Area[J]. GEOLOGY IN CHINA, 2023, 50(6): 1903-1918. DOI: 10.12029/gc20210305004
    [4]ZHANG Yixuan, BAI Chenyang, LIU Yujia, YANG Hailin, LIVIO Ruffine, LAI Yong, LU Hailong. Sedimentary characteristics of the northern continental slope of the Danube Canyon in the northwest of the Black Sea and its relation with paleoclimate changes[J]. GEOLOGY IN CHINA, 2022, 49(3): 880-900. DOI: 10.12029/gc20220314
    [5]DU Lei, WEN Huaguo, LUO Lianchao, DONG Junling, WEN Longbin, YOU Yaxian, WANG Qiyu. Terrestrial hot-spring travertine: An important window into paleoclimate reconstruction[J]. GEOLOGY IN CHINA, 2022, 49(3): 802-821. DOI: 10.12029/gc20220309
    [6]XU Yun, ZHANG Ning, ZHAO Cunliang, LIANG Handong, SUN Yuzhuang. Wildfires in Jurassic Coal Seams from Ordos Basin and its impact on Paleoclimate[J]. GEOLOGY IN CHINA, 2022, 49(2): 643-654. DOI: 10.12029/gc20220220
    [7]XU Zenglian, LI Jianguo, ZHU Qiang, LI Hongliang, ZENG Hui, WEI Jialin, ZHANG Bo, CAO Minqiang, HONG Bo. Early Cretaceous spore and pollen assemblage from the Yixian Formation in the Qianjiadian Depression of Kailu Basin and its paleoclimate evolution[J]. GEOLOGY IN CHINA, 2021, 48(6): 1924-1934. DOI: 10.12029/gc20210619
    [8]TAN Furong, YANG Chuang, CHEN Fuyan, DU Fangpeng, LIU Zhiwu, XU Jiang, LI Juyun, CHEN Yingtao, LUO Tingting, LUO Zheng, FAN Yuhai. Sedimentary facies and its control over petroleum and other resources of the Upper Triassic Bagong Formation in Baqing area, southeastern Qiangtang Basin[J]. GEOLOGY IN CHINA, 2020, 47(1): 57-71. DOI: 10.12029/gc20200105
    [9]MA Zhen, XIA Yubo, WANG Xiaodan, HAN Bo, Gao Yihang. Integration of Engineering Geological Investigation Data and Construction of a 3D Geological Structure Model in the Xiong’an New Area[J]. GEOLOGY IN CHINA, 2019, 46(S2): 123-129. DOI: 10.12029/gc2019Z213
    [10]ZENG Min, ZHAO Xinwen, YU Wang, GU Tao. 1∶50 000 Engineering Geological Survey and Geotechnical Test Dataset of the Doumen Map-Sheet in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. GEOLOGY IN CHINA, 2019, 46(S2): 110-122. DOI: 10.12029/gc2019Z212
  • Cited by

    Periodical cited type(31)

    1. 何迎迎,王瑞雪,周渊,樊林奎,窦妍. 改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用. 复合材料学报. 2024(02): 735-747 .
    2. 严文泽,刘思为,杨柳毅,曹玉川,安登极,黄光耀. 锰资源现状及开发利用技术进展. 中国锰业. 2024(02): 16-21+26 .
    3. 马驷骏,王静,王鹏. 联合传统测量与InSAR技术的锰矿地表形变预测研究. 中国锰业. 2024(02): 62-66+71 .
    4. 常嘉毅,刘燕青,张争辉. 豫西卢氏县杨树沟锰矿找矿潜力分析. 中国锰业. 2024(02): 27-30+36 .
    5. 林伟志,付成兵,胡平,杨凯旭,曹建新. 铜仁地区菱锰矿矿物学特征及其元素赋存状态研究. 无机盐工业. 2024(06): 73-79 .
    6. 谢配红,补建伟,徐庆方,肖春山,黄胤赫. 遵义市典型锰矿区土壤重金属污染空间分布特征及生态风险评价. 安全与环境工程. 2024(04): 223-235 .
    7. 刘建,李鹏翔,包久荣,徐如磊. 安哥拉kitota锰矿区地质特征及矿床成因. 四川地质学报. 2024(03): 444-448 .
    8. 马杰,王胜蓝,秦启荧,文川勇,李名升,封雪. 基于源导向的锰矿尾矿库周边土壤重金属风险评估. 环境科学. 2024(12): 7166-7176 .
    9. 王佳,李凤杰,张玺华,陈聪,高兆龙. 湘西南黔阳盆地“大塘坡式”锰矿成因分析:以湖南靖州地区为例. 中国地质. 2023(01): 249-263 . 本站查看
    10. 卫俊. 龙田沟锰矿成矿地质特征及成矿潜力研究. 现代矿业. 2023(04): 26-29 .
    11. 徐欢,张超,秦林,杨绍泽,马鑫. 碳酸锰矿选矿技术研究进展与展望. 中国锰业. 2023(02): 1-6+12 .
    12. 石光耀,王学求,刘东盛,王玮,薛建玲,吕可欣. 中国深层土壤锰地球化学异常空间分布及找矿远景区预测. 地质通报. 2023(06): 978-986 .
    13. 罗伟恢,边亮,宋绵新,罗伟格,聂嘉男,杨敬杰,张娇,张金梅,张琴,张鹏,解鑫. 烧结锰矿酸浸试验. 有色金属(冶炼部分). 2023(08): 17-24 .
    14. 郝海强,刘志远,杨闪,王建国,张明科,谢静博. 激发极化法在西非加纳某锰矿勘查中的应用. 矿产勘查. 2023(07): 1106-1113 .
    15. 符基卓,覃丰,林最近. 广西钦州市麻园-睦家锰矿地质特征及成矿模式研究. 中国锰业. 2023(03): 10-14 .
    16. 向鹏,曾国平,姜军胜,吴发富,王建雄,胡鹏,张继纯,严永祥. 加纳成矿区带划分与勘查开发现状. 地质通报. 2023(08): 1353-1364 .
    17. 徐一帆,董志国,王长乐,张连昌. 神奇而低调的锰——社会生活中的“配角”. 矿床地质. 2023(06): 1310-1318 .
    18. 景涛,赵强,张鹏羽,杨卓. 某低品位锰矿石选矿工艺研究. 中国锰业. 2023(06): 31-35 .
    19. 张红,薛颖,李智平,曹慷峰. 河北省涿鹿县胥家夭锰矿地质特征及成因分析. 华北自然资源. 2022(02): 27-31 .
    20. 李蕾,龙希建. 锰矿石中硅含量测定的氟硅酸钾容量法确认. 中国锰业. 2022(02): 85-89 .
    21. 孙凯,张起钻,朱清,江思宏,任军平,孙宏伟,张航,古阿雷,曾威,王佳营,卢宜冠,董津蒙,张津瑞. 全球锰矿资源特征及供需格局. 矿产勘查. 2022(04): 371-387 .
    22. 任辉,刘敏,王自国,吴昊,毛景文. 我国锰矿资源及产业链安全保障问题研究. 中国工程科学. 2022(03): 20-28 .
    23. 王自国,吴昊,朱利岗. 中央企业锰矿战略布局思考. 中国矿业. 2022(S1): 1-4 .
    24. 李重洋,谭杰,周浩,谢峥,钱振. 某贫菱锰矿精矿浸出及除杂试验研究. 中国锰业. 2022(03): 33-36+67 .
    25. 卢芳,刘树林,金龙,胡容. 低品位锰铁矿烧结杯试验研究. 甘肃冶金. 2022(05): 24-27 .
    26. 孙宏伟,王杰,任军平,左立波,古阿雷,孙双振,贾磊. 非洲中部加丹加-赞比亚地区锰矿床研究现状及找矿方向. 矿产勘查. 2021(02): 390-400 .
    27. 任军平,胡鹏,王杰,王建雄,张航,刘江涛,刘晓阳,曾国平,孙凯,姜军胜,古阿雷,程湘,陈军强,赵凯,吴兴源. 非洲矿业发展概况. 地质学报. 2021(04): 945-961 .
    28. 覃德亮,陈南雄. 2020年全球锰矿及我国锰产品生产简述. 中国锰业. 2021(04): 10-12+21 .
    29. 卢友志,马倩,莫福金,梁远基,秦志祥. 核桃壳还原浸出低品位氧化锰矿石试验研究. 湿法冶金. 2021(05): 377-381 .
    30. 卢友志,王雅梦,赵义. 核桃壳还原浸出软锰矿的动力学. 有色金属(冶炼部分). 2021(12): 28-34 .
    31. 栾卓然,闫领军,陈超,陈喜峰,张伟波,王丰翔,刘景,鲁先科. 非洲锰矿床成矿规律、开发利用与勘查建议. 地质与勘探. 2021(06): 1216-1228 .

    Other cited types(36)

Catalog

    Article views (3026) PDF downloads (2997) Cited by(67)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return